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Abstract. We consider the Newtonian 4 body problem in the plane with a dom-
inat mass M . We study the planar central configurations of this problem when
the remaining masses are infinitesimal. We obtain two different classes of central
configurations depending on the mutual distances between the infinitesimal masses.
Both classes exhibit symmetric and non–symmetric configurations. And when two
infinitesimal masses are equal, with the help of extended precision arithmetics, we
provide evidence that the number of central configurations varies from five to seven.
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1. Introduction

We study configurations with one massive central mass and several in-
finitesimal coorbital satellites describing the same circular orbit around
the central massive mass. Such configurations are called relative equi-
libra, because in a rotation frame the satellites remain fixed. Recently
these configurations have attracted the attention of astronomers. Ren-
ner and Sicardy (2004), suggest that the presence of coorbital satellites
might explain, at least partly, the confinement of Neptune’s ring arcs.

When the configuration of the coorbital satellites changes its size,
but keep the shape, the motion is called homographic. In that case each
satellite describe a Keplerian orbit around the central mass.

A configuration that allows relative equilibria and homographic mo-
tions is called a central configuration and equals to configurations such
that the total Newtonian acceleration of every mass is equal to a con-
stant multiplied by the position vector of this mass with respect to the
center mass of the configuration, see (Lee and Santoprete, 2009) and
the references quoted there.
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2 Corbera, Cors and Llibre

The central configurations in the case of one large mass and n
infinitesimal arbitrary masses are called central configurations of the
1 + n body problem.

Maxwell (Maxwell, 1859) studied the case of n equal masses orbiting
Saturn at a common radius and uniformly distributed about a cercle
of this radius. He concluded that, for large n, the ring is stable if a
convenient inequality between the mass of the ring and the mass of
Saturn is satisfied. More recently, Moeckel (Moeckel, 1994) studied the
linear stability of the N–body problem when the motion is a rotation
about the center of mass and under the condition that all the masses
except one become vanishingly small. Notice that the 1+n body prob-
lem is a particular case. Moeckel shows that the 1 + n–gon (when the
small equal masses are uniformly distributed) is stable if and only if
n ≥ 7. For n ≤ 6, he gives some exemples of the stable configurations
where the small equal bodies are not uniformly distributed. Addition-
ally Roberts (Roberts, 2000) carries the analysis a step further showing
that the large mass has to grow proportionally to n3 to ensure the linear
stability. Such a criteria agrees with those given by Scheeres and Vinh
(1991).

For large values of n, Hall (1988) shows that if n ≥ e27,000, then
there is a unique class of central configurations, the regular 1 + n–gon.
In (Casasayas, Llibre and Nunes, 1994) the same result is proved under
the assumption that n ≥ e73.

When n is small and the small masses are equal, in (Cors, Llibre
and Ollé, 2004) the authors obtain numerically that the 1 + n–gon is
the only configuration when n ≥ 9. In the case n = 4 they proved that
there are only three symmetric central configurations. Recently Albouy
and Fu (2009) proved that any central configuration of the 1 + 4 body
problem must be symmetric.

In (Renner and Sicardy, 2004) the authors removed the condition
that the infinitesimal masses are identical and obtained results about
the inverse problem, that is, given a configuration of the coorbital satel-
lites, find the infinitesimal masses making it a central configuration.
They also studied the linear stability.

In this paper we study the planar central configurations of the 1 +
3 body problem without collision between two infinitesimal satellites
when two infinitesimal masses are equal. The characterization of these
central configurations is summarized in Section 5.
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2. Definitions and equations

In this section we present the equations of the central configurations
of the 1 + n body problem. More details can be found in (Casasayas,
Llibre and Nunes, 1994) and (Cors, Llibre and Ollé, 2004).

Consider N particles of masses m1,...,mN in R2 subject to their mu-
tual Newtonian gravitational attraction. In an inertial reference frame
with the origin at the center of mass of the N bodies and choosing
suitable units, the equations of motion of the N body problem in R2

are
Mq′′ = −Vq, (1)

where M is the mass matrix M = diag(m1,m1, ..., mN ,mN ), q =
(q1, ..., qN ) is the position vector with qi ∈ R2, V the potential vector

V (q1, ..., qN ) =
∑

1≤i<j≤N

mimj

‖qi − qj‖ ,

and Vq = (∂V/∂q1, ..., ∂V/∂qN ). Note that the Newtonian gravitational
constant has been taken equal to one choosing conveniently the unit of
time. Taking into account the singularities of equation (1), the config-
uration space of the planar N body problem associated with the mass
matrix M is

M(m1, ...,mN ) = {q ∈ R2N :
N∑

i=1

qi = 0, qi 6= qj , for i 6= j}.

Given a matrix M , we say that q ∈ M represents a central con-
figuration of the associated planar N body problem if there exists a
positive constant λ2 such that

M−1Vq = λ2q,

i.e., if the acceleration vector of every particle is directed towards the
center of mass and its modulus is proportional to the distance from
the particle to the center of mass. We shall denote by C the set of
planar central configurations associated with a given mass matrix M .
Notice that C is invariant with respect to homothetic transformations
and rotations of R2. We shall denote by C̃ the set of planar central
configurations modulus the group SO(2) of plane rotations.

Now we concentrate our interest on the central configurations of the
planar 1 + n body problem with infinitesimal unequal masses. That is,
we consider N = 1 + n and let q(ε) = (q0(ε), q1(ε), ...., qn(ε)) ∈ C̃ be
a central configuration of the planar 1 + n body problem with masses
m0 = 1, mi = µiε, i = 1, ..., n, which depends continuously on ε. We
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say that q = (q0, q1, ..., qN ) is a central configuration of the planar 1+n
body problem if there exists limε→0 q(ε) and this limit is equal to q.

The following two results can be found in the unpublished paper of
Hall (1988) and in (Casasayas, Llibre and Nunes, 1994).

PROPOSITION 2.1. All the central configurations of the planar 1+n
body problem lie on a circle centered at q0 = 0.

Let q = (q0, ..., qn) be a central configuration of the planar 1 + n
body problem. We say that q is non–collision if qi 6= qj for i 6= j. That
is, we exclude the possibility that the distance between two or more
masses tends to zero as ε → 0.

PROPOSITION 2.2. Let q = (q0, ..., qn) be a non–collision central
configuration of the planar 1 + n body problem. Denoting by ϑi the
angle defined by the position of qi for i = 1, ..., n., we have

n∑

j=1,j 6=i

µj sin(ϑj − ϑi)


1− 1

2
√

2
√

(1− cos(ϑj − ϑi))3


 = 0, (2)

for i = 1, ..., n.

We call any solution (ϑ1, · · · , ϑn) of system (2) a coorbital central
configuration of the planar 1 + n body problem. Since we are interested
in central configurations modulus rotations and homothetic transfor-
mations, without loss of generality we can assume that the circle has
radius 1 and that ϑ1 = 0. Then the configuration space of the coorbital
central configurations of the planar 1 + n body problem is

A = {(ϑ1, · · · , ϑn) ∈ [0, 2π)n : ϑ1 = 0, ϑi 6= ϑj for i 6= j}.
The setA has (n−1)! connected components, each of which corresponds
to a given permutation of the n satellites on the circle. We shall consider
one connected component ofA, i.e. a given counterclockwise ordering of
the n satellites. Without loss of generality we can assume that 0 = ϑ1 <
ϑ2 < · · · < ϑn < 2π. In this case it is natural to take as coordinates
the angles between two consecutive satellites

θi = ϑi+1 − ϑi, i = 1, ..., n− 1.

Also it is convenient to work with an nth redundant coordinate angle

θn = 2π −
n−1∑

i=1

θi,
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Central configurations of the planar 1 + 3 body problem 5

which measures the angular distance between particle n and particle 1.
In this way the configuration space will be the simplex S given by the
intersection of the hyperplane

∑n
i=1 θi = 2π and the space {(θ1, ..., θn) :

θi > 0}.
In the coordinates (θ1, · · · , θn) system (2) becomes

µ2f(θ1) + µ3f(θ1 + θ2) + · · ·+ µnf(θ1 + ... + θn−1) = 0,
µ3f(θ2) + µ4f(θ2 + θ3) + · · ·+ µ1f(θ2 + ... + θn) = 0,

µ4f(θ3) + µ5f(θ3 + θ4) + · · ·+ µ2f(θ3 + ... + θn + θ1) = 0,
· · · (3)

µ1f(θn) + µ2f(θn + θ1) + · · ·+ µn−1f(θn + θ1 + · · ·+ θn−2) = 0,
θ1 + · · ·+ θn = 2π,

where the function f(θ) = sin θ

(
1− 1

2
√

2
√

(1− cos θ)3

)
.

In the case of three satellites system (3) is

µ2f(θ1) + µ3f(θ1 + θ2) = 0,
µ3f(θ2) + µ1f(θ2 + θ3) = 0,
µ1f(θ3) + µ2f(θ3 + θ1) = 0,

θ1 + θ2 + θ3 = 2π,

or equivalently

µ2f(θ1)− µ3f(θ3) = 0,
µ3f(θ2)− µ1f(θ1) = 0, (4)
µ1f(θ3)− µ2f(θ2) = 0,

θ1 + θ2 + θ3 = 2π,

because f(2π − θ) = −f(θ).
Notice that the first three equations in (4) are linearly dependent.

So one equation is irrelevant. We also chose the unit of mass so that
µ3 = 1. Under these assumptions equations (4) are equivalent to the
system

µ1f(θ1)− f(θ2) = 0,
µ2f(θ1)− f(θ3) = 0,

θ1 + θ2 + θ3 = 2π.
(5)

Next results allows us to classify the coorbital central configurations
of the 1 + 3 body problem in two main classes, as we shall see latter
on.

PROPOSITION 2.3. Let (θ1, θ2, θ3) be a coorbital central configuration
solution of system (5).
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(i) If f(θi) = 0 for some i = 1, 2, 3, then µj = 0 for some j = 1, 2.

(ii) The sign of f(θi) must be positive or negative for all i = 1, 2, 3.

Proof. Supose that f(θ1) = 0, then from system (5) f(θ2) = f(θ3) = 0.
The zeros of the function f are π/3, π and 5π/3. Clearly the sum of
any choice of these three values never equals to 2π.

Consider now f(θ2) = 0. Then either µ1 = 0 or f(θ1) = 0 (previous
case). Finally if f(θ3) = 0 implies, using the same argument, that
µ2 = 0. So statement (i) follows

On the other hand, supose that f(θ1) < 0, then from system (5)
clearly f(θ2) < 0 and f(θ3) < 0, as well. The other cases run in a
similar way. 2

Proposition 2.3 says that any coorbital central configuration of the
1 + 3 body problem cannot posses an angle θi equal to π/3, π or 5π/3
for i = 1, 2, 3.

COROLLARY 2.4. Let (θ1, θ2, θ3) be a coorbital central configuration
solution of system (5). Then either θi ∈ (π/3, π) for all i = 1, 2, 3,
or two angles are less than π/3 and the third belongs to the interval
(4π/3, 5π/3).

Proof. This follows from the Proposition 2.3 and the plot of the func-
tion f . 2

In short, the 1 + 3 body problem have two unconnected classes of
coorbital central configurations. We call coorbital central configuration
of class A the one having two angles less than π/3, and coorbital central
configuration of class B the one having the three angles greater than
π/3.

3. Symmetric central configurations

A coorbital central configuration (θ1, θ2, . . . , θn) of the planar 1 + n
body problem is symmetric with respect to a straight line L containing
the central body, if modulus a cyclic permutation of the angles we have,
when n is even either

θ1 = θn, θ2 = θn−1, . . . , θn
2

= θn+2
2

,

(in this case the symmetry axis L contains two satellites), or

θ1 = θn−1, θ2 = θn−2, . . . , θn−2
2

= θn+2
2

, θn
2
, θn,
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(in this case the symmetry axis L contains no satellites) and when n is
odd

θ1 = θn, θ2 = θn−1, . . . , θn−1
2

= θn+3
2

,

(in this case the symmetry axis L contains one satellite).
From the definition of symmetric coorbital central configuration in

the case of three satellites the configuration is symmetric if and only if
two of the angles (θ1, θ2, θ3) are equal.

PROPOSITION 3.1. If the coorbital central configuration of the 1 + 3
body problem is symmetric, with respect to a straight line L containing
the central body, then µi = µj for some i, j = 1, 2, 3 with i 6= j

Proof. Suppose that θ2 = θ3 then from system (5) we have that
µ1f(θ1) = µ2f(θ1) and so µ1 = µ2. Similar arguments can be used
to prove cases θ1 = θ2 or θ1 = θ3. 2

Without loss of generality, we assume that µ1 = µ2 = µ. So system
(5) is equivalent to system

µf(θ1)− f(θ2) = 0,
µf(θ1)− f(θ3) = 0,

θ1 + θ2 + θ3 = 2π.
(6)

By setting α = θ/2 we see that f(θ) can be written as

g(α) =
cosα

4 sin2 α
(8 sin3 α− 1).

Let α1 = θ1/2 and α2 = θ2/2 and α3 = θ3/2 = π−α1−α2. By writing
g(α3) in terms of α1 and α2 we get

g(α3) =
cos(α1 + α2)(1− 8(sin(α1 + α2))3)

4(sin(α1 + α2))2
,

where α1 ∈ (0, π) and α2 ∈ (0, π). Since α1 + α2 6= 0 and α1 + α2 6=
π (notice that if α1 + α2 = π then α3 = 0 which is not possible),
the denominator of g(α3) is different from zero. Let e1(α1, α2; µ) =
µg(α1) − g(α2) and e2(α1, α3; µ) = µg(α1) − g(α3). The system (6)
becomes

e1(α1, α2; µ) = 0,
e2(α1, α3; µ) = 0, (7)

where α1, α2 ∈ (0, π) and α3 = π − α1 − α2 ∈ (0, π).
Under the assumption µ1 = µ2 = µ, the symmetric coorbital central

configurations satisfy θ2 = θ3, or equivalently α2 = α3. Analyzing the
solutions of (7) with α2 = α3 depending on the values of µ we obtain
the following result.
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PROPOSITION 3.2. Let u1 = 0.89616 . . .. The 1+3 body problem has
the following symmetric coorbital central configurations:

(a) One symmetric coorbital central configuration As belonging to
class A for µ ∈ (0, u1).

(b) Two symmetric coorbital central configurations for µ = u1, one
belonging to class A (As) and one belonging to class B (Bs

1,2).

(c) Three symmetric coorbital central configurations for µ > u1,
one belonging to class A (As) and two belonging to class B (Bs

1,
Bs

2). The two symmetric coorbital central configurations of class B
coincide at µ = u1.

Proof. The proof is structured as follows. First, by using appropriate
variables, we transform system (7) with α2 = α3 into a system of
polynomial equations. Then by using resultant theory we obtain all the
values of µ at which the number of solutions of that system changes,
and we count the number of solutions of the system for the different
values of µ. Finally we analyze the solution of the system in function
of µ.

The assumption α2 = α3 implies that α1 = π−2α2, so α2 ∈ (0, π/2).
Since cosα1 = sin2 α2 − cos2 α2 and sinα1 = 2 sinα2 cosα2, system (7)
can be written in terms of c = cosα2 and s = sin α2. Then eliminating
the denominators we get the following system equivalent to system (7)

−s2E1 = 0, −s2
(
c2 + s2

)
E2 = 0, F = 0, (8)

where

E1 = 32s3c3 − 4c3 +
(
64s3c5 − 64s5c3 − c2 + s2

)
µ,

E2 = 32s3c9 + 96s5c7 + 96s7c5 + 32s9c3 − 4c3

+
(
64s3c7 − c4 − 64s7c3 + s4

)
µ,

F = c2 + s2 − 1,

and 0 < s 6 1 and 0 6 c < 1 because α2 ∈ (0, π/2). Clearly c2 + s2 6= 0
and s 6= 0. Therefore system (8) can be written as

E1 = 0, E2 = 0, F = 0. (9)

We perform the following substitutions: c2 = 1− s2, c3 = c(1− s2),
c4 = (1 − s2)2, c5 = c(1 − s2)2, c7 = c(1 − s2)3, and c9 = c(1 − s2)4.
After these substitutions E1 = E2 and system (9) becomes E = 0, F = 0
where

E = −32cs5+32cs3+4cs2−4c+
(
128cs7 − 192cs5 + 64cs3 + 2s2 − 1

)
µ.
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From now on instead of writing the system E = 0, F = 0, we also shall
write E = F = 0.

Using the resultant theory we can eliminate the variable c in the
equations E = F = 0. The resultant of the polynomials E and F with
respect to the variable c is the polynomial

R =
(
16384s16 − 65536s14 + 102400s12 − 77824s10 + 28672s8

−4096s6 + 4s4 − 4s2 + 1
)

µ2 +
(
−8192s14 + 28672s12

+1024s11 − 36864s10 − 3584s9 + 20480s8 + 4608s7 − 4096s6

−2560s5 + 512s3
)

µ + 1024s12 − 3072s10 − 256s9 + 3072s8

+768s7 − 1008s6 − 768s5 − 48s4 + 256s3 + 48s2 − 16,

in the variables s and µ, and R satisfies the following property: if
(c, s) = (c∗(µ), s∗(µ)) is a common root of the polynomials E and F ,
then s∗(µ) is a root of the polynomial R (see for instance (Lang, 1993)
and (Olver, 1999) for more details on the resultant theory). Therefore
the solutions of equation R = 0 give at least all the values s(µ) of
the common solutions (c(µ), s(µ)) of E = F = 0. Notice that equation
R = 0 could also give solutions s(µ) that do not provide common
solutions of E = F = 0.

We are interested in the set of values of µ at which the number of
real solutions (c(µ), s(µ)) of system E = F = 0 changes. Since equation
R = 0 provides all the values s(µ) of the common solutions (c(µ), s(µ))
of E = F = 0, the set of the values of µ at which the number of real
solutions of R = 0 changes contains at least all the values of µ at which
the number of real solutions of E = F = 0 changes.

The number of real solutions of R = 0 can change only at the values
of µ that provide solutions with multiplicity greater than 1, that is, at
the values of µ where R = dR/ds = 0.

Again using resultant theory we can eliminate the variable s in the
system R = dR/ds = 0. The resultant of the polynomials R and dR/ds
with respect to s is the polynomial

H = k0µ
34(µ− 4)(µ + 4)H0,

where k0 6= 0 is a large constant and H0 is the following polynomial of
degree 22

H0 = 544400220773632720896µ22 − 11491835434562035187712µ20

+2898856085837444554752µ19 + 45101390498475214934016µ18

−50207178662075239133184µ17 − 3597828247551090484224µ16

+54441252684647804362752µ15 − 90330266881601149980672µ14
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+105029467560226902200832µ13 − 87060482984162666161152µ12

+53192685061230729315840µ11 − 25608023464518181047260µ10

+9249906747903520991616µ9 − 1771852062223329593868µ8

−159500845521348320736µ7 + 119990316536124348321µ6

+12123699015371647968µ5 − 11384652544065195120µ4

+400296455761238280µ3 + 345472406710968960µ2

+2678966190976320µ− 8438743501575408.

By the properties of the resultant, the solutions of equation H = 0
provide at least all the values of µ of the common solutions (s, µ) of
system R = dR/ds = 0, although they also can provide values of µ
that do not correspond to common solutions of the system. Therefore
the real solutions of H = 0 with µ > 0 provide all the possible values
of µ at which the number of real solutions of system R = 0 changes.

We compute all the solutions of the polynomial equation H0 = 0
with the help of Mathematica and we find 22 different solutions of
which only 3 are real solutions with µ > 0

µ = u1 = 0.8961616399532140 . . .

µ = u2 = 1.2506375233635711 . . .

µ = u4 = 4.0000142922001194 . . .

On the other hand, equation H = 0 has the additional real solution
with µ > 0

µ = u3 = 4.

In short there are four possible values of µ at which the number of real
solutions of E = F = 0 could change, µ = u1, u2, u3, u4.

Since we only are interested in studying the solutions of E = F = 0
satisfying 0 < s 6 1 and 0 6 c < 1 we need to control not only
the changes in the number of real solutions of the system E = F =
0 without constraints. We also need to control when a real solution
(s(µ), c(µ)) starts to satisfy the conditions 0 < s 6 1 and 0 6 c < 1 for
some values of µ.

Next we find values of µ where the number of real solutions of system
E = F = 0 does not change but the number of real solutions satisfying
0 < s 6 1 and 0 6 c < 1 can change. For doing that, since all the
solutions s(µ) of E = F = 0 are solutions of R = 0, we find the values
of µ at which either s = 0 or s = 1 is a solution of R = 0. Evaluating
R = 0 at s = 0 and s = 1 we get

R|s=0 = µ2 − 16 = 0,
R|s=1 = µ2.
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Therefore the unique values of µ at which the number of real solutions
of system E = F = 0 satisfying 0 < s 6 1 and 0 6 c < 1 can change
are µ = u1, u2, u3, u4.

Finally we compute the number of real solutions of system E = F =
0 satisfying 0 < s 6 1 and 0 6 c < 1 at values µ = {v1, v2, v3, v4, v5}
with 0 < v1 < u1 < v2 < u2 < v3 < u3 < v4 < u4 < v5 in the following
way. Let Res [P, Q, X] denote the resultant of the polynomials P and Q
with respect to X. Fixed µ = vi we compute the resultants Res [E, F, s]
and Res [E, F, c], which are polynomials of the single variable c and s
respectively. Using the properties of resultants, if (c0, s0) is a solution of
system E = F = 0, then Res [E, F, s](c0) = 0 and Res [E, F, c](s0) = 0.
We compute with the help of Mathematica all the solutions of the
polynomial equations Res [E, F, s] = 0 and Res [E, F, c] = 0. Finally we
check which pairs (c, s) formed by a real solution c of Res [E,F, s] = 0
with 0 6 c < 1 and a real solution s of Res [E,F, c] = 0 with 0 < s 6 1
provide a solution of system E = F = 0. Using this procedure for each
vi, i = 1, . . . , 5 we get one solution for µ = v1 and three solutions for
µ = {v2, v3, v4, v5}, so the number of real solutions of system E = F = 0
with 0 < s 6 1 and 0 6 c < 1 changes at µ = u1.

Analyzing the solutions of system E = F = 0 as a function of
µ we observe that the solution (s(µ), c(µ)) that we have obtained for
0 < µ < u1 persists for all µ and it gives a family of symmetric coorbital
central configurations of class A, denoted by As. At µ = u1 appears
a new symmetric coorbital central configuration of class B, denoted
by Bs which bifurcates in two families of symmetric coorbital central
configurations, denoted by Bs

1 and Bs
2 for µ > u1. See Figures 1 and 2

where the angles θ1(µ) and θ2(µ) have been computed. Also see Figures
3 and 4 where qualitative pictures of coorbital central configurations
have been plotted for different values of µ. 2

4. Non–symmetric central configurations

In Section 3 we have analyzed the symmetric coorbital central config-
urations of the 1 + 3 body problem and we have found the value of
µ at which the number of symmetric coorbital central configurations
changes. Here we analyze the values µ where the number of coorbital
central configurations change independently if such configurations are
symmetric or not. In particular we prove the following result.

PROPOSITION 4.1. The following statements hold.

(a) At µ = 1.4238513 . . ., the symmetric coorbital central configura-
tion Bs

1 given in Proposition 3.2, bifurcates to two non–symmetric
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12 Corbera, Cors and Llibre

coorbital central configurations (B1, B2), which persist for all µ ∈
(0, 1.4238513 . . .).

(b) From the non–symmetric coorbital central configurations of the
1 + 3 body problem do not bifurcate any non–symmetric coorbital
central configurations.

Proof. System (7) can be written in terms of c1 = cosα1 and s1 =
sinα1, c2 = cos α2 and s2 = sinα2, then by eliminating the denomina-
tors and by doing the substitutions

c2
1 = 1− s2

1, c3
1 = c1(1− s2

1), c4
1 = (1− s2

1)
2,

c2
2 = 1− s2

2, c3
2 = c1(1− s2

2), c4
2 = (1− s2

2)
2,

system (7) is equivalent to system E1 = E2 = F1 = F2 = 0 where

E1 = −8c2s
2
1s

3
2 + c2s

2
1 +

(
8c1s

3
1s

2
2 − c1s

2
2

)
µ,

E2 = 64c2s
3
2s

6
1 − 32c2s2s

6
1 + 64c1s

4
2s

5
1 − 64c1s

2
2s

5
1 + 8c1s

5
1 − 64c2s

3
2s

4
1

+24c2s2s
4
1 − 32c1s

4
2s

3
1 + 24c1s

2
2s

3
1 + s2s

3
1 + 8c2s

3
2s

2
1 − c1c2s

2
1

+
(
−16c2s2s

6
1 − 16c1s

2
2s

5
1 + 8c1s

5
1 + 16c2s2s

4
1 + 8c1s

2
2s

3
1

+2c2s2s
3
1 + 2c1s

2
2s

2
1 − c1s

2
1 − 2c2s2s1 − c1s

2
2

)
µ,

F1 = c2
1 + s2

1 − 1,

F2 = c2
2 + s2

2 − 1.

We are interested in solutions of this system with 0 < s1 6 1, 0 < s2 6
1, −1 < c1 < 1, −1 < c2 < 1, and such that α3 = π − α1 − α2 ∈ (0, π),
here αi = arctan(si/ci) when si/ci > 0 and αi = arctan(si/ci) + π
when si/ci < 0, i = 1, 2. Next we will find the values of µ at which the
number of real solutions of system E1 = E2 = F1 = F2 = 0 satisfying
those conditions changes. First we find the values of µ at which the
number of real solutions of E1 = E2 = F1 = F2 = 0 changes.

We eliminate the variable c1 by doing the resultants

R1 = Res [E1, E2, c1], R2 = Res [E1, F1, c1], R3 = Res [E1, F2, c1].

Next we eliminate the variable c2 by doing the resultants

S1 = Res [R3, R1, c2], S2 = Res [R3, R2, c2].

The factorization of the polynomials S1 and S2 contains factors with
multiplicity greater than 1. We define two new polynomials S1 and S2

as the polynomials that contain exactly the same factors than S1 and
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S2 but all of them with multiplicity one. Then we eliminate the variable
s2 by doing the resultant

T = Res [S1, S2, s2].

The factorization of T is formed by a large constant, a power of µ and
five factors in the variables s1 and µ. We eliminate the constant, the
power of µ (we are only interested in solutions with µ > 0) and the
multiplicities of the factors and we obtain a new polynomial

T = T 1.T 2.T 3.T 4.T 5,

where

T 1 = s1,

T 2 = 2s1 − 1,

T 3 = 4s2
1 + 2s1 + 1,

T 4 =
(
4096s16

1 − 8192s14
1 − 2048s13

1 + 4096s12
1 + 4096s11

1 + 384s10
1

−2048s9
1 − 768s8

1 − 32s7
1 + 384s6

1 + 64s5
1 + s4

1 − 32s3
1 − 2s2

1

+1)µ4 +
(
2048s14

1 − 2048s12
1 − 512s11

1 − 768s10
1 + 512s9

1

+1824s8
1 + 192s7

1 − 1056s6
1 − 448s5

1 − 12s4
1 + 256s3

1 + 28s2
1

−16)µ2 +
(
256s10

1 − 1280s8
1 − 32s7

1 + 1024s6
1 + 160s5

1

−128s3
1

)
µ + 256s12

1 + 192s8
1 − 252s6

1,

and T 5 is a polynomial depending on s1 and µ of degree 44 in the
variable s1.

By the properties of resultants, the new equation T = 0 contains
all the values s1(µ) of the solutions (c1(µ), s1(µ), c2(µ), s2(µ)) of the
system E1 = E2 = F1 = F2 = 0 and probably values s1(µ) that do
not provide solutions of the initial system. Therefore the values of µ at
which the number of real solutions of E1 = E2 = F1 = F2 = 0 changes
are also values of µ at which the number of real solutions of T = 0
changes.

The number of real solutions of T = 0 can change either at the
values of µ at which a real root of a factor T i has multiplicity greater
than one, or at the values of µ at which a real root of a factor T i is
also a root of a factor T j with i 6= j.

Clearly the root of the factor T 1, s1 = 0 is not a root of the factors
T 2 and T 3. Moreover

T 4|s1=0 = µ4 − 16µ2, T 5|s1=0 = −µ10 − 4µ8.
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14 Corbera, Cors and Llibre

So µ = 4 is the unique value of µ > 0 at which the root of the factor
T 1 is a root of some of the other factors. Proceeding in a similar way
for the root of the factor T 2, s1 = 1/2, we get

T 3|s1=1/2 = 3, T 4|s1=1/2 = −25/8, T 5|s1=1/2 = 2197/4096,

so s1 = 1/2 is only root of the factor T 2. The roots of factor T 3 are
non–real, therefore we do not consider them.

Next we compute at which values of µ > 0 there are real roots of T 4

that are roots of T 5 by solving the polynomial equation Res [T 4, T 5, s1] =
0 and we get

µ = ũ1 = 0.1325450004033988 . . .

µ = ũ3 = 0.1541643785502070 . . .

µ = ũ6 = 0.5250057176263389 . . .

µ = ũ8 = 0.6784610926616778 . . .

µ = ũ13 = 1.0011322554499964 . . .

µ = ũ15 = 1.0076481112559950 . . .

µ = ũ16 = 1.0606474258429618 . . .

µ = ũ19 = 1.4238513421761745 . . .

µ = ũ20 = 2.5123408303563733 . . .

µ = ũ21 = 3.2950663210056425 . . .

Now we find the values of µ > 0 at which the factor T 4 has real roots
with multiplicity greater than ones by solving the polynomial equation
Res [T 4, ∂T 4/∂s1, s1] = 0 and we get

µ = ũ5 = 0.4816163432110476 . . .

µ = ũ7 = 0.6154472608017034 . . .

µ = u1 = ũ10 = 0.8961616399532140 . . .

µ = ũ11 = 0.8977353306077976 . . .

µ = ũ17 = 1.2506375233635711 . . .

µ = ũ18 = 1.2615567635193134 . . .

µ = ũ22 = 4
µ = ũ23 = 4.0000142922001194 . . .

Finally we find the values of µ > 0 at which the factor T 5 has real roots
with multiplicity greater than ones by solving the polynomial equation
Res [T 5, ∂T 5/∂s1, s1] = 0 and we get

µ = ũ2 = 0.1424427964946848 . . .
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µ = ũ4 = 0.2055692659990572 . . .

µ = ũ9 = 0.6791080539220485 . . .

µ = ũ12 = 0.9939202640321302 . . .

µ = ũ14 = 1.0072825044062513 . . .

In short, the possible values of µ > 0 at which the number of real
solutions of T = 0 can change are µ = ũi for i = 1, . . . , 23.

We are interested in the values of µ at which the number of real
solutions of E1 = E2 = F1 = F2 = 0 with 0 < s1 6 1, 0 < s2 6 1,
−1 < c1 < 1, −1 < c2 < 1, and α3 = π − α1 − α2 ∈ (0, π). Using the
same argument as in Section 3 we need to control not only the changes
in the number of real solutions of the system E1 = E2 = F1 = F2 = 0
without constraints. We also need to control when a real solution starts
to satisfy the conditions 0 < sj 6 1 and −1 < cj < 1, j = 1, 2
for some values of µ. Since the set of real solutions s1(µ) of system
E1 = E2 = F1 = F2 = 0 is contained in the set of real solutions of
T = 0, in order to find these last possible values of µ it is sufficient
to find the values µ at which a solution s1(µ) of T = 0 satisfies that
s1(µ) = 0 or s1(µ) = 1. Notice that s1 = 0 is a solution of T = 0 but
this solution does not depend on µ so we do not consider it. Evaluating
T/s1 at s = 0 and s = 1 we get

(T/s1)|s1=0 = −
(
µ4 − 16µ2

) (
−µ10 − 4µ8

)

(T/s1)|s1=1 = 92747200.

So we do not obtain new possible values of µ at which the number of
solutions real solutions of the system E1 = E2 = F1 = F2 = 0 with
satisfying the desired conditions changes.

Finally we compute the number of real solutions of the system E1 =
E2 = F1 = F2 = 0 with 0 < s1 6 1, 0 < s2 6 1, −1 < c1 <
1, −1 < c2 < 1, and α3 = π − α1 − α2 ∈ (0, π) at values µ = vi

with v1 ∈ (0, ũ1), vi+1 ∈ (ũi, ũi+1) for i = 1, . . . , 23 and v24 > ũ23 by
proceeding of the following way. System (7) can be written in terms of
c1 = cosα1 and s1 = sinα1, c2 = cosα2 and s2 = sin α2. In order to
simplify our computations we introduce two new variables z1 = eiα1

and z2 = eiα2 where i =
√−1. Using these variables, cosαj = (z2

j +
1)/(2 zj) and sinαj = (z2

j − 1)/(2 i zj) for j = 1, 2. Then by doing the
previous substitutions and by eliminating the denominators system (7)
is equivalent to system e1 = e2 = 0 where

e1 = iz6
1z

8
2 − 2iz4

1z
8
2 + iz2

1z
8
2 − 2iz6

1z
6
2 + 4iz4

1z
6
2 − 2iz2

1z
6
2 − z6

1z
5
2 + 2z4

1z
5
2

−z2
1z

5
2 − z6

1z
3
2 + 2z4

1z
3
2 − z2

1z
3
2 + 2iz6

1z
2
2 − 4iz4

1z
2
2 + 2iz2

1z
2
2 − iz6

1
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16 Corbera, Cors and Llibre

+2iz4
1 − iz2

1 +
(
−iz6

2z
8
1 + 2iz4

2z
8
1 − iz2

2z
8
1 + 2iz6

2z
6
1 − 4iz4

2z
6
1

+2iz2
2z

6
1 + z6

2z
5
1 − 2z4

2z
5
1 + z2

2z
5
1 + z6

2z
3
1 − 2z4

2z
3
1 + z2

2z
3
1 − 2iz6

2z
2
1

+4iz4
2z

2
1 − 2iz2

2z
2
1 + iz6

2 − 2iz4
2 + iz2

2

)
µ,

e2 = i− iz8
2z

12
1 + 2iz8

2z
10
1 + 2iz6

2z
10
1 + z5

2z
9
1 − iz8

2z
8
1 − 4iz6

2z
8
1 − 2z5

2z
7
1

+z3
2z

7
1 + 2iz6

2z
6
1 − 2iz2

2z
6
1 + z5

2z
5
1 − 2z3

2z
5
1 + 4iz2

2z
4
1 + iz4

1 + z3
2z

3
1

−2iz2
2z

2
1 − 2iz2

1 +
(
−iz6

2z
12
1 + 2iz6

2z
10
1 + 2iz4

2z
10
1 + z6

2z
9
1

−4iz4
2z

8
1 − iz2

2z
8
1 + z6

2z
7
1 − 2z4

2z
7
1 − 2iz6

2z
6
1 + 2iz2

2z
6
1 − 2z4

2z
5
1

+z2
2z

5
1 + iz6

2z
4
1 + 4iz4

2z
4
1 + z2

2z
3
1 − 2iz4

2z
2
1 − 2iz2

2z
2
1 + iz2

2

)
µ,

and |z1| = |z2| = 1. Since we are interested in solutions of (7) with
α1, α2 ∈ (0, π) and α3 = π−α1−α2 ∈ (0, π), we only consider solutions
of e1 = e2 = 0 with |z1| = |z2| = 1 such that Im(z1), Im(z2) > 0
and α3 = π − α1 − α2 ∈ (0, π) where αi = arctan(Im(zi)/Re(zi))
when Im(zi)/Re(zi) > 0 and αi = arctan(Im(zi)/Re(zi)) + π when
Im(zi)/Re(zi) < 0, i = 1, 2.

Fixed µ = vi for i = 1, . . . , 24 we solve the polynomial system
e1 = e2 = 0 by means of resultants. With the help of Mathematica,
we compute the resultants Res [e1, e2, z1] and Res [e1, e2, z2], which are
polynomials of the single variable z2 and z1 respectively. Then we com-
pute all the solutions of the polynomial equations Res [e1, e2, z1] = 0
and Res [e1, e2, z2] = 0. We check which pairs (z1, z2) formed by a
solution z2 of Res [e1, e2, z1] = 0 and a solution z1 of Res [e1, e2, z2] = 0
provide a solution of system e1 = e2 = 0. Finally we chose the solutions
(z1, z2) of system e1 = e2 = 0 satisfying the conditions |z1| = |z2| = 1,
Im(z1), Im(z2) > 0 and α3 = π − α1 − α2 ∈ (0, π).

After all these computations we get the following: system e1 =
e2 = 0 has 5 solutions for µ = v1, . . . , v10, four corresponding to non–
symmetric coorbital central configuration and one corresponding to
a symmetric one; it has 7 solutions for µ = v11, . . . , v19, four corre-
sponding to non–symmetric coorbital central configurations and three
corresponding to symmetric ones; it has 5 solutions for µ = v20, . . . , v24,
two corresponding to non–symmetric coorbital central configurations
and three corresponding to symmetric ones. So the number of solutions
of system e1 = e2 = 0 satisfying the desired conditions changes at
µ = ũ10 = u1 and at µ = ũ19.

We remark that we have studied all the bifurcations values using the
changes of solutions in the variable s1, we have a similar study using
the changes of solutions in the variable s2, obtaining exactly the same
results.
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Central configurations of the planar 1 + 3 body problem 17

Notice that µ = u1 is the bifurcation value that we have obtained
in Section 3. Analyzing the solutions of system e1 = e2 = 0 as a
function of µ in a neighbourhood of µ = u1 and µ = ũ19 we observe
the following. In a neighbourhood of µ = u1 the four solutions cor-
responding to non–symmetric coorbital central configurations that we
have found for µ < u1 persist when µ > u1, and at µ = u1 appears
a new solution that bifurcates into two ones for µ > u1 providing
symmetric coorbital central configurations. Two of the four solutions
corresponding to non–symmetric coorbital central configurations that
we have found for µ < ũ19 match to one of the solutions providing a
symmetric coorbital central configuration at µ = ũ19 and these last
solution persist for µ > ũ19. In short, at µ = ũ19 a symmetric coorbital
central configuration bifurcates to two non–symmetric ones for µ < ũ19.
This proves statements (a), and since there is no other bifurcation value
(except µ = u1) it follows statement (b). 2

Analyzing the solutions of system E1 = E2 = F1 = F2 = 0 (or
equivalently of system e1 = e2 = 0) as a function of µ we observe that
we have five families of coorbital central configurations for µ < u1, the
symmetric family As found in Section 3, two non–symmetric families
of class A denoted by A1 and A2 and two non–symmetric families
of class B denoted by B1 and B2; seven families of coorbital central
configurations for u1 < µ < ũ19, the symmetric family As, the two
symmetric families Bs

1 and Bs
2 found in Section 3, which match at

µ = u1, plus the four non–symmetric families A1, A2, B1 and B2; and
finally five families of coorbital central configurations for µ > ũ19, the
three symmetric families As, Bs

1 and Bs
2 plus the two non–symmetric

families A1, A2. We note that the two non–symmetric families B1 and
B2 match at µ = ũ19 to one of the symmetric families of class B, exactly
Bs

1. Again see Figures 1, 2, 3 and 4.

5. Conclusions

We have derived results concerning to the number of coorbital central
configurations of the planar 1+3 body problem when two infinitesimal
masses are equal, that is, m1 = m2 = µ and m3 = 1. The problem
exhibits two unconnected classes of central configurations denoted A,
when two angles are less than π/3 and B, when the three angles are
greater than π/3. Each class have symmetric (denoted by As, Bs

1 and
Bs

2) and non–symmetric configurations.
The results obtained in Sections 3 and 4 can be summarized as

follows.
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18 Corbera, Cors and Llibre

The coorbital central configurations of the 1 + 3 body problem with
two equal infinitesimal masses are the following ones.

(a) For µ ∈ (0, 0.89616...) there are 5 coorbital central configurations,
3 of class A (As, A1 and A2) and 2 of class B (B1 and B2).

(b) For µ = 0.89616... there are 6 coorbital central configurations, 3 of
class A (As, A1 and A2) and 3 of class B (B1, B2 and Bs

1,2).

(c) For µ ∈ (0.89616..., 1.42385...) there are 7 coorbital central config-
urations, 3 of class A (As, A1 and A2) and 4 of class B (B1, B2,
Bs

1 and Bs
2).

(d) For µ = 1.42385... there are 5 coorbital central configurations, 3 of
class A (As, A1 and A2) and 2 of class B (Bs

1 and Bs
2).

(e) For µ > 1.42385... there are 5 coorbital central configurations, 3 of
class A (As, A1 and A2) and two of class B (Bs

1 and Bs
2).

Notice that the proof of the results stated are analytical with the
exception that we have computed numerically the real roots of some
polynomials of one variable. For all polynomials of one variable that we
have found we have computed (with mathematica) as many roots as
of its degree (of course some are complex), we have checked that every
root obtained once it is substituted in its polynomial, this vanishes. We
have done these computations with 100 decimals for each root. We thus
provide numerical evidence that we have obtained all the real roots of
the polynomials that we have studied and that we do not forget any
real root.

In order to see how the classes A and B of the coorbital central
configurations change in function of the parameter µ, we have computed
numerically the values of the angles θ1(µ) and θ2(µ), for each family of
coorbital central configurations, see Figures 1 and 2.

In Figures 3 and 4 qualitative pictures of the classes A and B of the
coorbital central configurations are showed for different values of µ.
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Figure 1. The angles θ1(µ) and θ2(µ) along the class A.
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Figure 2. The angles θ1(µ) and θ2(µ) along the class B.
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Figure 3. Coorbital central configurations of class A for different values of µ. Top
µ ≈ 0, middle µ = 1 and bottom µ À 1. Left A1, center As and right A2.
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