
Using Specification and Description Language to
represent users’ profiles in OMNET++ simulations

Pau Fonseca i Casas
Dep. of Statistics and Operations

Research. Universitat Politècnica de
Catalunya. C/ Jordi Girona, 31.

Barcelona 08034, Spain
+34 (93) 4017732

pau@fib.upc.edu

Miquel Ramo Niñerola
Dep. of Computer Science. Open
University of Catalonia. Rambla

Poblenou, 156. Barcelona, 08018,
Spain

+34 (93) 3263627

mramo@uoc.edu

Angel A. Juan
Dep. of Computer Science Open
University of Catalonia. Rambla

Poblenou, 156. Barcelona, 08018,
Spain

+34 (93) 3263627

ajuanp@uoc.edu

ABSTRACT

Omnet++ is a powerful and open-source simulation tool which is

basically intended to model discrete-event systems. In particular,

Omnet++ is extensively used to model and simulate computer

networks. Typically, when a Wide Area Network needs to be

modeled, different assumptions are made in order to simplify the

complexity associated with human behavior. Nevertheless,

human behavior can also be modeled, at least to some extent, by

using Multi Agent Systems (MAS). This paper presents a

methodology that allows connecting a MAS model –which

accounts for human behavior–, with a standard Omnet++ model –

which represents the behavior of a computer network. The

approach presented here can be useful to obtain a better

representation of the human behavior through a MAS model when

using Omnet++. Furthermore, our approach simplifies the

modeling process by splitting the complexity of a real system into

two different parts. Therefore, on the one hand computer

scientists can focus on the Omnet++ model while, on the other

hand, specialists in human behavior can focus on the MAS model.

Finally, our approach also facilitates the distribution of the models

among different computers.

Categories and Subject Descriptors

G.3. [Simulation and Modeling]: Simulation Support Systems,

Applications, Types of Simulation – Discrete Event.

General Terms

Experimentation, Languages, Human Factors.

Keywords

Discrete-Event Simulation, Multi-Agent Systems, Computer

Networks, Human Behavior, Omnet++.

1. INTRODUCTION

The Castelldefels project aims at developing a realistic simulation

model of the computer system that gives support to the Virtual

Campus of the Open University of Catalonia (UOC). UOC

(www.uoc.edu) is an online university that offers e-learning

services to thousands of users. During the development of this

project, different alternative approaches regarding the

implementation of the simulation model have been analyzed.

Some of these approaches have used OPNET [1], while others

have used Omnet++. The main goal of the project is to provide

managers of the computer system with a realistic simulation

model that allows them to: (i) analyze the behavior of the current

system in order to discover possible performance problems –

bottlenecks, weak points in the structure, etc., and (ii) perform

what-if analysis regarding future changes in the system, including

the addition of new Internet-based services, variations in the

number and types of users, changes in hardware or software

components, etc.

In order to analyze computer systems’ and networks’

performance, both analytical and simulation methods can be used.

Analytical methods are based upon mathematical analysis that

characterizes a network as a set of equations. This approximation

usually implies considering several restrictive assumptions, which

tend to be not very realistic, since networks are complex systems

formed up by hardware and software (protocols, applications,

queuing policies, etc.). Alternatively, simulation techniques can

also be used to model in detail the dynamic nature of real

computer networks [2, 3]. Simulation allows engineers to test

different network designs, even before the network physically

exists, and to perform what-if analysis with models of the already

existent networks without exposing them to failures or inoperative

periods.

The Open University of Catalonia (UOC) is an online

university located at Barcelona (Spain) with more than 37,000

community members, including students from Spain and Latin

America, professors, and managers among others. With this

amount of potential intranet users, performance fine-tuning of the

computer system that gives support to the UOC Virtual Campus

becomes the most important task for system managers. For that

reason, a team formed by managers, professors and students

started the so-called Castelldefels Project. The main objective of

this project is to improve the system performance levels and,

consequently, to increase the quality of the service offered to

users of the UOC Virtual Campus. This is carried out by selecting

appropriate values for configuration parameters such as network

topology, hardware devices, queuing and balancing policies,

protocols, etc. [4, 5].

2. ADDING AGENTS TO THE MODEL

Our approach for modeling users’ behavior through agents is

described in Figure 1. Agents interact with the Castelldefels

system and, as a result, events of a particular type are generated.

These events have been classified as shown in Table 1. As will be

explained later in this paper, the number of events has been

limited to 999.

Figure 1: Interaction agents-system

Table 1. Types of events.

Event

code

Description

1 BEGIN

2 END

3 LOGIN

4 LOGOUT

5 OPEN MAIL

6 READ MAIL

7 CLOSE MAIL

8 SEND MAIL

9 EDIT MAIL

10 OPEN CLASS

11 CLOSE CLASS

12 OPEN FORUM

13 READ POST

14 EDIT POST

15 SEND POST

16 READ NOTES

Each one of these events, which must be processed by an agent,

has its own state as described in Table 2. This classification is

useful in order to represent the errors that can take place during

the communication process. These errors are represented in the

Omnet++ simulation model.

Table 2: Possible states for an event.

Pending or scheduled The event is created in the event list

of the agent, but it is waiting for its

execution time.

In the output queue The event is in the ChannelWriter to

travel to its destination.

Sent ChannelWritter had read the event

and it has been send to its

destination.

On input queue The event has been processed by the

environment and has been returned

by the environment. We read the

event from the ChannelReader and

send the event to the destination

agent queue.

Received with an error The agent receives the event, but the

environment marked it as wrong.

The agent must send again the event.

Received The agent receives the event.

Processed The agent marks the event as

processed when it starts the tasks

related to other events.

3. AGENTS USED IN OUR MODEL
An intelligent agent receives information through its sensors.

Depending on the received information, it executes actions with

the “effectors” or “actuators”. An intelligent agent adds

evolutionary capacity to the whole model, since it is able to

implement algorithms that provide it with learning capacities and,

therefore, can modify its behavior through time. Different

intelligent agents can be considered depending on how the

information is processed. Cortés et. alt. [6] proposes the next

classification:

 Simple reflexive agents: These agents do not have

states. Their actions are answers to the perceptions

received. The connection between perceptions and

actions are based in condition-action rules.

 Model-based reflexive agents: These agents have

states, which allows for the use of more information

when providing an answer. They are based on the idea

that sensors do not provide all the necessary

information. These agents store relevant information

that complements the one provided by the sensors in

order to perform the correct action.
 Goal-based agents: The agents have specific goals to

be achieved. These goals allow selecting the actions to

be completed.

 Utility-based agents: These agents have goals that do

not guarantee by themselves the utility of the agent’s

behavior. For that reason, a utility function is defined.

Actions are then chosen so that this utility function is

maximized.

Figure 3: Schematic representation of a simple reflexive agent

Our approach proposes the use of simple reflexive agents, which

can be represented as shown in Figure 3

The behavior of a simple reflexive agent can be summarized as

follows: (i) the agent remains waiting until some environmental

information is received; (ii) the agent processes the environmental

information received and uses condition/action rules to determine

what to do; (iii) the agent can initiate different actions to answer

to the stimulus it receives; And (iv) when all due actions have

been completed, the agent returns to the waiting state.

In our model agents modify their behavior depending on the

information (input events) they receive from the environment.

Also, communication with the environment is started by each

agent. These agents implement different user profiles using a list

of events (that can be fully configured). Each agent has a

definition of its chronological list of events (depending on the

profile). First, each agent waits until the reception of the

“BEGIN” event, which defines the starting point of the

simulation. Then, it waits until it comes the time to submit the

next event. When all events have been sent, the agent returns to

an inactive state. The simulation finishes once all agents have

reached the inactive state. Moreover, each agent satisfies the

following capacities related to an agent-based model:

 Autonomy: Each agent is responsible for its own

execution thread, thus being in charge of its own life (of

course, its life will also depend on the environment).

 Reactivity: Each agent processes the environmental

information. Also, each agent possesses an input and

output queue.

 Planning: The behavior of an agent is planned

depending on its profile and the random environmental

events.

 Character: It is defined by each agent’s profile. The

main objective is to represent the user’s behavior.

Having the previous considerations in mind, the next section

proposes a formal representation of these agents using the SDL

language.

4. SPECIFICATION AND DESCRIPTION

LANGUAGE

Specification and Description Language is an object-oriented

formal language defined by the International Telecommunications

Union–Telecommunications Standardization Sector (ITU–T) (the

Comité Consultatif International Telegraphique et Telephonique

[CCITT]) on the Z. 100 recommendation. The language was

designed for the specification of event-oriented, real-time and

interactive complex systems. These systems might involve

different concurrent activities that use signals to perform

communication [7], [8], [9]. SDL is based on the definition of

four levels to describe the structure and the behavior of the

models: system, blocks, processes and procedures. In SDL blocks

and processes are named agents. The outermost block, the system

block, is an agent itself. Figure 4 shows this hierarchy of levels.

Figure 4: A structural vision of an SDL model. 4 main different

levels exist (source:

http://www.iec.org/online/tutorials/sdl/topic04.html)

The different concepts that the SDL language covers are:

 System structure: from the blocks to the processes and

their related hierarchy.

 Communication: signals, communication paths or

channels, parameters that can be carried out by the

signals, etc.

 Behavior: defined by different processes.

 Data: based in Abstract Data Types (ADT).

 Inheritance: useful to describe relations between

objects and their properties.
Although a textual SDL representation is possible (SDL/PR), this

paper focuses on the graphical representation of the language

(named SDL/GR). Anyway, the discussion is also valid for its

textual representation, since both are equivalents [9] (Figure 5).

process P;

 start;

 nextstate idle;

 state idle;

 input s;

 output t;

 nextstate idle;

 endstate idle;

endprocess P;

Figure 5: A model represented using GS-SDL and PR-SDL

More details about the Specification and Description Language

can be found in the recommendation Z.100 [9] or at the web site

www.sdl-forum.org. Also, some examples on the use of SDL to

represent intelligent agents can be found in [10].

5. FORMALIZATION OF USERS USING

SDL

In our simulation model, the SDL signals carry a parameter

named EVENT that represents the events that rule the model

evolution. This solution allows a complete definition of time,

since SDL delaying channels cannot be used, because the delay

cannot be fully defined [9]. For that reason, the channels to be

used will be always non-delaying channels.

The event parameter is represented in Figure 6. An event

parameter has, at least, three attributes (creation time, execution

idle

t

s

idle

idle

1(1)process P

http://www.sdl-forum.org/

time and priority). Thanks to this parameter we can fully define

the behavior of the model. Also, if needed, it is possible to

employ automatic code generation using tools like Tau Telelogic

of IBM[11].

Figure 6: SDL SIM package containing the structure event

The formalization of a simple reflexive intelligent agent to

represent UOC’s users is shown in Figures 7 and 8. The first level

of the SDL diagram defines the blocks or processes that compose

the system. Only one kind of agents is used, the one enclosed in

the Population block.

Figure 7: System diagram of a MAS model

As Figure 7 shows, agents in the Population block receive only

two kinds of events: EnviromentInformation or Begin. The

EnviromentInformation event has two parameters, i.e. event and

info, being the latter a structure containing the information that

agents can perceive. Figure 8 shows the INFO package

containing the structure info with the definition of the different

environmental elements that can be perceived by agents. In our

approach, the environment is modeled by using Omnet++, while

each one of the different intelligent agents represents one potential

user of the system.

One major advantage of using a package that contains the info

structure is modularity. Modularity facilitates to include in a

single structure a specification of what can be perceived and what

can be modified by agents. This, in turn, simplifies both the

verification and validation processes. Notice that no specific

behavior has been defined yet in this first level of the model

structure. To define the behavior of the model (i.e. agents’

behavior), other levels of the SDL language must be employed.

package INFO 1(1)

Figure 8: Package “info”

Figure 9 shows the characterization of a Population block. Its

composition is basically defined by a single process named

PSimpleRAgent.

Figure 9: Processes contained in the Population block

The numbers (1, 10) define the minimum number of agents (at the

beginning of the model execution) and the maximum number of

agents allowed in the model (usually created by a create

operation). At this point, the structure of the Population block is

fully defined and, therefore, we can start the definition of the

model behavior through the PSimpleRAgent process diagram.

A simple reflexive agent reacts to stimulus using its

condition/action rules. However some ambiguities still exist in

the textual description introduced in the previous section, e.g.:

What happens if an agent that is currently executing a given

action receives a new stimulus from the environment? Will the

agent be able to execute both actions in parallel? Will the agent

be forced to wait until its current activity is finished before

starting a new one? Will the agent ignore the new stimulus?

Figures 10, 11 and 12 detail the SDL process diagram for a

reflexive intelligent agent. Notice that an agent can be in any of

the following states:

 Inactive: The agent has been created but it is waiting

for a BEGIN event to start its simulation. The agent

will return to this state after receiving an END signal.

 Waiting: The agent is either waiting for new stimulus

from the environment or for a target-time to execute a

new event from the events list.

New type info

Struct

 EventCode int;

 EventState int;

End new type;

 Executing action: At least one event is being executed

by the agent.

At the beginning the agent is Inactive, i.e.: it ignores the entire

external stimulus until a begin signal is received. Then, the agent

changes its state to Waiting or ExecutingAction, depending on its

memory status. The agent’s memory stores the agent state before

it became Inactive. When an EnviromentInformation signal is

received, the agent starts to process this information and changes

its state to ExecutingAction. Once the information is processed,

and depending on the time defined in the procedure ReactionTime,

the agent starts its actions, generating new signals according to the

procedure ExecutionTime.

Figure 10: Reflexive agent Inactive state process diagram

Figure 11: Reflexive agent Waiting state process diagram

Figure 12: Reflexive agent ExecutingAction state diagram

During the Waiting state, the intelligent agent is not performing

any action. Only a new EnvironmentInformation signal can

modify this state (the agent is a simple reflexive agent, only reacts

when it receives an environmental stimulus). As soon as a sensor

obtains new information, the agent moves to the ExecutingAction

state. The attribute E.ExecutionTime stores the execution time

necessary for the agent to process the information. Notice that the

function ReactionTime depends on the agent’s behavior and that it

is specified on the fourth level (procedures) of the SDL language.

An InformationProcessed output event is generated and sent to

the agent itself. This event contains two parameters, i.e. the event

structure E and the info structure I, which defines the information

received by the sensor.

As it can be noticed from the diagrams, an agent can perform

different actions in parallel, since it supports the reception of new

EnviromentInformation signals while being in the

ExecutingAction state. If this behavior is correct for more than

one project, only the last level of the SDL language will need to

be defined, i.e.: the ReactionTime and ExecutionTime procedures.

This, in turn, facilitates the creation of simulation-objects

libraries.

For each EnviromentInformation signal received, the agent

starts new actions. An ActionExecuted signal means that the

agent has finished the assigned action.

6. THE PROCEDURES

The procedures that exist for this kind of agents are: (i)

ActionEffects, (ii) ReactionTime, (iii) Initialize, (iv)

ModifiingKnowledge, and (v) ExecutionTime. This last level of

the SDL language can also be expressed by using diagrams.

Figure 13 shows the ReactionTime procedure as an example.

Figure 13: ReactionTime procedure

Of course, depending on the specific behavior that the agent must

reflect it is possible to add new code inside a task block, decisions

block, or any other element defined by the SDL language.

7. USING JAVA CODE WITH OMNET++

Since users’ profiles are defined and implemented in Java, it

becomes necessary to connect the resulting Java code with the

Omnet++ network model. To this end, we employ TCP/IP using a

mechanism based on sockets.

Figure 14: A network model in Omnet++

The Omnet++ general documentation includes a set of

examples showing how to simulate different networks and

scenarios. There are also examples on how to model a real-time

network. In one of these examples (a Telnet connection), one of

the simulated elements is a group of users that interact with an

external model through a TCP socket. This way, external

information is entered into the simulation model. This example

can be adapted to allow for the simulation model we want to

develop. The main goal here is to perform a real-time simulation

of the behavior of the connected users on a network (Figure 14).

During the simulation, the Omnet++ model receives external

information from each Java-coded agent. This information can be

used in the simulation model to modify its evolution through time.

Also, the Omnet++ model can send information to the different

external programs connected to it. The Omnet++ model

implements a parser to facilitate the management of the

information received. Two different alternatives were analyzed in

order to implement the parser:

a) In each stream of text, the long of the stream is specified

in its first positions.

b) A special character is defined at the end of each stream.

The first alternative presented some problems since some

information was lost due to network errors. According to our

experiences, the second alternative is more robust, so we finally

used it in the final implementation of our models. However, this

second alternative presents some challenges since it is necessary

to ensure that the special character defining the end of the stream

is not going to be used by the stream to store model information.

For that reason, we used ASCII codes (larger than 32) for the

initial sequence while using codes lower than 32 for the final

sequence. The final-of-stream sequence was defined with the

stream “\r\n\r\n”. Therefore, once an external agent connects to

the Omnet++ model, the communication between both programs

follows the aforementioned protocol. In other words, the human

behavior of a client that uses its web browser to communicate

with the Castelldefels system is modeled and simulated. In the

stream we define the kind of event according to the classification

from Table 1, but no other information –e.g. data related to the

event such as the delays associated with any data transmission– is

added. However, the system is ready to automatically integrate

this information into the model.

Apart from the external and internal models, special attention

must be paid to the communication between external agents and

the Omnet++ environment. This communication has been

implemented using FIFO queues. First, each agent prepares the

events that it must send to the environment. This task depends on

its particular profile. For each event, a creation time is defined.

Each agent initiates the communication process with the

environment as a reaction to the signals received from the model

(Figure 15).

Figure 15: System architecture

Each stream is characterized by the following set of parameters:

 Identifier: Incremental value that identifies the stream.

 Origin: Integer value between 1 and 99999 defining the

agent that generates the stream.

 Destination: Identifies the destination environment.

 Kind: Identifies the nature of the message according to

Table 1. It is a number between 1 and 999.

 Priority: Defines the priority level of each event. It is a

number between 1 and 99. In the current version of our

model, all events have the same priority (priority 1).

 State: Defines the state of each event according to Table

2.

 Delay: Defines the maximum amount of time that we

can wait for an answer of an event that must be returned

by the environment. The agents try to send again the

event the times defined in the “retry” value of the event

(5 chars).

 Creation time: Represents the time at which each event

must be processed. It is defined by a 14-character

stream (hhmmssddmmaaaa).

 Execution time: Stores the time at which each event

was executed. It is defined by a 14-character string

(hhmmssddmmaaaa).

 Retry: Number of times that an event can be

resubmitted. It is represented by a 2-character string.

8. RUNNING THE MODEL

The model was executed in a platform under the following

configuration:

 Software: Windows XP SP3, NetBeans Development

IDE 6.7.1, JDK 1.6, Omnet++ 4.0, Mingw.

 Hardware: Processor Pentium 4 with 2Gb of RAM.

Figure 16: The SimOmnet tool

Obviously, executing the Environment (Omnet++ simulator) and

the agents (Java code) in the same computer reduces the computer

performance. Additionally, if the agents’ population increases

over 1000 individuals, different errors appear, which are mainly

due to an overflow of messages.

Regarding the delays, these are mainly caused by the

environment limitations as can be checked by using the

SimOmnet tool (Figure 16). SimOmnet is a Java program that

emulates the Omnet++ model by simply returning all the

messages that come from the agents. In this case, the

configuration file used for Omnet++ is:

[Config TelnetExample]description = "Telnet model"

network = TelnetNet

**.numClients = 0

**.cloud.propDelay = 0.01s

**.server.serviceTime = 0.01s

**.client[*].sendIaTime = exponential(3s)

In the case of the Omnet++ simulation, some errors appear when

more than 1000 agents are used. In the case of SimOmnet, similar

errors appear when more than 4500 agents are used. Obviously,

using a more powerful hardware configuration these restrictions

could be softened somewhat. However, some of these problems

are caused not by the hardware configuration itself but by the

delays in the messages’ acknowledgment. Therefore, it could be

possible to use a larger number of agents in the simulation by

simply assigning less time to the maximum allowed delay.

Figures 17 and 18 show the Java simulator implementing the

behavior of the agents.

Figure 17: Java simulator implementing the agents’ behavior

Figure 18: Executing the model with 1000 agents

Profiles define the behavior of the agents. Different profiles are

represented in this model, as shown in Figure 19.

Figure 19: Agents profile configuration

9. CONCLUDING REMARKS

In this paper we propose a methodology that allows to combine

users’ profiles using a graphical or general-purpose language

(SDL or Java) with a complete tool like Omnet++ that models a

complete computer network. This way, a complete model,

including hardware, software and human factors, can be

constructed and simulated.

Thanks to the use of a graphical language to define agents’

behavior, different specialists can easily collaborate in the

modeling of the human factor. This facilitates the participation of

researchers without programming skills in the simulation projects.

We have used Omnet++ to develop a preliminary model of the

computer system that gives support to the UOC Virtual Campus.

We plan to develop a similar work with other simulation

packages, like Opnet, in order to perform a comparative analysis.

10. REFERENCES

[1] Juan, A. A., Marquès, J. M., Vilajosana, X., Faulin, J., &

Fonseca, P. (2008). MODELLING & SIMULATION OF A

VIRTUAL CAMPUS,A Case Study Regarding the Open

University of Catalonia. ICEIS 2008 – Tenth International

Conference on Enterprise Information Systemsc. Barcelona,

Spain: INSTICC Press.

[2] Law, A. M., & Kelton, W. D. (2000). Simulation Modeling

and Analysis. McGraw-Hill.

[3] Banks, J., & Gibson, R. (1997, February). Simulation

modeling: some programming required. IIE Solutions , 26-31.

[4] Kurose, J., Ross, K., 2005. Computer Networking: A Top-

Down Approach Featuring the Internet. Addison-Wesley

[5] Peterson, L., Davie, B., 2003. Computer Networks. A Systems

Approach. Morgan Kaufmann

[6] Cortés, U., Béjar, J., & Moreno, A. (1994). Inteligencia

Artificial. Barcelona: Edicions UPC.

[7] Reed, R. (2000). SDL-2000 form New Millenium Systems.

Telektronikk 4.2000 , 20-35.

[8] SDL Tutorial. (n.d.). Retrieved January 2009, from IEC

International Enginyeriing Consortium:

http://www.iec.org/online/tutorials/sdl/

[9] Telecommunication standardization sector of ITU. (1999).

Specification and Description Language (SDL). Retrieved

April 2008, from Series Z: Languages and general software

aspects for telecommunication systems.:

http://www.itu.int/ITU-

T/studygroups/com17/languages/index.html

[10] Fonseca i Casas, P. (2008). SDL, A Graphical Language

Useful to Describe Social Simulation Models. In F. J.

Quesada (Ed.), 2nd Workshop on Social Simulation and

Artificial Societies Analysis (SSASA'08). Barcelona.

[11] IBM. (2009). TELELOGIC. Retrieved 03 31, 2009, from

http://www.telelogic.com/

