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Abstract

Experimental procedure of CI857ts-controlled recombinant gene expression in bacterial batch cul-
tures is mathematically modelled, and the corresponding minimum variance parameters are estimated
from specific statistical or numerical methods, basically by using a global and recursive weighted least
squares procedure under some constraints induced by the model. Moreover the numerical techniques
proposed in this work act by accumulation of data coming from several runs of the experiment,
so that more accuracy is obtained in the parameter estimation. In particular, for the production
process, an extra-model parameter depending on an indicator vector is introduced for each run of
the experiment in order to globalize the data. The analysis of obtained data leads to an integrated
model for both cell growth and gene expression, which describes an asymmetric dynamics between
culture growth and protein yield, and can serve to predict the maximal value of accumulated protein
and the time required for it to be achieved at any stage of the preinducing cell growth.
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1 Introduction

One of the mechanisms commonly used to estimulate the expression of the recombinant genes, and
consequently, the production of the encoded proteins, is a rapid increase of temperature at which the
cells are cultured. At the permissive temperature, 28◦C, there is no recombinant gene expression,
but when the temperature is shifted to 42◦C, cells start the synthesis of the recombinant product
while they are also growing in the culture. This temperature-mediated induction of gene expression,
which is very convenient for industrial purposes, is achieved by the use of two kind of controllers
of the gene expression, which are also introduced into the recombinant cells. They are a positive
regulator, the lambda pL and/or pR promoters, and a negative regulator, the repressor CI857, which
is active below 32◦C but it becomes efficiently inactivated at 42◦C (Villaverde et al., 1993). We have
developed mathematical procedures to analyze the performance of protein production in cultures of
recombinant E. coli submitted to heat induction (Cubarsi et al. 1998). For this analysis, two types
of mathematical procedures are required. The first type is composed of statistical and numerical
methods for parameter and error estimation, fitting curves, etc. But when a function is approximated
from a set of data, the problem of what kind of functions must be used always arises. In our case the
function must be interpreted from a biological viewpoint, and it must also describe some biological
properties of the experimental system. Thus, above techniques can be correctly used only if the
biological system has been modeled, and the system properties to be quantified have been focussed.
This is the other mathematical aspect of the work, in fact to be done previously to the first one.
Under the assumption that cell growth is not significantly altered by the presence in the cell of the
recombinant protein β-galactosidase, the dynamics of the gene expression is modeled in two steps, so
that the culture growing model is combined with the gene expression model, a first order differential
equation that describes the protein production in terms of cell growth, in order to explain the time
evolution of recombinant protein yield along the induction phase. Then, the set of parameters for
both models is estimated by using specific least squares techniques subject to constraints from the
models, with statistical evaluation of error propagation.
In order to minimize the errors, the numerical algorithms for parameter estimation take advantage of
working with a batch culture procedure with multiple induction sequences of the culture, where data
from different induction sequences of the same non-induced culture are processed all together, as a
single experiment. However, data from several runs of the same experimental process can be pooled
in a global data set only under some specific requirements. Thus, for the culture growing process
this can be done if the time interval between two consecutive culture samples remains constant along
all the process. For the gene expression process, some parameters are constant for all the sequences,
namely the model parameters, and others are sequence dependent. In this case, for each run of the
experiment, an extra-model parameter depending on an indicator vector is introduced, such as an
initial condition for the production process. Hence the total number of estimation parameters is
increased by the number of runs of the experiment.
The resulting model for cell growth and synthesis of recombinant proteins reveals an asymmetric
distribution of the biosynthetic potential of the cell, which is manifested by a preferential synthesis of
recombinant proteins in aged, slowly growing cultures. In other words, both growing and production
capabilities of culture cells are not equidistributed, since when the culture growth velocity decreases,
the protein production velocity still increases up to its maximum value. Moreover, the proposed
model also allows a prediction of the optimal optical density of a batch culture to be temperature-
induced in order to get a predetermined amount of recombinant protein with the minimum induction
time.
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2 Basic notation

The mathematical notation used in the work is now introduced by describing the experimental
procedure. An initial amount of culture y0, measured from its optical density at the wave length of
550 nm (OD), is growing at 28◦C (initial stage). At this stage the culture growth can be described
in terms of a time parameter t by a function y(t), which is the solution of an autonomous first order
differential equation generated by a phase velocity field vy that, as we shall see in the following
section, will depend on two parameters A0 and B0:

dy(t)

dt
= vy(y(t), A0, B0) (1)

Hence the solution of this equation may be explicitly expressed depending on the parameters, and
the initial value y0 = y(0), as

y = y(t, y0, A0, B0) (2)

At a time t from the beginning of the experiment, a sample of culture with OD y(t) is transferred to
a prewarmed bath at 42◦C (induction stage). Then the growth rate of the culture changes and the
production of β-galactosidase protein begins. The production is measured in enzymatic units per
ml, referred as β-gal in this work.
The growth process under the induction conditions has a similar behaviour as in the initial stage,
but with other model parameter values, namely A1 and B1. After a time x in the induction stage,
the OD of culture y(t), that had been induced at a time t from the beginning of the experiment,
varies along what we shall call the t-induction sequence according to a function yt(x), which is the
solution of a differential equation, similar to Eq. 1, such as

dyt(x)

dx
= vy(yt(x), A1, B1) (3)

Hence, the solution can be written explicitly as a function of the model parameters, and the initial
value y(t) = yt(0), in the form

yt = yt(x, y(t), A1, B1) (4)

On the other hand, for the gene expression process along the induction stage, that is the recombinant
protein production, we assume that the protein has not any toxic effect neither for itself, nor for the
culture, and depends only on the OD of the growing culture. Details of experimental procedure are
given by Corchero et al. (1994), where the functional dependence of β-gal production in terms of
the OD of the induced culture has been proved.
Thus, along the t-induction sequence, if yt(x) is the OD of an induced culture, for a given induction
time x, we can evaluate the production process by means of a function βt(x) = β(yt(x)), depending
on whether the time evolution or the culture OD dependency of the product is emphasized. Thus
βt(x) represents the yield of β-gal for the induction time x in the same induction sequence. The
functional dependence β(yt) is studied in the following sections from an approximation model given
by a first order differential equation depending also on two parameters c1 and c2:

dβ

dyt

= φ(yt, c1, c2) (5)

where φ is an arbitrary function of the specified arguments, whose solution can be written for each
t-induction sequence from an initial condition ct

0, so that ct
0 = β(0), in the form

β = β(yt, c
t
0, c1, c2) (6)
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Notice that ct
0 is a function of y(t), that can be implicitly given by β(y(t), ct

0, c1, c2) = 0, since at the
begining of the induction sequence there is no protein yield.
The sub-index referred to the t-induction sequence will be omitted when the context provides suffi-
cient information.
Finally, the production kinetics, the time evolution of the protein production, can be studied by
composition of the differential processes expressed in Eq. 3 and Eq. 5, so that the corresponding
generating field is

dβt

dx
=

dβ

dyt

dyt

dx
= φ(yt(x), c1, c2) vy(yt(x), A1, B1) (7)

Then, the fuction that describes the protein production in terms of the induction time x can be
expressed by recursive substitution of Eq. 2 and Eq. 4 in Eq. 6.

3 Mathematical model

In the working conditions, and for both experiments ( (a) E42, Table 4, with induction temperature
of culture at 42◦C, and (b) E40, Table 5, with induction temperature at 40◦C) the growth rate of
culture can be satisfactory described, before and during the induction phase, by using the equation
of limited growth of population models (see e.g. Hirsch & Smale, 1974):

dy(x)

dx
= y(x)(A + By(x)) (8)

with A and B arbitrary constants (A > 0 and B < 0).
At low OD’s, the growing rate is nearly constant but, at the same time as the biomass is increasing,
the exponential growth stops and the OD of the culture tends to the asymptotic value

l = −
A

B
(9)

that depends on the growth conditions.
On the other hand, according to Corchero et al. (1994), a growing culture which has been induced
over a time x produces an amount of β-gal β(x), that depends nearly in a quadratic way on the
biomass y(x) of that culture. Thus, non constant rate of production, with reference to the culture
growth, may be reflected along the induction stage, even though toxic effects of the recombinant
protein are excluded from this work. Then the relationship between the amount of recombinant
protein β-gal and the OD of culture can be written as follows,

β(y(x)) = c0 + c1y(x) + c2y(x)2 (10)

The corresponding differential behaviour, according to Eq. 5, will then have the form

dβ

dy
= c1 + 2c2y (11)

The meaning of this relationship, from a biological viewpoint, is now investigated by assuming that
cell division is not influenced by β-galactosidase protein, and that c1 and c2 are parameters of the
model.
Along the induction stage the culture is growing according to Eq. 8, with a growth velocity vy given
by

vy(y) = y (A + By) (12)

Thus, the function vy(y) is a parabola with vertex at y = − A
2B

, corresponding to an OD the half of
the limit value given by Eq. 9, and also corresponding to the maximum growth velocity. Similarly,
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for the production phase, a first approach could assume the same behaviour for the proteins as for
the culture, that is, during the induction stage the increase of β-gal is proportional to the increase
of biomass, if non-negative. Hence the production velocity of Eq. 7, namely vβ, could be expressed
in this simple model as

vβ(y) = k vy(y) (13)

with k a positive constant. In fact, data from Tables 4 and 5 suggest that the increasing of β-gal is
always associated with the increasing of biomass (Flickinger & Rouse, 1993). Furthermore, notice
that the condition of increasing biomass leads to a working interval 0 ≤ y ≤ l for the culture.
Nevertheless a more complex behaviour, consistent with Eq. 10, must be adopted, since the produc-
tion protein rate with respect to the culture growth is not constant. More specifically, the OD of
culture corresponding to the maximum production velocity, namely m, could be different from the
OD of culture for the maximum growth velocity, y = l/2.
Therefore, the general case of Eq. 7 must be considered, according to

vβ(y) =
dβ

dy
vy(y); 0 < y < l (14)

taking into account that, if toxicity phenomena are not present in the induction stage the following
inequality must be satisfied, in the working interval:

dβ

dy
≥ 0 (15)

This situation is studied in the first order approximation given by Eq. 11, which enable us to explain
in a simple way the asymmetry that the production velocity curve may have with respect to the
culture growth velocity curve.

4 Asymmetry between production and growth

In order to compare both velocity curves of Eq. 14, the function in the right hand side member of
Eq. 11 will be denoted, according to Eq. 5, as

φ(y) = c1 + 2c2y (16)

Then Eq. 14 becomes
vβ(y) = φ(y) vy(y) (17)

The condition expressed by Eq. 15 implies φ(y) ≥ 0 in the working interval, and then it is easy to
deduce that: (a) In any case c1 must be positive. (b) If c2 = 0 both velocities are proportional and
they have a common maximum at m = l/2. (c) If c2 > 0 the maximum production velocity is reached
after the maximum growth velocity of the culture, and m > l/2. (d) If c2 < 0, since c1 ≥ −2c2y is
fulfilled in the interval 0 ≤ y ≤ l, and the maximum value of the right hand side member is held at
y = l, then the following inequality must be satisfied:

c1 ≥ −2c2l (18)

Thus the maximum production velocity is reached before the maximum growth velocity of the culture,
and m < l/2 is also held.
The three functions involved in Eq. 17 are non-negative for values of the OD within the working
interval, and in its bounds vβ(0) and vβ(l) are null. Furthermore, taking into account the polynomial
form of vβ(y), it is easy to see that there is a single maximum on this interval. Thus, by assuming
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Exp. l/2 ǫ

E42 1.38 ± 0.05 0

E40 1.71 ± 0.03 0.36 ± 0.03

Table 1: Parameters describing the asymmetry between β-gal production and culture growth from Eq. 20.

c2 6= 0, the relative position ǫ of the abscissa m referred to the value l/2, corresponding to the
maximum growth velocity of culture vy(y), is introduced

m = l/2 + ǫ (19)

Then the abcissa of the maximum can be written, in terms of an auxiliary parameter α = l + c1
c2

, as
follows

ǫ = sign(c2)
1

|α| +
√

|α|2 + 3l2

l2

2
(20)

Above expression is also useful in order to see how far can the maximum moves around the central
value y = l/2, being consistent with the condition of Eq. 15. Notice that |ǫ| is a decreasing monotonic
function of |α|, and from Eq. 18 it is easy to see that |α| ≥ l. Therefore, from Eq. 20, by substitution
of this minimum value of |α|, we get the admissible range |ǫ| ≤ l

6
. Also, taking into account Eq.

19, we can conclude that our model enable us to explain a maximum production velocitiy in the
following range of values

1

3
l ≤ m ≤

2

3
l (21)

Notice that if ǫ > 0 the age for significant production is delayed towards high values of OD, while
for low OD’s the production would be insignificant. If ǫ < 0 the behaviour is in the opposite way.

5 Production kinetics

In this section, for a given t-induction sequence, we study the time evolution of the product content
βt(x) = β(yt(x)) that is present in the culture at an age x of the induction stage. Remember that the
culture with OD yt(x) has been induced at a time t from the beginning of the experiment. Following
the proposed approximation, according to Eq. 8 and Eq. 11, we can write Eq. 7 as follows

dβt

dx
= (c1 + 2c2yt(x))(A + Byt(x))yt(x) (22)

where c1 > 0, A > 0 and B < 0. Then, when the induction time x → ∞, the OD of culture tends to
the limit l given by Eq. 9. Hence the function βt(x) tends to the asymptotic value

lim
x→∞

βt(x) = β(l) (23)

That is, from a sufficient large interval of time, the product concentration becomes nearly stationary.
Moreover, since the factor c1 + 2c2yt of Eq. 22 is non-negative in the working interval 0 ≤ y ≤ l, this
asymptotic value is the maximum yield that can be reached.
Thus the function βt(x) does not have any maximum before reaching their asymptotic value, and,
for any induction sequence, the kinetic of the product has a monotonic increasing curve along all the
induction process.
In order to obtain the function βt(x) we must take into account how the culture is growing before
and during the induction stage, since the function yt(x) depends also on the OD of culture just at
the beginning of the t-induction sequence, y(t) = yt(0). Thus we write, according to the solution of
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Eq. 8, the relationship describing the biomass evolution of a culture that has been induced over a
time x,

yt(x) =
A1y(t)eA1x

A1 + (1 − eA1x)B1y(t)
(24)

The sub-index 1 is used to distinguish the induction stage, and the value y(t) represents the OD of
the culture at the beginning of the induction sequence, according to

y(t) =
A0y0e

A0t

A0 + (1 − eA0t)B0y0

(25)

In the latter equation y0 is the initial amount of culture at the beginning of the experiment, and the
sub-index 0 is used to distinguish the growing stage before the induction.
Finally, the production of β-gal in terms of the induction time x is obtained from Eq. 10, also
combined with Eq. 24 and Eq. 25, by assuming that in the beginning of the t-induction sequence
there is not any significative amount of product,

βt(x) = c1(yt(x) − y(t)) + c2(yt(x)2 − y(t)2) (26)

Sometimes the foregoing equation will be used in order to describe the time evolution of β-gal, and
sometimes the production in terms of OD of the induced culture. Some consequences and features
of these equations will be pointed out in the last section.

6 Culture growth parameters

The algorithm to estimate the growth parameters A and B of Eq. 8 for the induction stage, as well
as in the initial phase, is based on the time equidistribution of the OD samples, as it is shown in
Table 4 and Table 5 for both experiments.
By inverting that expression, a linear dependence between the inverse of the OD of two consecutive
culture samples with an arbitrary time separation ∆x = x − x0 is obtained,

1

y(x)
= e−A(x−x0)

1

y(x0)
−

B

A
(1 − e−A(x−x0)) (27)

Hence, by defining
a = e−A∆x

b = −B
A

(1 − e−A∆x)
zk = 1

yk

(28)

and maintaining the time interval ∆x constant for any couple of consecutive samples, Eq. 27 can be
written in a simple and recursive way as follows:

(ξk, ηk) = (zk−1, zk), ηk = aξk + b; k = 1, . . . , n − 1 (29)

Thus, if all the points (ξk, ηk) are graphically represented, a straight line is obtained. This equation
will be used in order to compute the auxiliary parameters a and b for the culture growth by means
of a linear least squares approximation, and by taking into account the covariance matrix of errors.
The procedure can be briefly described as follows. The OD measurements yk are obtained with
independent errors ∆yk, with zero means and common variance σ2

OD. The errors of zk are evaluated
according to the linear approximation from Eq. 28, ∆zk ≃ −∆yk/y

2
k, so that the accuracy of zk is

given by the variance
V (∆zk) = z4

k σ2
OD (30)
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experiment E42 E40

stage initial induction initial induction

a 0.373 ± 0.036 0.189 ± 0.046 0.725 ± 0.024 0.525 ± 0.011

b 0.279 ± 0.029 0.295 ± 0.024 0.089 ± 0.046 0.139 ± 0.005

cov(a, b) -0.0009 -0.0011 -0.0011 -0.00005

A 0.987 ± 0.095 1.665 ± 0.244 0.643 ± 0.066 1.290 ± 0.042

B -0.438 ± 0.062 -0.605 ± 0.103 -0.208 ± 0.1114 -0.377 ± 0.017

cov(A, B) -0.0057 -0.0249 -0.0071 -0.0007

sOD 0.09 0.25 0.03 0.13

Table 2: Culture growth parameters, estimated errors and covariances of the estimates, from Eq. 38 and Eq. 8, with

weighted RMS error sOD for culture OD from Eq. 42. The parameters a and b are related to the straight lines of

Figures 1 and 2.

Thus Eq. 29, a system of n− 1 equations may be explicitly written with the corresponding errors as
follows

zk = a zk−1 + b + δk; δk = a ∆zk−1 − ∆zk; k = 1, . . . , n − 1 (31)

Hence the error associated with each equation depends on the unknown parameter a and, taking into
account Eq. 30 and Eq. 31, the errors of Eq. 31 system are correlated according to the following

covariance matrix of error vector ~δ,

E(~δ ~δ
t
) = σ2

ODVz = σ2
OD



















z4
1 + a2z4

0 −az4
1 0 . . . 0

−az4
1 z4

2 + a2z4
1 −az4

2 . . .
...

0 −az4
2 . . . 0

...
. . . −az4

n−2

0 . . . 0 −az4
n−2 z4

n−1 + a2z4
n−2



















(32)

where E denotes the expectation and the symbol t means transpose.
It is well known that the value σ2

OD is not necessary in order to estimate the parameters a and b.
However, since the matrix Vz depends on a, the estimation must be done iteratively, by revaluating
Vz in each step, and by assuming the initial covariance matrix as the identity matrix. On the other
hand, σ2

OD must be known in order to evaluate the covariance matrix of estimators V(a,b), then an
unbiased estimator s2

OD of σ2
OD (Stuart & Ord, 1991, pp.723 and 737) is given by the following inner

product, where ~η is the vector of experimental values, and ~η ∗ is the predicted values vector,

s2
OD =

1

n − 3
(~η − a~η ∗)t V−1

z (~η − a~η ∗) (33)

Note that this is equivalent to evaluate a weighted root mean square (RMS) error with respect to the
inverted covariance matrix, over the number of degrees of freedom, n−3, of the problem. Finally, the
covariance matrix of parameters A and B, V(A,B), is obtained by error propagation approximation
from the jacobian matrix J, and the covariance matrix V(a,b) (see e.g. Barlow, 1989)

V(A,B) = JV(a,b) J
t; J =

∂(A, B)

∂(a, b)
(34)

The estimates and corresponding errors of a and b, as well as of the parameters A and B ,
are listed in Table 2. Also the weighted RMS error s2

OD is given for OD estimations. Note that
least squares approximation provides us with unbiased estimators of the parameters and of sampling
variances and covariances of the estimators, without assumptions concerning the forms of the error
distribution (Stuart & Ord, 1991, p.716). This is only necessary when testing hypotheses about the
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parameters are discussed. In the Figure ?? the culture growth before and during the induction stage,
from Eq. 29, is represented for both experiments E40 and E42.
On the other hand, when the production kinetics are studied for different induction sequences from
Eq. 24, Eq. 25 and Eq. 26, it is worth noticing that the initial value y0 is a very small quantity with
a great uncertainty. Hence this constant can not be fixed from the in situ measurement, but it may
be estimated from the curve of the culture growth, Eq. 25, whose parameters A0 and B0 have been
previously computed. The way to do this is also by another linear least squares approximation from
Eq. 25, expressed in the form of Eq. 27, for different OD values in the initial stage, according to,

1

y(t)
= e−A0t 1

y0
−

B0

A0
(1 − e−A0t) (35)

Note that in this expression, after the estimation of A0 and B0, the only unknown is 1
y0

.

7 Production parameters

In this section the coefficients of the Eq. 10 will be computed. The parameters c1 and c2 depend on
the experimental conditions of the induction stage, and they are specific of a given culture, but the
parameter c0 must be interpreted as the initial OD of culture at the beginning of the corresponding
induction sequence. For this reason, we had written ct

0 in Eq. 6, by referring this parameter to the
t-induction sequence.
The set of pairs (y, β), corresponding to OD of culture and amount of protein respectively, could
be fitted for every sequence of sub-culture subjected to induction from different initial conditions in
consequent stages of the culture growth. Then, some similar values of c1 and c2 would have to be
obtained for all the sequences, but different estimations of ct

0 in each induction sequence. However
the uncertainty when measuring the OD of culture and the amount of β-gal is quite notorious and,
on the other hand, the number of samples in each induction sequence is small due to methodological
reasons. Therefore, if the estimation is carried out for each individual sequence, the parameters from
each sequence are poorly estimated. In order to avoid this problem we propose a new scheme of
data, with a special strategy for the algorithm of computing the least squares solution. The whole
set of induction sequences must be joined in a global set of data, and they must be treated like a
single experiment, although the parameter ct

0 has different values in each sequence alone. Thus a set
of new auxiliary variables, the components of an indicator vector, must be added to the pair (y, β) in
order to label them according to their own induction sequence. Then, if the experiment is composed
of n induction sequences, with initial induction times tk (k = 1 ÷ n), the valuation of the indicator
vector components, that will be noted as uk, is as follows,

uk =

{

1 for the k-th sequence
0 otherwise

(36)

Then, for any induction sequence, the expression to be fitted in order to estimate the production
parameters becomes

β = c2y
2 + c1y +

n
∑

k=1

ck
0uk (37)

where, to simplify the notation, ck
0 denotes the parameter c0 corresponding to the sequence induced

at a time tk.
The total number of parameters to be determined is n + 2, which are involved in an overdetermined
system of equations, according to the Eq. 37 evaluated for each sample of culture in the induction
stage. The respective data for each equation of the system are represented in the following scheme,
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where the sub-index indicates the induction sequence, and the super-index the sample number in the
corresponding sequence:

Seq. β y u1 u2 · · · · · · un

β1
1 y1

1 1 0 · · · · · · 0

1
...

...
...

... · · · · · ·
...

βm1

1 ym1

1 1 0 · · · · · · 0
β1

2 y1
2 0 1 · · · · · · 0

2
...

...
...

... · · · · · ·
...

βm2

2 ym2

2 0 1 · · · · · · 0
...

...
...

...
... · · · · · ·

...
...

...
...

...
... · · · · · ·

...
...

...
...

...
... · · · · · ·

...
β1

n y1
n 0 0 · · · · · · 1

n
...

...
...

... · · · · · ·
...

βmn

n ymn

n 0 0 · · · · · · 1

For both experiments, the least squares estimators of above parameters, with the respective errors,
are shown in the Table 3. Notice that in the linear model represented by Eq. 37, the experimental
values of β are the observations, and their errors can be also assumed with zero means, uncorrelated,
and with the same variance σ2

β for each independent measurement. Moreover, in this case, due to
the central limit theorem, the errors can be assumed normal distributed. Thus it is also possible to
give an unbiased estimator of σ2

β (Stuart & Ord, 1991, p.715) according to the following expression

s2
β =

1

N − n − 2

N
∑

i=1

(βi − β∗

i )
2 (38)

where N represents the total number of samples (N − n− 2 is the number of degrees of freedom), βi

is the experimental measurement, and β∗

i is the value provided by the model.
The significance of the resulting parameters can be analyzed if Eq. 10 is rewritten as follows,

β = [c1 + c2(y + y0)](y − y0) (39)

where y0 is the initial OD of culture for a given induction sequence. Thus, the contribution to the
total β value from the terms c1 and c2(y + y0) can be evaluated for all the induction sequences. If
this comparison criterion is used, for the experiment E42 we obtain that the contribution of the c1

term to β is not less than the 96%. Hence, in this case the value of c2 is virtually zero. However, for
the experiment E40, the contribution to β of the term containing c2 can reach the 58% for the last
induction sequences, hence both parameters are totally significant. The graphics corresponding to
these regression curves are displayed in the Figure ?? for the respective experiments. Furthermore,
the experimental values of the parameters l/2, the OD corresponding to the age of maximum growth
velocity of culture, and ǫ, the OD shift for the maximum production velocity, are compared in Table 1.
Finally the global evolution of recombinant protein production provided by the present model can
be described from the production kinetic curves in Figures ??, and ??.
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E42 E40

c2 47 ± 333 179 ± 23

c1 6194 1132 627 76

c1

0
-78 810 56 74

c2

0
-703 870 -36 74

c3

0
-2720 906 -214 76

c4

0
-4529 977 -190 77

c5

0
-7367 1035 -146 79

c6

0
-10815 1098 -184 82

c7

0
-12372 1149 -299 84

c8

0
-13189 1158 -427 85

c9

0
- - -376 91

c10

0
- - -661 93

c11

0
- - -666 90

c12

0
- - -1024 91

sβ 1284 193

Table 3: Estimated parameters for the production model β(y), Eq. 46, and estimation of the standard deviation sβ

from the observations, Eq. 47.

8 Discussion

The β-galactosidase production process in a CI857-based recombinant system is modeled by studying
the relationship between the velocities of product synthesis and of culture growth. In order to explain
this relationship, a first order model is assumed. The model provides us with an explanation of the
asymmetry between the evolution of product and the OD of culture during the induction stage. An
important consequence is that the synthesis of recombinant β-galactosidase is a quadratic function
of the cell density of the culture. This non linear dependency is made evident, in particular, from the
experiment E40 where the highest production velocity is reached at an age near to the stationary
phase of the culture, that is, when the biomass is close to its maximum value. Then, the production
increases at a faster velocity than biomass. Notice that the production is always associated with the
culture growth so that, if the culture induction is made under conditions allowing a further culture
growth, then the production kinetics never vanishes. Hence, the protein production in the stationary
growing stage is possible only if the asymptotic biomass in the induction stage is greater than the
highest cell density allowed by the initial stage. This situation is represented in the graphics of Figure
??.
Also, the Figure ?? shows that at a fixed age x of the induction stage, the amount of product yield
varies depending on the initial OD of culture at the beginning of the induction sequence. Then, on
a section of constant x, it is possible to calculate the initial OD that produces the maximal β-gal
for that time. This result is displayed in the Figures ?? and ?? for both experiments. We can also
affirm, from Figure ??, that the maximal production is obtained for cultures that have been induced
during the phase of exponential growth, and for these induction sequences, the less the initial OD
of culture, the greater the maximal protein production. However these high yield levels are reached
after a long time of induction. For this reason it is necessary to compare the production of the first
sample of induced culture with the curve of maximal productions, Figures ?? and ??, where it is
shown that the absolute maximum of product always corresponds to the initial induction sequence.
Nevertheless, an interesting result, from an experimental point of view, could be the following one:
if only a production level of 75% referred to the absolute maximum have to be obtained, for example
for the experiment E42, the culture with an initial OD of 0.4 must be induced only for a period of 2
hours, while the first sequence needs to be induced about 4 hours in order to get the same production
level. If the same comparison is done with the experiment E40, that production level is obtained
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after 3 hours of induction beginning with an OD of 0.75, while the initial sequence needs more than
6 hours.
Thus, the modeling presented in this work, in order to compute the growing and production param-
eters of induced E. coli recombinant cultures, suggest a new data scheme, that globalize the data
coming from several runs of the experimental process. In particular, for the growth parameters,
a nonlinear estimation problem is lead to a linear least squares estimation. For recombinant gene
expression two kind of parameters are considered: The ’static’ parameters of the model, which can
be seen as constraints for the fitting method, and the ’dynamic’ parameters, which are specific of
each sequenced sub-culture. Therefore, for this kind of experimental process, of gene expression in
recombinant bacterial cultures, it is not recommended to use data from induced culture sequences
in an independent way, since it leads to low precision results. Our proposal is to batch all the data
referred to the same experiment in which various aliquots of a single initial culture are induced se-
quentially, and to run only one time a constrained least squares method, designed specifically for this
experiment. By this way the errors of the estimated parameters are significatively reduced.
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time (min) 0 60 120 180 240 300

OD 0.05 0.27 1.04 2.12 2.85 -

β-gal 0 750 4520 12125 22090 -

OD 0.13 0.56 1.60 2.30 2.94 -

β-gal 0 1500 9280 15655 17430 -

OD 0.30 0.90 2.06 2.73 3.03 -

β-gal 0 2706 8999 14279 17318 -

OD 0.50 1.38 2.34 3.12 - -

β-gal 0 4880 9750 13520 - -

OD 0.88 2.07 2.70 3.00 - -

β-gal 0 5560 8610 10950 - -

OD 1.66 2.01 2.27 2.32 2.37 2.39

β-gal 0 1466 3106 3606 4160 4710

OD 1.92 2.21 2.38 2.56 - -

β-gal 0 1490 2820 3335 - -

OD 2.11 2.27 2.34 2.37 - -

β-gal 0 823 1656 2017 - -

Table 4: Actual data for the eight runs of experiment E42.

time (min) 0 30 60 90 120 150 180 210 240

OD 0.04 0.07 0.13 0.25 0.38 0.60 0.99 1.47 -

β-gal 0 6 42 102 225 468 835 1920 -

OD 0.06 0.10 0.18 0.31 0.49 0.86 1.49 1.90 2.4

β-gal 0 0 54 66 333 503 953 2248 2675

OD 0.08 0.15 0.27 0.42 0.76 1.27 1.80 2.35 2.45

β-gal 0 25 69 128 247 588 1830 1935 2340

OD 0.11 0.19 0.32 0.61 0.88 1.50 2.18 2.50 2.81

β-gal 0 0 23 228 462 940 2110 2150 3370

OD 0.16 0.28 0.44 0.62 1.03 1.80 2.38 2.57 2.79

β-gal 0 40 122 195 545 1543 2355 2720 3215

OD 0.22 0.37 0.52 0.72 1.24 2.23 2.26 2.74 -

β-gal 0 0 196 408 748 2013 2210 3013 -

OD 0.30 0.44 0.63 0.98 2.00 2.25 2.55 2.85 -

β-gal 0 56 140 445 1623 2180 2520 2705 -

OD 0.39 0.54 0.88 1.68 2.12 2.41 2.74 3.44 -

β-gal 0 64 320 1265 1838 1985 2390 3655 -

OD 0.48 0.68 1.23 1.95 2.29 2.73 3.04 - -

β-gal 0 125 609 1545 2018 2575 3280 - -

OD 0.60 1.05 1.73 2.17 2.55 2.91 2.92 - -

β-gal 0 196 675 1657 2330 2465 2635 - -

OD 0.88 1.16 2.05 2.52 2.69 2.91 3.33 3.46 -

β-gal 0 49 1021 1843 2398 2865 3620 3910 -

OD 1.03 1.82 2.44 2.57 2.83 3.05 3.36 3.71 -

β-gal 0 730 1389 1692 2298 3000 3165 3215 -

Table 5: Actual data for the twelve runs of experiment E40.
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