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Abstract

Binary voting systems, usually represented by simple games, constitute a main DSS
topic. A crucial feature of such a system is the easiness with which a proposal can be
collectively accepted, which is measured by the “decisiveness index” of the correspond-
ing game. We study here several functions related to the decisiveness of any simple
game. The analysis, including the asymptotic behavior as the number n of players
increases, is restricted to decisive symmetric games and their compositions, and it is
assumed that all players have a common probability p to vote for the proposal. We
show that, for n large enough, a small variation, either positive or negative, in p when
p = 1/2 takes the decisiveness to quickly approach, respectively, 1 or 0. Moreover, we
analyze the speed of the decisiveness convergence.

Keywords: simple game, decisive symmetric game, α–decisiveness.
Math. Subj. Class. (2000): 91A12.

1 Introduction

An investigation of the DSS literature reveals that research has mainly focussed on the
effects of design, implementation and use on decision outcomes (see e.g. [2], [3], [15]). In
addition, it is well known that game theory has been applied to different kinds of problems
concerning DSS. For instance, several studies have been conducted with concepts such as
supply chain formation and supply chain coalitions (see e.g. [17], [18]). Moreover, the
multiple mechanisms to take decisions by voting existing in political organizations can be
seen as DSS since voters must make decisions involving a choice between alternatives. Here
we will assume that there are just two alternatives: either breaking the status quo or not,
and this is the specific decision context. We will additionally suppose that all voters play
an equivalent role in the voting system at hand and that the system is “decisive”, i.e., there
is no structural bias towards either breaking or not breaking the status quo.

Simple games constitute an interesting class of cooperative games. Not only as a test
bed for cooperative concepts but also for the variety of their interpretations (often far from
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game theory). In particular, they are frequently applied to describe and analyze collective
decision–making mechanisms ruled by voting.

In order to establish concepts, let us assume that a single proposal P , such as a bill
or an amendment, is pitted against the status quo Q. Each agent (player) has only two
options: voting for P or voting against it and hence for maintaining the status quo. The
rules must state the groups of agents (coalitions) which can pass the proposal when voting
for it (such a collection of winning coalitions defines a simple game in the set of agents), so
that abstention is in fact allowed, but it counts for Q. Usually, each agent controls a number
of votes (weight) and the proposal receives approval if, and only if, the total weight of the
group of agents that vote for it meets or exceeds a given threshold (quota): we then speak
of a weighted majority game. (For weighted and non–weighted simple voting rules taking
abstention into account as a very third alternative, see e.g. [8], [9], [10], [13], [6] or, especially,
[14], where symmetric games, which may be weighted and decisive, with abstention or other
alternatives, are considered; for power measures to quantify the amount of influence that
different players have in a simple game, see e.g. [1] and/or [21].)

Parliamentary bodies provide conspicuous examples. If voting discipline within parties
holds, then the agents are the parties, and each one controls the votes of all its representa-
tives. Otherwise, each parliamentarian is an agent with one vote (symmetric or k–out–of–n
game). The US Senate can be viewed in this way due to the political freedom to act that
each senator enjoys. Other examples where the agents are, actually, individuals are popular
juries or the Constitutional Court. As a sample of more complicated structures, the US
Congress is a tricameral system (compound simple game), where the components are the
President (1 member), the House of Representatives (435 members) and the Senate (101
members) and a simple majority is required in each component to pass a motion1.

In the literature, and following [22], it is said that a mechanism is “decisive” whenever,
for each couple of complementary groups of agents, one and only one of them is able to
pass a motion2. All components of the US Congress as well as many national and regional
parliaments and town councils in more or less democratic countries are decisive in this sense
since the number n of agents is odd and the threshold is k = n+1

2 (the so–called straight
majority). In fact, a more precise and general notion of “decisiveness” exists that will be
reviewed below. Let us first consider a motivating example.

Example 1.1 (Adapted from [5]) A nine–member jury has to decide whether the accused
is guilty of a crime. The procedure is such that at least five members must cast a non–guilty
verdict for the man to be acquitted. Let us assume that the rule is legally modified in
such a way that only four members are needed for a non–guilty verdict. The defendant’s
possibilities of freedom have of course increased but... to what extent? The answer will
depend on the view held by each jury member. The details will be given in Example 3.2.

Based on a neutral probabilistic voting model for a proposal P against a given status
quo Q, a structural decisiveness index, equivalent to Coleman’s [7] “power of a collectivity to
act”, was introduced in [5]. It applies to any simple game and measures the formal, abstract
“agility” of the voting procedures represented by the game.

This index was generalized in [4] as follows. Additional information is taken into account
by means of an assessment vector α = (α1, α2, . . . , αn) ∈ [0, 1]n, where n is the number of
players. It is assumed to provide an independent probability αi of each player i to vote
for the proposal (and hence a probability 1 − αi to vote against or abstain). This gives

1We are disregarding here the provision for overriding the presidential right to veto.
2This property is essential whenever one (and only one) among two alternative motions must be chosen,

which is another setup where simple games apply.
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rise to a α–decisiveness index, which yields the probability of the proposal to be socially
accepted under these conditions. Alternatively, the α–decisiveness index may be viewed as
the probability of a random coalition to win when each player i has a probability αi to
belong.

Once more in order to establish concepts, one might conventionally assume that the
status quo is always of a conservative nature whereas the proposals are progressive3. In that
case an assessment value αi would be considered conservative if 0 ≤ αi < 1/2, neutral if
αi = 1/2, and progressive if 1/2 < αi ≤ 1.

In this paper we will restrict the analysis to decisive symmetric games (i.e. k–out–of–n
games with n odd and k = n+1

2 ) and assume that all players have a common inclination
to vote for the proposal (that is, αi = p for some p ∈ [0, 1] and all i). Although these are
strong restrictions, it seems obvious that this is a necessary first step (cf. Section 6 for a
further research program). Moreover, due to the continuity of the functions involved, the
results might well be extended to cases where the equality does not hold but α1, α2, . . . , αn

are close enough to each other (see also suggestion B in Section 6).
We will study the variation of the decisiveness of the game under two main hypotheses:

(i) the players’ common inclination p > 1/2 to vote for a proposal slightly increases; (ii) the
number of involved players increases. We will also compare the decisiveness of the game with
the common assessment p. The analysis done in this paper is relevant to decision making
situations in which the status quo may be altered by a new proposal that is submitted to
the collective decision. The knowledge of both n and p allows us to estimate the exact
probability of the proposal to be passed and thus estimating what could finally happen.
Our study has significance for statistical, forecast and marketing purposes. If someone is
interested in influencing the outcome then the knowledge of the decisiveness could help him
to decide whether to implement actions with the purpose of increasing or decreasing the
value of p to affect the collective decision in the desired sense.

Example 1.2 Let us assume that a mid-company wishes to change the current incentive
scheme for workers. Each worker has to choose between two different possibilities: either
adopting the new one (option 1) or keeping the current one (option 2). The option which
receives more votes will be adopted and abstention is counted for option 2. The owners of
the company, who are not indifferent to the two options, wish to influence the opinion of
the workers before they vote. With this purpose, the owners will present the issue at stake
from a viewpoint favorable at most to the company’s interests, option 1.

Of course, many more similar examples can be found where an influencing leader asks
the members of his organization to take a decision on some subject directly concerning
the organization as such. A conspicuous example is a government that wishes to call a
referendum on a topic of national interest like e.g. the possibility of joining (or leaving) an
international alliance or organization, a unilateral declaration of independence in the case of
a region with a strong nationalism, or any other question of this kind. In this case it is well
known the strong influence that mass media (press, TV, radio, internet...) can exert on the
public opinion in topics far from the daily life, but also the capability of any government,
in general, to press some of these media to presenting the issue at stake from a viewpoint
favorable at most to the government’s interests.

The voters’ assessment on the proposal, as well as the variation of this assessment with
the time, can be determined by means of opinion polls made by specialized data treatment
enterprises with a great deal of experience in this field. Also a forecast about abstention can
be obtained this way.

3Instead of the classical left–to–right axis, other ideological axes might be considered: for instance,
nationalism in certain regional parliaments (Catalonia, Basque Country, Northern Italy, Quebec...).

3



Therefore, by assuming that the arithmetic mean of this predisposition is measured by a
parameter p ∈ [0, 1], understood as the probability that a typical voter votes for option 1 in
the voting procedure, the successive opinion polls will provide the evolution of p along the
time before the voting and especially after each company’s action to promote its preferred
option.

Our results guarantee that, with this information in hand, the company will know when,
how much, and which way, efforts should be addressed to modify the value of p by means
of new interventions influencing the audience.

More precisely, let us assume that the predictable number of voting workers (we assume
that this number is odd) is n = 1, 001, option 1 will be achieved only if at least 50% of active
voters vote for, and that in a given moment the predisposition mean is e.g. p = 0.4915 or
p = 0.5020. Then, our model applies with k = 501. Our results will give, e.g., the value of
p that gives rise to a decisiveness of, say, 0.6, a “security level” in order to be almost sure
that option 1 will pass. Which would be this security level for different values of n? (For
details see Example 4.4).

The organization of the paper is as follows. After a short Section 2 on preliminaries
where we recall several basic notions, in Section 3 we introduce three functions: decisive-
ness, aggregate (difference) and enlargement (difference). They are analyzed in Section 4:
Theorem 4.1 establishes some mathematical properties of these functions, and their asymp-
totic behavior is described in Theorem 4.2. In Section 5 we extend some results to games
that are compositions of decisive symmetric games. The conclusions are stated in Section 6.
The proofs are outlined in the Appendix.

2 Preliminaries

A (monotonic) simple game is a pair (N,W ) where N = {1, 2, . . . , n} denotes a finite set
of players and W is a collection of coalitions (subsets of N) that satisfies the following
properties: (i) ∅ /∈ W ; (ii) if S ∈ W and S ⊂ T ⊆ N then T ∈ W (monotonicity). A
coalition S is winning if S ∈ W , and losing otherwise. A simple game (N,W ) is called
decisive whenever S ∈ W if, and only if, N\S /∈ W for each S ⊆ N .

A simple game (N,W ) is a weighted majority game if a quota q > 0 and weights
w1, w2, . . . , wn ≥ 0 exist such that S ∈ W if, and only if,

∑
i∈S wi ≥ q. We then write

(N,W ) ≡ [q;w1, w2, . . . , wn] and call to this a representation of (N,W ).
In particular, (N,W ) is a symmetric or k–out–of–n game4 if it admits a representation

of the form

(N,W ) ≡ [k;

n︷ ︸︸ ︷
1, . . . , 1]

for an integer k such that 1 ≤ k ≤ n. It readily follows that a symmetric game (N,W ) is
decisive if, and only if, n is odd and k = n+1

2 . Hence a decisive symmetric game is completely
determined by the quota k, so that later on we will merely refer to k, since n = 2k − 1.

Let (N,W ) be a simple game and α = (α1, α2, . . . , αn) ∈ [0, 1]n be an assessment vector.
The α–decisiveness of (N,W ) was defined in [4] as

δ(N,W,α) =
∑

S∈W

∏
i∈S

αi

∏
j∈N\S

(1− αj). (1)

4The equi–desirability was introduced in [16] as follows: players i, j ∈ N are equally desirable or indifferent
(as coalition partners) in (N, W ) whenever S ∪ {i} ∈ W if, and only if, S ∪ {j} ∈ W for each S ⊆ N\{i, j}.
Then, it is not difficult to check that a simple game (N, W ) is symmetric, in the sense that any two players
are equally desirable, if, and only if, it admits a k–out–of–n representation.
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Using the multilinear extension ([20], [19]) of game (N,W ), given by

f(x1, x2, . . . , xn) =
∑

S∈W

∏
i∈S

xi

∏
j∈N\S

(1− xj),

it follows that δ(N,W,α) = f(α1, α2, . . . , αn) for all (N,W ) and all α ∈ [0, 1]n. (Several
boundaries for the multilinear extension, and hence for the α–decisiveness, are proposed
in [11].)

By setting α = (1/2, 1/2, . . . , 1/2) we get the structural decisiveness5, defined in [5] as

δ(N,W ) =
|W |
2n

.

3 Decisiveness and related functions

We will study a particular case where (N,W ) is symmetric and α = (p, p, . . . , p) for some p ∈

[0, 1]. We will then consider the α–decisiveness of a symmetric game (N,W ) ≡ [k;

n︷ ︸︸ ︷
1, . . . , 1],

simply called decisiveness in the sequel and given, using Eq. (1), by

fn,k(p) =
n∑

i=k

(
n

i

)
pi(1− p)n−i for all p ∈ [0, 1]. (2)

It is not difficult to see that the decisiveness of a symmetric game is improved when the
number of players increases from n to n+1 while the quota k does not vary. However, when
passing from a k–out–of–n game to a (k+1)–out–of–(n+1) game, that is, when increasing
simultaneously the number n of players and the quota k, the opposite result is obtained, as
is shown in the next statement. For completeness, it also includes the case where the quota
increases from k to k + 1 and the number n of players remains unchanged.

Lemma 3.1 Let (N,W ) ≡ [k;

n︷ ︸︸ ︷
1, . . . , 1] be a symmetric game with decisiveness fn,k(p).

Then, for all p ∈ [0, 1]:

(a) fn+1,k(p)− fn,k(p) =
(

n
k−1

)
pk(1− p)n−k+1.

5In preparing the manuscript, we already realized that the terms “decisive” and “decisiveness” (or the
more general “α–decisiveness”) might cause confusion. Let us explain the reasons for keeping these terms.

On one hand, in the literature, and following a seminal work [22], a simple game (N, W ) is called proper
if S ∈ W implies N\S /∈ W , and improper otherwise. Independently of this, the game is called strong if
S /∈ W implies N\S ∈ W , and weak otherwise. These crossed partitions classify all simple games into four
classes, although e.g. in the subclass of weighted majority games no improper and weak game exists. The
proper and strong games are called decisive, and this is the word we have been using.

On the other hand, the decisiveness δ(N, W ) of a simple game, introduced and studied in [5], coincides with
the suggestion of a “power of a collectivity to act” made in [7]. However, “decisiveness” is shorter. A second
argument for choosing it is that this notion was widely generalized in [4] by introducing assessment vectors
α that give rise to the α–decisiveness concept used here. Of course, it would be much more cumbersome
using “α–power of a collectivity to act”.

In fact, there is a coherent reason to call “decisive” to the simple games that are simultaneously proper and
strong: within the subclass of proper games—the most useful in theory and practice—those that present
the highest structural decisiveness (δ(N, W ) = 1/2) are precisely the strong games. And, therefore, this
decisiveness degree characterizes the decisive games within the subclass of weighted majority games.

We have then decided to keep our terminology, but we hope that this (long) footnote will avoid any
confusion to the reader.
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(b) fn,k+1(p)− fn,k(p) = −
(
n
k

)
pk(1− p)n−k (for k < n).

(c) fn+1,k+1(p)− fn,k(p) = −
(
n
k

)
pk(1− p)n−k+1.

Example 3.2 (Example 1.1 revisited) Three simple cases will be considered here, as a
sample for many other additional options. We will apply Lemma 3.1(b).

(i) If the jury members are not inclined toward any particular verdict, that is, if a probability
of 1/2 to vote for acquittance is attached to each, then the defendant’s probability of getting
freedom changes from 0.5000 to 0.7461 when the decision rule demands four non–guilty votes
only: an increase of almost 50%. These values correspond to the structural decisiveness.

(ii) If the jury members are inclined toward a guilty verdict and a common probability of,
say, 0.4 to choose acquittance is attached to each, then the probability of getting freedom
changes from 0.2666 to 0.5174: an increase of 94%.

(iii) If the jury members are clearly inclined toward acquittance and a common probability
of 0.8 to cast a non–guilty verdict is attached to each, then the probability of getting freedom
changes from 0.9804 to 0.9969: about 1.68% more.

The values obtained in (ii) and (iii) correspond to other particular cases of the general
α–decisiveness. Although for any probability p ∈ (0, 1) the probability of getting freedom
increases when reducing the quota from 5 to 4, the absolute and relative differences are quite
different from one case to another.

The differences obtained in Lemma 3.1 do not show a uniform sign. From now on
we confine our analysis to decisive symmetric games, and begin by raising the following
question: does a decisive symmetric game with “many” players show always more (or always
less) decisiveness than another with “few” players? Intuitively, one might feel that a game
with many players should possess less decisiveness than another with few players, because
it seems more difficult to get an agreement (to form a winning coalition) in the former case
than in the latter.

However by using structural decisiveness (for which p = 1/2) this intuitive assumption is
proven wrong, since it yields 1/2 for all decisive games. In Lemma 3.3 we state the variation
of the decisiveness of a decisive symmetric game when passing from 2k− 1 to 2k + 1 players
and show that its sign depends on p. Notice that, according to Eq. (2), the decisiveness of
a k–out–of–(2k–1) game is given by

f2k−1,k(p) =
2k−1∑
i=k

(
2k − 1

i

)
pi(1− p)2k−1−i for all p ∈ [0, 1].

Lemma 3.3 If [k; 1, 1, . . . , 1] and [k+1; 1, 1, . . . , 1] are decisive symmetric games with 2k−1
and 2k + 1 players, respectively, then

f2k+1,k+1(p)− f2k−1,k(p) =
(

2k − 1
k

)
pk(1− p)k(2p− 1) for all p ∈ [0, 1].

Therefore it is clear that the decisiveness of the game with more players is greater if,
and only if, 1/2 < p < 1. In other words, the decisiveness of decisive symmetric games is
an increasing function of the number of players if p ∈ (1/2, 1), and a decreasing function if
p ∈ (0, 1/2).

In the sequel we will denote the decisiveness function f2k−1,k(p) simply as f2k−1(p).
Two more functions that will be analyzed are introduced below. The former compares the
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decisiveness of the game (a sort of “aggregate assessment”) with the assessment value p
common to all players. The latter describes the variation of decisiveness when the quota
increases by one unit and, correspondingly, the number of players is enlarged by two units.

Definition 3.4 The aggregate (difference) function is given by

G2k−1(p) = f2k−1(p)− p for all p ∈ [0, 1].

Definition 3.5 The enlargement (difference) function is given by

∆2k−1(p) = f2k+1(p)− f2k−1(p) for all p ∈ [0, 1].

Notice that, according to Lemma 3.3,

∆2k−1(p) =
(

2k − 1
k

)
pk(1− p)k(2p− 1) for all p ∈ [0, 1].

4 Main results

4.1 Behavior of the decisiveness, aggregate and enlargement func-
tions

We state here the basic properties of the decisiveness function f2k−1(p), the aggregate func-
tion G2k−1(p), and the enlargement function ∆2k−1(p).

Theorem 4.1 Let k ≥ 2.

Part A. The decisiveness function f2k−1(p) satisfies the following properties (see Fig. 1):

(A1) f2k−1(1− p) = 1− f2k−1(p) for all p ∈ [0, 1].

(A2) f2k−1(p) is an increasing function on [0, 1].

(A3) f2k−1(p) is convex on the interval [0, 1/2] and concave on [1/2, 1], so that its only
inflexion point is at p = 1/2 and its unique fixed points are p = 0, 1/2, 1.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Fig. 1 The graph of f2k−1(p)

Part B. The aggregate function G2k−1(p) satisfies the following properties (see Fig. 2):
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(B1) G2k−1(1− p) = −G2k−1(p) for all p ∈ [0, 1].

(B2) The only roots of G2k−1(p) are p = 0, 1/2, 1.

(B3) Let pM and pm be 1/2 ±
√

1− 4β/2, respectively, where β =
[
k
(
2k−1

k

)] 1
1−k

. Then
G2k−1(p) is an increasing function on [pm, pM ] and a decreasing function on each of
the portions [0, pm] and [pM , 1], and attains over [0, 1] its unique absolute maximum
at point p = pM and its unique absolute minimum at point p = pm.

(B4) G2k−1(p) is convex on [0, 1/2] and concave on [1/2, 1], with a unique inflexion point
at p = 1/2.

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

Fig. 2 The graph of G2k−1(p)

Part C. The enlargement function ∆2k−1(p) satisfies the following properties (see Fig. 3):

(C1) ∆2k−1(1− p) = −∆2k−1(p) for all p ∈ [0, 1].

(C2) The only roots of ∆2k−1(p) are p = 0, 1/2, 1.

(C3) Let p′M and p′m be 1/2 ± 1/2
√

2k + 1, respectively. Then ∆2k−1(p) is an increasing
function on [p′m, p′M ] and a decreasing function on each of the portions [0, p′m] and
[p′M , 1], and attains over [0, 1] its unique absolute maximum at point p = p′M and its
unique absolute minimum at point p = p′m.

0.2 0.4 0.6 0.8 1

-0.01

-0.005

0.005

0.01

Fig. 3 The graph of ∆2k−1(p)
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(C4) Let p2 and p1 be 1/2 ±
√

3/2
√

2k + 1, respectively. Then ∆2k−1(p) is convex on each
of the portions [p1, 1/2] and [p2, 1] and concave on each of the portions [0, p1] and
[1/2, p2], and its inflexion points are at p = p1, 1/2, p2.

Finally, at p = 1/2 there is a symmetry center for the graphs of f2k−1(p), G2k−1(p) and
∆2k−1(p).

4.2 Asymptotic behavior

Now we study the asymptotic behavior of the decisiveness and aggregate functions. As
will be seen, the sequences of continuous functions considered here admit pointwise limit.
However, a singularity at p = 1/2 prevents uniform convergence. It follows that games with
high decisiveness arise when the players’ common assessment p is above 1/2.

Theorem 4.2 (i) Let F (p) be the pointwise limit of the sequence {f2k−1(p)}k∈N. Then
(see Fig. 4)

F (p) =

 0 if p < 1/2,
1/2 if p = 1/2,
1 if p > 1/2.

0.25 0.5 0.75 1

0.5

0.75

1

Fig. 4 The graph of F (p)

(ii) Let g(p) be the pointwise limit of the sequence {G2k−1(p)}k∈N. Then (see Fig. 5)

g(p) =

 −p if p < 1/2,
0 if p = 1/2,
1− p if p > 1/2.
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0.25 0.5 0.75 1

-0.5

-0.25

0.25

0.5

0

Fig. 5 The graph of g(p)

Remark 4.3 If we define δ(p) as the pointwise limit of the sequence {∆2k−1(p)}k∈N then
by Theorem 4.2(i) it follows that δ ≡ 0. This explains why we did not mention this third
limit function at the beginning of this subsection.

4.3 Some comments

From Theorem 4.1 and Theorem 4.2 some conclusions can be derived. Part A of Theorem 4.1
states that f2k−1(p) is an increasing function and, as p = 1/2 is the unique inflexion point,
f ′2k−1(p)—the slope of the curve—attains its maximum value at p = 1/2. Thus, if initially
p = 1/2 is assumed but for some reason this players’ assessment is slightly increased, then
the game decisiveness passes from 1/2 to a considerably higher level (see Table 1).

Furthermore, Part (i) of Theorem 4.2 indicates that if the common assessment p is
improved from 1/2 then the game decisiveness tends to 1 whenever the number of players
increases. Notice that

lim
k→+∞

f ′2k−1(1/2) = lim
k→+∞

k

(
2k − 1

k

) (
1
4

)k−1

= +∞,

i.e. the slope of f2k−1(p) at p = 1/2 tends to +∞.

Table 1. Behavior of f2k−1(p) for p close to 1/2 and different values of k.

k f2k−1(0.55) f2k−1(0.6)

2 0.5748 0.6480

3 0.5931 0.6826

10 0.6710 0.8139

20 0.7357 0.8979

40 0.8143 0.9642

100 0.9216 0.9978

From the variation of G2k−1(p) and the fact that G2k−1(0) = G2k−1(1/2) = G2k−1(1) =
0, Part B of Theorem 4.1 states that the decisiveness of the game is greater than the players’
assessment if 1/2 < p < 1 and lower if 0 < p < 1/2 (see Table 2).

Table 2. Behavior of f2k−1(p) and G2k−1(p) for k = 10 and different values of p.
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p f2k−1(p) G2k−1(p)

0.3 0.0326 -0.2674

0.4 0.1861 -0.2139

0.5 0.5000 0.0000

0.6 0.8139 0.2139

0.7 0.9674 0.2674

The most appreciable difference between game decisiveness and the players’ assessment
is attained at pM . Moreover, as

lim
k→∞

[
k

(
2k − 1

k

)] 1
1−k

= 1/4,

pM tends to 1/2 when k is large and, according to Part (i) of Theorem 4.2, f2k−1(pM ) tends
to 1 and the aggregate function at this point tends to 1/2 (see Table 3 for values of k and
pM ).

Table 3. Maximum values of G2k−1(p) and corresponding value of decisiveness.

k pM f2k−1(pM ) G2k−1(pM )

2 0.7887 0.8849 0.0962

3 0.7597 0.9063 0.1467

4 0.7396 0.9194 0.1798

5 0.7245 0.9284 0.2039

20 0.6426 0.9664 0.3239

50 0.6018 0.9799 0.3781

60 0.5950 0.9819 0.3870

Finally, Part C of Theorem 4.1 says that, when the number of players increases, the
game decisiveness increases if, and only if, p > 1/2. Moreover, when k tends to infinity p′M
tends to 1/2 and, according to Part (i) of Theorem 4.2, the decisiveness of the game at this
point tends to 1 (see values in Table 4).

Table 4. Maximum values of ∆2k−1(p) and corresponding values of decisiveness.

k p′M f2k−1(p
′
M ) f2k+1(p

′
M ) ∆2k−1(p

′
M )

2 0.7236 0.8130 0.8667 0.0537

3 0.6890 0.8220 0.8592 0.0372

4 0.6666 0.8267 0.8551 0.0284

5 0.6507 0.8295 0.8526 0.0231

6 0.6387 0.8315 0.8509 0.0194

20 0.5781 0.8383 0.8443 0.0060

50 0.5493 0.8402 0.8425 0.0023

100 0.5327 0.8407 0.8419 0.0012

Theorem 4.2 gives an asymptotic result useful to easily estimate the decisiveness or
aggregate functions whenever the estimated value of p is known. However, in practice the
value of k is fixed and known, whereas p needs to be estimated and vary as a function of the
time before the election takes place. The anticipation of the allowable result in the election
is in some circumstances very valuable: to this end one may construct tables analogous to
our Tables 1, 2, 3 and 4 in order to make precise predictions on the decisiveness and the
aggregate function as a function of the estimated value p. This information constitutes the
knowledge basis of the DSS in order to forecast what could happen in the election. It is
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clear that, prior to the election, either parties or collectives supporting each decision will
act to improve the value of p in the desired sense.

To sum up, in order to get a high level of decisiveness in a large decisive symmetric game
it is extremely important that the players’ assessment remains above 1/2.

Example 4.4 (Example 1.2 revisited) In the next table we compute a “security level” to
pass option 1, i.e. the value of p such that f2k−1(p) = 0.6 for different values of k. Thus, we
can compare the different results obtained by companies of different sizes, e.g. between 101
and 1,001 workers. We observe that for n = 1, 001 workers a value of p of 0.50427 is enough
to almost “guarantee” that option 1 will be adopted, while for n = 101 a considerable greater
value of p is needed (0.51257). It is also relevant to note (see Table 5.) that as soon as k
increases the critical value of p decreases very slowly.

For government referendums or similar situations in multinational companies (with much
more than 1, 000 workers) this “security level” will be greater than 0, 5 but extremely close
to it, so that a reliable prediction greater than 0, 5 will guarantee the result of the voting in
the desired direction.

Table 5. Value of p when f2k−1(p) = 0.6 for different values of k.

k p

51 0.51257

101 0.50892

201 0.50632

301 0.50516

401 0.50447

501 0.50427

5 Composition of decisive symmetric games

Here we present an extension of the preceding results to the case where a game is made
up of several decisive symmetric games. We first state formally the procedure to obtain a
composition of m (≥ 2) symmetric component games by using a symmetric quotient game.
This composition is a particular case of the compound simple game notion introduced in [23].

Definition 5.1 Let (N,W ) be a game that admits a partition {N1, N2, . . . , Nm} of N and
let M = {1, 2, . . . ,m} and nj = |Nj | for each j ∈ M . Assume that integer numbers
k, k1, k2, . . . , km ≥ 1 exist, with k ≤ m and kj ≤ nj for each j ∈ M , in such a way that

W = {S ⊆ N : |IS | ≥ k},

where IS = {j ∈ M : |S ∩Nj | ≥ kj} for each S ⊆ N . We will say that (N,W ) is a k–out–
of–m compound game. This is the result of linking, by means of the k–out–of–m game in
M , the kj–out–of–nj component games defined in each Nj .

Fig. 6 illustrates this definition with a numerical example. Five decisive kj–out–of–nj

games are combined by means of a 3–out–of–5 quotient game, giving rise to a compound
game with n = 19 players. E.g., coalition S consisting of starred players is a winning
coalition in this game because the columns where it yields winning coalitions (component
games 1, 3 and 5) form a winning coalition in the quotient game.

12
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n = 19

M
k/m = 3/5

Fig. 6 A compound game

It is easy to see that the decisiveness of a compound game (N,W ) is given by

fk−out−of−m
n1,k1;...;nm,km

(p) =
∑

R⊆M :|R|≥k

∏
j∈R

fnj ,kj
(p)

∏
j∈M\R

[1− fnj ,kj
(p)].

Remark 5.2 (i) If, moreover, all component games are decisive then, according to the
notation used in Section 4, the decisiveness of (N,W ) is given by

fk−out−of−m
2k1−1,...,2km−1(p) =

∑
R⊆M :|R|≥k

∏
j∈R

f2kj−1(p)
∏

j∈M\R

[1− f2kj−1(p)].

(ii) The decisiveness of such a compound game (N,W ) can be calculated in terms of the
decisiveness of games studied in Section 4.

(iii) If k = m then

W = {S ⊆ N : |S ∩Nj | ≥ kj for all j = 1, 2, . . . ,m}

and we say that (N,W ) is a composition via unanimity of m decisive symmetric games

[kj ;

2kj−1︷ ︸︸ ︷
1, . . . , 1] (see [12]). In this case, the decisiveness is given by

fm−unanimity
2k1−1,...,2km−1(p) =

m∏
j=1

f2kj−1(p).

(iv) If k = 1 then
W = {S ⊆ N : |S ∩Nj | ≥ kj for some j}

and we say that (N,W ) is a composition via individualism of m decisive symmetric

games [kj ;

2kj−1︷ ︸︸ ︷
1, . . . , 1]: it is the dual game6 of the compound game obtained in (iii)

(see [12]). In this case, the decisiveness is given by

fm−individualism
2k1−1,...,2km−1 (p) = 1−

m∏
j=1

[
1− f2kj−1(p)

]
.

6Following [22], the dual game (N, W ∗) of a simple game (N, W ) is defined by W ∗ = {S ⊆ N : N\S /∈ W}.

13



Let us finally assume that the m decisive symmetric games have the same number of
players, i.e. kj = k for j = 1, . . . ,m. Tables 5 and 6 give the decisiveness of the compound
game via unanimity and individualism, respectively, for p = 0.55 and different values of k
and m.

Table 6. Behavior of fm−unanimity
2k−1,...,2k−1 (0.55) for different values of k and m.

k f2k−1(0.55) f2−unanimity
2k−1,...,2k−1 (0.55) f4−unanimity

2k−1,...,2k−1 (0.55)

2 0.5748 0.3303 0.1091

3 0.5931 0.3517 0.1238

10 0.6710 0.4503 0.2028

20 0.7357 0.5413 0.2930

40 0.8143 0.6631 0.4397

100 0.9216 0.8493 0.7214

Table 7. Behavior of fm−individualism
2k−1,...,2k−1 (0.55) for different values of k and m.

k f2k−1(0.55) f2−individualism
2k−1,...,2k−1 (0.55) f4−individualism

2k−1,...,2k−1 (0.55)

2 0.5748 0.8192 0.9673

3 0.5931 0.8344 0.9726

10 0.6710 0.8918 0.9883

20 0.7357 0.9301 0.9951

40 0.8143 0.9655 0.9988

100 0.9216 0.9936 0.9999

Remark 5.3 (i) Similarly as we did in Section 4, we may consider the sequence

{fk−out−of−m
2k1−1,...,2km−1(p)}(k1,...,km)∈Nm

and its pointwise limit F k−out−of−m(p) when all kj tend to infinity. By applying
Theorem 4.2(i) we obtain

F k−out−of−m(p) =


0 if p < 1/2,

2−m

m∑
r=k

(
m

r

)
if p = 1/2,

1 if p > 1/2.

Notice that if m = 2k − 1, that is, if the quotient game is decisive, it follows that
f

k−out−of−(2k−1)
2k1−1,...,2km−1 (1/2) = 1/2 and we obtain

F k−out−of−(2k−1)(p) =

 0 if p < 1/2,
1/2 if p = 1/2,
1 if p > 1/2.

(ii) In particular, if we consider the sequences

{fm−unanimity
2k1−1,...,2km−1(p)}(k1,...,km)∈Nm and {fm−individualism

2k1−1,...,2km−1 (p)}(k1,...,km)∈Nm

their pointwise limits are given by

Fm−unanimity(p) =

 0 if p < 1/2,
(1/2)m if p = 1/2,
1 if p > 1/2,
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and

Fm−individualism(p) =

 0 if p < 1/2,
1− (1/2)m if p = 1/2,
1 if p > 1/2.

Taking into account the expressions of these preceding limit functions, we can deduce
that the asymptotic properties stated in Section 4 for symmetric decisive games also hold for
the models studied in this section. As a consequence of this asymptotic behavior it follows
that, for the four kind of models analyzed in the paper, games with a high decisiveness arise
whenever the players’ common assessment p remains above 1/2. On the contrary, if this
common assessment fails to reach a level greater than 1/2 then game decisiveness will be
greatly damaged. However, in practice, as we have shown in Section 4, the value of p is not
known and it needs to be estimated. In this situation we can also construct tables in order
to forecast what could happen in an electoral process.

We conclude this section by comparing the decisiveness of a decisive symmetric game
f2k−1(p) with the decisiveness f

r−out−of−(2r−1)
2k1−1,2k2−1,...,2km−1(p) (where m = 2r − 1), of a r–out–of–

(2r − 1) compound game where all component games are also decisive, provided that the
overall number of votes is the same in both games, that is,

∑m
i=1(2ki − 1) = 2k − 1.

Example 5.4 (i) Let us consider the 3–out–of–5 compound game introduced at the be-
ginning of this section. We will compare its decisiveness f3−out−of−5

5,5,3,5,1 (p) with the
decisiveness f19(p) of the 10–out–of–19 decisive symmetric game. Notice that both
games have 19 players, but in the first the players are not all symmetric.

We obtain
f19(p)− f3−out−of−5

5,5,3,5,1 (p) = p6(1− p)6h(p)(2p− 1)

where

h(p) = −23014p6 + 69042p5 − 63903p4 + 12736p3 + 4314p2 + 825p + 90

is a positive function in [0, 1]. Then

f19(p)− f3−out−of−5
5,5,3,5,1 (p) > 0 if 1/2 < p < 1 and

f19(p)− f3−out−of−5
5,5,3,5,1 (p) < 0 if 0 < p < 1/2.

From this result we observe that a slight bias in favor of breaking the status quo
(p ≈ 1/2 but p > 1/2) has a stronger effect for the weighted majority game than for
the compound game, while the effect is the contrary if a slight bias against breaking
the status quo (p ≈ 1/2 but p < 1/2) exists.

As the next two items show, this is not an isolated case where this property holds.

(ii) We compare now the decisiveness of a 5–out–of–9 game and a 2–out–of–3 compound
game where the three component games are also 2–out–of–3 games.

It is not difficult to verify that

f9(p)− f2−out−of−3
3,3,3 (p) = 27p4(1− p)4(2p− 1),

so that
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f9(p)− f2−out−of−3
3,3,3 (p) > 0 if 1/2 < p < 1 and

f9(p)− f2−out−of−3
3,3,3 (p) < 0 if 0 < p < 1/2.

The same property as in (i) arises.

(iii) Finally, we compare the decisiveness of a 8–out–of–15 game and a 3–out–of–5 com-
pound game where the five component games are 2–out–of–3 games.

Here
f15(p)− f3−out−of−5

3,3,3,3,3 (p) = 270p6(1− p)6(−6p2 + 6p + 1)(2p− 1),

so that

f15(p)− f3−out−of−5
3,3,3,3,3 (p) > 0 if 1/2 < p < 1 and

f15(p)− f3−out−of−5
3,3,3,3,3 (p) < 0 if 0 < p < 1/2.

The property arises again.

These three instances suggest the following conjecture, which would be interesting to
verify.

Conjecture: If the decisiveness f2k−1(p) is compared with f
r−out−of−(2r−1)
2k1−1,2k2−1,...,2km−1(p), where

m = 2r − 1 and
∑m

i=1(2ki − 1) = 2k − 1, we contend that

f2k−1(p)− f
r−out−of−(2r−1)
2k1−1,2k2−1,...,2km−1(p) = h(p)(2p− 1),

where h(p) stands for a positive polynomial function on (0, 1), symmetric with respect to
point p = 1/2 and attaining its unique absolute maximum on [0, 1] at point 1/2.

From this, we could deduce that

f2k−1(p)− f
r−out−of−(2r−1)
2k1−1,2k2−1,...,2km−1(p) > 0 if 1/2 < p < 1 and

f2k−1(p)− f
r−out−of−(2r−1)
2k1−1,2k2−1,...,2km−1(p) < 0 if 0 < p < 1/2.

6 Conclusions

In this paper we have studied decisive symmetric games and extended our results partially
to compositions of them by means of a quotient k–out–of–m game not necessarily decisive.
We have shown that, when the common assessment of the players is greater than 1/2, the
game decisiveness increases quickly, and also that it tends to 1 when the number of players
increases, thus emphasizing the interest of keeping the player assessment at this higher level.
Several additional considerations should also be pointed out.

(a) If the players’ assessments differ, high game decisiveness still arises when maintaining
above 1/2 the lowest individual assessment. This follows from the results obtained
in the paper since the α–decisiveness f(α1, α2, . . . , αn) is a monotonic function with
respect to each variable.
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(b) The main results obtained here are asymptotic, generating interest in the convergence
speed. Tables 1, 5 and 6 illustrate some particular cases for several values of k and
p = 0.55. For instance, the basic model, given by f2k−1(p), requires at least 199 players
to achieve a level of decisiveness above 0.92, but if p = 0.6 instead of p = 0.55 then
the enlargement is substantial (see Table 1). By considering a composition of a few
games via unanimity, the convergence to 1 becomes slower (see Table 6). However,
when considering a composition of a few games via individualism, the convergence to
1 becomes quicker (see Table 7).

(c) In general, given an arbitrary sequence of decisive games, it is not true that its asymp-
totic behavior is the same as function F (p) obtained in Theorem 4.1. For instance,
for each integer n ≥ 1 one may consider a game (N,W ) with n players in which the
winning coalitions are those that contain a particular player i, so that all games are
dictatorships of player i. These games are decisive and their decisiveness is given by
fn(p) = p for all n ∈ N, where p is the players’ common assessment, but it is clear
that its pointwise limit is F (p) = p.

Further research should be focussed on suggestions A and B below. However, considering
more general classes of games and/or more general assessment vectors would most probably
result in a loss of quality with respect to the regular results found here.

A. Symmetric but not necessarily decisive simple games could be considered. Both cases
k < n+1

2 and k > n+1
2 deserve interest. Also general weighted majority games and

even general simple games could be analyzed.

B. It would be interesting to work with assessment vectors whose components were defined
by two parameters p 6= q such that 0 ≤ q ≤ 1/2 ≤ p ≤ 1. Or even by three parameters
p, q, r such that 0 ≤ q < r = 1/2 < p ≤ 1. Finally, an attempt could be made to deal
with assessment vectors α = (α1, α2, . . . , αn) free from any restriction.
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Appendix: proofs

Lemma 3.1. Using Eq. (2), (b) is trivial and (a) and (c) are straightforward consequences
of the relationship

(
n+1

k

)
=

(
n
k

)
+

(
n

k−1

)
for all n, k ∈ N such that 1 ≤ k ≤ n. �

Lemma 3.3. The result follows by applying Lemma 3.1 to the decomposition

f2k+1,k+1(p)− f2k−1,k(p) = [f2k+1,k+1(p)− f2k,k(p)]+

[f2k,k(p)− f2k,k+1(p)] + [f2k,k+1(p)− f2k−1,k(p)]. �

Theorem 4.1. Part A. Let g(p) = f2k−1(p) + f2k−1(1− p). Then g(0) = 1. Moreover, as

f ′2k−1(p) = k

(
2k − 1

k

)
pk−1(1− p)k−1,

it follows that g′(p) = 0 for all p ∈ [0, 1]. Thus, g(p) is constant and its value is 1. This
proves (A1).

As f ′2k−1(p) > 0 whenever 0 < p < 1, it follows that f2k−1(p) increases on [0, 1]. This
proves (A2).

Finally, (A3) easily follows, for k > 2, from the expression of the second derivative

f ′′2k−1(p) = k(k − 1)
(

2k − 1
k

)
pk−2(1− p)k−2(1− 2p).

Indeed, we then have f ′′2k−1(p) > 0 if 0 < p < 1/2, f ′′2k−1(p) < 0 if 1/2 < p < 1, and hence
f ′′2k−1(p) = 0 just for p = 0, 1/2, 1, which implies that the unique fixed points of f2k−1(p)
are also p = 0, 1/2, 1. For k = 2, f ′′2k−1(p) vanishes only at p = 1/2, but the fixed points
directly follow from f2k−1(p) = p.

Part B. Statements (B1) and (B2) respectively follow from (A1) and (A2). As to (B3),
first we have

G′
2k−1(p) = k

(
2k − 1

k

)
pk−1(1− p)k−1 − 1.

Setting β = p(1−p), equation G′
2k−1(p) = 0 gives β =

[
k
(
2k−1

k

)] 1
1−k

. The roots of p2−p+β =

0 are therefore 1/2 ±
√

1− 4β/2 (and are denoted as pM and pm, respectively). Using
Bolzano’s theorem we check that these roots must belong to the interval (0, 1), given that
G′

2k−1(p) is a continuous function with

G′
2k−1(0) < 0, G′

2k−1(1) < 0 and G′
2k−1(1/2) > 0.

The two former inequalities are clear. For the third, we have to check that G′(1/2) =

k
(
2k−1

k

) 1
4k−1

− 1 is positive. If we set rk =
(2k − 1)!
[(k − 1)!]2

, the relation rk > 4k−1 is easily

derived by induction, as r2 > 4 and rk+1 = 2(2k+1)
k rk > 4k follows from the induction

assumption rk > 4k−1.

In addition, the sign of G′
2k−1(p) establishes the intervals where G2k−1(p) increases or

decreases and, jointly with G2k−1(0) = 0 = G2k−1(1), confirms that the unique absolute
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maximum and minimum of G2k−1(p) on [0, 1] are attained at points pM and pm, respectively.
Finally, (B4) follows from (A3) since

G′′
2k−1(p) = f ′′2k−1(p) = k(k − 1)

(
2k − 1

k

)
pk−2(1− p)k−2(1− 2p).

Part C. Statement (C1) is straightforward to verify. For (C2), it is clear that p = 0, 1/2, 1
are roots of ∆2k−1(p). Uniqueness follows from the piecewise monotonicity of ∆2k−1(p),
stated in (C3).

For (C3), from

∆′
2k−1(p) = −

(
2k − 1

k

)
pk−1(1− p)k−1

[
(4k + 2)p2 − (4k + 2)p + k

]
it follows that the only roots of ∆′

2k−1(p) = 0 in the interval (0, 1) are 1/2 ± 1/2
√

2k + 1
(denoted as p′M and p′m, respectively). The remains of this proof follow the same guidelines
as those of (B3). Finally, for (C4) we get

∆′′
2k−1(p) = −

(
2k−1

k

)
pk−2(1− p)k−2

[
−(8k2 + 4k)p3 + (12k2 + 6k)p2 − 6k2p + k2 − k

]
=

=
(
2k−1

k

)
pk−2(1− p)k−2(2p− 1)

[
(4k2 + 2k)p2 − (4k2 + 2k)p + k2 − k

]
.

The roots of ∆′′
2k−1(p) = 0 in (0, 1) are 1/2 and 1/2±

√
3/2

√
2k + 1 (denoted as p2 and

p1, respectively). The remains of this proof are analogous to those of (B4).

The fact that there is a symmetry center for all graphs at p = 1/2 derives from (A1), (B1)
and (C1). �

Theorem 4.2. Part (i) Let p < 1/2. Then, taking into account that

pk(1− p)k−1 > pk+1(1− p)k−2 > · · · > p2k−1

and
2k−1∑
i=k

(
2k − 1

i

)
=

1
2

2k−1∑
i=0

(
2k − 1

i

)
= 4k−1, we obtain

0 ≤ f2k−1(p) =
2k−1∑
i=k

(
2k − 1

i

)
pi(1− p)2k−1−i

≤ pk(1− p)k−1

2k−1∑
i=k

(
2k − 1

i

)
= pk(1− p)k−14k−1.

The sequence on the right tends to 0 because p(1− p) < 1/4 for p < 1/2, so that F (p) = 0
whenever p < 1/2. As 1/2 is a fixed point for each f2k−1 (see (A2) in Theorem 4.1),
F (1/2) = 1/2. Finally, if p > 1/2 then F (p) = 1 because of the symmetry property (A1) for
each f2k−1 with k ≥ 2 (Theorem 4.1).

Part (ii) follows from applying Part (i) to the aggregate function. �

Theorem 4.2. Alternative Proof. Function f2k−1(p) = 1− Prob(X < k), where X is a
binomial random variable with n = 2k − 1 trials and probability of success equal to p. We
may apply the Chernoff bound to get

Prob(X < k) < exp(−2
(np− k)2

n
) whenever k ≤ np.
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Taking p > 1/2, we get that Prob(X < k) tends to 0 when k goes to ∞ and hence F (p) = 1.
If p < 1/2 then F (p) = 0 because of the symmetry property (A1) for each f2k−1 with k ≥ 2.
Finally, as 1/2 is a fixed point for each f2k−1 (see (A2) in Theorem 4.1), F (1/2) = 1/2. �
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