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Abstract It is well-known that sediment composition strongly depends on grain size.
A number of studies have tried to quantify this relationship focusing on the sand frac-
tion, but only very limited data exists covering wider grain size ranges. Geologists
have a clear conceptual model of the relation between grain size and sediment petro-
grapic composition, typically displayed in evolution diagrams. We chose a classical
model covering grain sizes from fine gravel to clay, and distinguishing five types of
grains (rock fragments, poly- and mono crystalline quartz, feldspar and mica/clay).
A compositional linear process is fitted here to a digitized version of this model, by
(i) applying classical regression to the set of all pairwise log-ratios of the 5-part com-
position against grain size, and (ii) looking for the compositions that best approximate
the set of estimated parameters, one acting as slope and one as intercept. The method
is useful even in the presence of several missing values. The linear fit suggests that
the relative influence of the processes controlling the relationship between grain size
and sediment composition is constant along most of the grain size spectrum.

Keywords Censored data · Compositional Data Analysis · Moore–Penrose
generalized inverse · Sedimentary petrography

1 Introduction

It is common knowledge that the apparent composition (both geochemical and pet-
rographic) of a sediment strongly depends on its grain size (e.g., Pettijohn 1957).
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Several studies have tried to characterize or quantify that influence, and to distin-
guish it from other factors that control sediment composition (e.g., Johnsson 1993),
such as bedrock geology in the source area (Nesbitt and Young 1984; Grantham and
Velbel 1988), mixing of material from different sources (Arribas and Tortosa 2003;
Palomares and Arribas 1993) and alteration processes during weathering and trans-
port (Nesbitt and Markovics 1997; Zhang et al. 2002). So far, most studies that aimed
to shed light on the quantitative relations between grain size and sediment com-
position have a low grain size resolution (e.g., in sand-silt-clay, Lim et al. 2006),
placed their attention on the sand domain only (e.g., Grantham and Velbel 1988;
Nesbitt and Young 1996; Arribas and Tortosa 2003; Solano-Acosta and Dutta 2005;
Kiminami and Fujii 2007), and/or use debatable statistical techniques that ignore the
compositional nature of the data (e.g., Zhang et al. 2002; Chandrajith et al. 2001).
Whitmore et al. (2004) presented both chemical and petrographic data with a higher
grain-size resolution (−1 to 4 phi-grade, in 1 phi step) from modern sediments from
rivers of Papua New Guinea; however, the fine-grained fractions (silt and clay) are
not differentiated. Their main conclusions are that (i) the variation with grain size is
much greater than variation with time or between different localities, and (ii) the most
important variation with decreasing grain size is decreasing abundance of rock frag-
ments (a conclusion reached by almost all the authors cited previously). This brief
literature survey is by no means exhaustive, but nevertheless it is representative. The
results of all these papers cannot be used for a global model of sediment evolution
with grain size because: (i) only the sand fraction is analyzed in detail, and (ii) al-
most all study a selected area with specific geologic, climatic and geomorphologic
characteristics that cannot account for global-scale Earth surface variations.

With the aim of providing such a general model, Blatt et al. (1972) published a plot
on “the probable relationship between grain size and detrital fragment composition,
based on the limited data currently available” (Fig. 1). The plot covers a grain size
spectrum ranging from fine gravel to clay, and gives the composition on five petro-
graphic grain types: rock fragments, poly-crystalline quartz, mono-crystalline quartz,
feldspar, and mica. The latter includes micas s.s. and clay minerals. Grain size is
given in φ scale, corresponding to the negative logarithm to the basis 2 of the grain
diameter in mm. With this figure, Blatt et al. (1972) tentatively summarized a series
of processes and controlling factors:

• the typical crystal size of each mineral or mineral aggregate (e.g., monocrystalline
quartz and feldspar crystals are smaller than rock fragments, and clay minerals are
smaller than quartz and feldspar)

• the global crustal abundance of specific minerals and mineral associations (e.g.,
pure quartz rocks are less common than polymineralic rocks; thus, at the coarser
sizes, unspecified rock fragments are more abundant than polycrystalline quartz)

• the effect of comminution, which may produce from a rock fragment grain smaller
grains of any type; from a grain of a given “mineral class” (Qm, F and M) smaller
grains of the same class; and from a grain of polycrystalline quartz either poly- or
mono-crystalline quartz

• the effect of chemical alteration, fundamentally generating clay minerals (M class)
from feldspar (or from rock fragments)
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Fig. 1 Data set digitized from the original figure published by Blatt et al. (1972, p. 301). Legend:
(Rf)—rock fragments, (Qp)—poly-crystalline quartz, (Qm)—mono-crystalline quartz, (F )—feldspar,
and (M)—mica including clay minerals. The grain-size scale included below is modified from Went-
worth (1922, cited by Pettijohn 1957); abbreviations mean: (vc)—very coarse, (c)—coarse, (m)—medium,
(f)—fine and (vf)—very fine

• the balanced effect of mineral dissolution and precipitation, eliminating or adding
minerals to/from the sediment body as it is transported from source to sink, and
during accumulation in the sedimentary basin.

Note that no information on the absolute mass of each grain size and type is available.
This implies that these processes and relationships cannot be written in terms of mass
balances, and one cannot be sure whether mass is added or subtracted from the sed-
iment when “evolving” from coarser to finer grain fractions. For example, the rapid
increase of M content on the fine-grained end of the plot could be explained as the
precipitation of authigenic clay minerals (adding M); the accumulation of residues of
dissolution of all other minerals (eliminating mostly F , but even Q at the finer end
of the plot); the disaggregation and comminution of mica crystals from rock frag-
ments, and alteration of feldspar (transfer Rf,F → M); or any combination of these
processes.

Table 1 shows a digitalization at regular intervals of the original plot, that will be
used here as data set. Our goal is to fit a model to this data, by means of regression,
and interpret the results according to the considerations given above. It is evident
that a raw linear fit will utterly fail, as the curves present s-shapes, and some have
a maximum. Thus, one would need at least two lines to (poorly) represent them.



872 Math Geosci (2009) 41: 869–886

Table 1 Data set based on a
digitalization of the Blatt et al.
(1972) plot. Note that no effort
has been made to keep the total
sum to 100%. This will be done
in the subsequent analysis.
Empty cells correspond to very
small values, that should be
considered zero from a practical
point of view

φ Rf Qp Qm F M Sum

−3 70 30 100

−2 67 33 100

−1 60 35 5 1 101

0 45 23 29 3 100

1 27 14 51 8 100

2 16 5 67 12 100

3 9 2 79 12 102

4 6 87 9 102

5 3 90 6 1 100

6 1 90 4 5 100

7 71 2.5 26 99.5

8 24 1 75 100

9 5 95 100

10 1 100 101

Moreover, the data indeed form a composition (with positive parts and constant sum
for each possible φ value), and its relative nature has already been pointed out. Thus,
it seems more reasonable to follow the log-ratio transformation approach of Aitchison
(1986), which has already been successfully applied to sediment evolution modeling
(von Eynatten 2004; Noda 2005; Buccianti et al. 2006) and can accommodate all
relative information as a linear process.

An early application of regression to compositional data was presented by Daunis-
i-Estadella et al. (2002). However, the data set analyzed here has lots of small values,
most of them zero from a practical point of view. The presence of zeroes has been
regarded as an almost intractable problem of compositional analysis based on log-
ratios. The typical strategy is to impute the zero value by some small quantity, usually
a proportion of the detection limit (Aitchison 1986; Martín-Fernández et al. 2000;
Martín-Fernández 2001). Recently, van den Boogaart et al. (2006) proposed an al-
ternative approach based on working with the observed subcompositions. Following
this idea, a secondary goal of this contribution is to provide a sensible analysis within
the log-ratio framework for the kind of regression problems where the response is a
compositional vector with rounded zeroes.

2 Notation and Revision of Basic Concepts

2.1 The Algebraic-Geometric Structure of the Simplex

Denote a D-part composition as a row vector x = [x1, . . . , xD], and its sample space
as S D , the D-part simplex. According to Billheimer et al. (2001) and Pawlowsky-
Glahn and Egozcue (2001), this set can be given an Euclidean space structure with
the following operations. For x,y ∈ S D compositions, and α ∈ R a real value,

• the Abelian group operation, perturbation, is defined as x⊕y = C[x1y1, . . . , xDyD]
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• the scalar multiplication, powering, is defined as α � x = C[xα
1 , . . . , xα

D]
• and the scalar or inner product, is defined as

〈x,y〉A =
D∑

i=1

clri (x) · clri (y), (1)

where

clri (x) = ln
xi

D
√

x1 · · ·xD

(2)

denotes the ith component of the centered log-ratio transformation and the closure
operation C[·] closes its argument to total unit sum (Aitchison 1986, 2002). The scalar
product (1) has as associated distance

d2
A(x,y) = 1

D

∑

i<j

(
ln

xi

xj

− ln
yi

yj

)2

, (3)

which has the linearity properties of an Euclidean distance, i.e., it is translation in-
variant, dA(x ⊕ z,y ⊕ z) = dA(x,y), and scalable, d2

A(λ � x, λ � y) = λ2d2
A(x,y)

(Aitchison 1997). Moreover, it is subcompositionally dominant, i.e., the distance be-
tween two vectors measured in a subcomposition is always equal or smaller than the
distance measured on the full composition.

2.2 The Compositional Linear Trend

To express a compositional response as a (linear) function of a real variable in the
scope of this geometric structure one can write

z = b0 ⊕ x � b1. (4)

Here, b0 = [b01, . . . , b0D] plays the role of an intercept, and b1 = [b11, . . . , b1D]
is a slope. Both vectors are compositions in the same simplex as Z. Rewriting the
compositional vectors in terms of their components, such a trend becomes

[z1, . . . , zD] = C
[
b01 · eβ1x, . . . , b0D · eβDx

]
,

with βi = log(b1i ). This expression can be interpreted as D non-interacting expo-
nential decay/growth processes of rate βi where no mass transfer occurs between
or within the parts (Egozcue and Pawlowsky-Glahn 2006). An important property
of this kind of linear processes is that the decay/growth rate of one part against
the decay/growth rate of another part is constant along the explanatory variable x

(von Eynatten et al. 2003).

2.3 Missing Values and Zeros in Compositional Data

Missing values in multivariate analysis can be assigned to several classes, according
to the mechanism that generated them. The essential point is whether missing a value
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depends on the observed variables and/or on the missing variable itself. In the present
case, we distinguish the following cases (Rubin 1976; Murray 1979), missing-at-
random values, where missing a value depends on the observed variables, but does
not depend on the missed value itself, and truncated values, from which we know that
they are below or above a threshold, but do not know the actual value (also known
as censored values). They are a kind of not-missed at random, as the fact of missing
a value depends on the value itself. Replacing by a central value would in this case
ignore the extra information on the threshold, thus introducing some bias.

As the compositional operations given before are based on logarithms (equa-
tions (1)–(3)), zero values add further complexity to the analysis of a compositional
data set. Two kinds of zeroes might appear. Rounded zeros, or values below the in-
strumental detection limit, corresponding to the truncated values of classical analysis.
The classical strategy in this case is to replace the zero value by a suitable small quan-
tity, e.g., 2/3 of the detection limit of the zero variable (Martín-Fernández et al. 2000;
Martín-Fernández 2001). A variation on that idea uses an EM algorithm to replace
each rounded zero by a randomly-generated value, conditional on the non-zero parts
and the detection limit (Palarea-Albaladejo et al. 2007). The second kind of zeros are
structural zeros, values which are actually zero due to a physical process or limitation
(e.g., chemical incompatibility of quartz and feldspathoids: if one is present, the other
must have a concentration of zero). This is not a missing value, and in this case, the
recommended treatment is to split the sample in two populations, according to that
variable with zeros (Aitchison 1986).

Following a different line, van den Boogaart et al. (2006) put forward an approach
for the estimation of the mean and variance of a compositional data set with missing
values, suitable to incorporate a limited amount of zeros of any kind. The idea is that
each datum contributes only to the determination of these statistics in the observed
subcomposition. For instance (see Table 1), the datum at φ = 4 would only contribute
to the subcomposition [Rf,Qm,F ]. This paper will follow a similar approach, each
datum will contribute to those pairwise log-ratios where both parts are observed.
Then, one can distinguish three situations:

• If both parts are observed, this gives rise to an “observed” log-ratio, a datum, e.g.,
for φ = 4, all Rf/F = 6/9, Rf/Qm = 6/87, Qm/F = 87/9, and their inverse ratios
are observed data.

• If only one of both parts is observed and the other is below the detection limit,
one can still say something about the log-ratio: it is a censored value, e.g., with
Qm = 87%, if the detection limit for Qp (not observed) is taken as 1%, we can say
that ln(Qp/Qm) must be below ln(0.01/0.87) in φ = 4.

• If both parts are not observed (either below the detection limit or missing-at-
random), one could actually have any possible value for the log-ratio. The ratio
is thus behaving quite like a missing-at-random value of conventional multivariate
analysis, e.g., knowing the detection limits of Qp and M , say n% and d%, we can
say that the true non-observed values will respectively be α · n% and β · d% with
arbitrary values α,β in (0,1), but the log-ratio ln(α ·n/β · d) = ln(α/β)+ ln(n/d)

can take any value, as ln(α/β) freely varies between −∞ and +∞ and ln(n/d) has
a fixed value (in our case, it is 0, as n = d = 0.01). Thus, in the absence of infor-
mation about the probability law of the composition, the log-ratio of two rounded
zeroes is a missing-at-random value.
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3 Regression Analysis for Compositions

3.1 The Fully-Observed Case

In compositional regression, the goal is to predict a compositional random vector Z
as a (linear) function of a real variable. Taking (4) and adding the residuals εn =
[εn1, . . . , εnD], the linear regression model becomes

zn = b0 ⊕ xn � b1 ⊕ εn.

Following Daunis-i-Estadella et al. (2002), least-squares estimates of the composi-
tional parameters are obtained minimizing the expected squared Aitchison distance
(3) between the observations zn and the predictions ẑn = b0 ⊕ xn � b1,

L̂ = 1

D

D−1∑

i=1

D∑

j>i

[
1

N

N∑

n=1

(
ln

zni

znj

− ln
b0i

b0j

− xn · ln
b1i

b1j

)2
]

= 1

D

D−1∑

i=1

D∑

j>i

[
1

N

N∑

n=1

(yn(ij) − β0(ij) − xn · β1(ij))
2

]
, (5)

where yn(ij) = ln(zni/znj ), β0(ij) = ln(b0i/b0j ) and β1(ij) = ln(b1i/b1j ). From here
on, the pair (ij) ≡ k behaves like a single index from 1 to K = D(D − 1)/2, running
along all the pairs (i, j) such that 1 ≤ i < j ≤ D. Being equivalent, we use either the
notation k or (ij).

Given that (5) is a sum of positive terms of the form

L̂k =
∑

n

(ynk − β0k − xn · β1k)
2,

Daunis-i-Estadella et al. (2002) suggest to minimize the empirical L̂ by minimizing
each L̂k , i.e., to obtain estimates β̂0k and β̂1k by using standard regression for each
L̂k , and retrieve from these estimates compatible values of b̂0 and b̂1. The authors
state that the same solution is obtained by working just with the set of D − 1 log-
ratios taking j = D, with less computational effort and no need of special software.
But for the case presented in this contribution, it is instrumental to show when these
compatible values exist, and how to obtain them.

Denote with � a matrix of D × K elements, where the columns give all possible
pairwise differences. For instance, in the case study this (5 × 10)-element matrix is

� =

⎛

⎜⎜⎜⎝

1 1 1 1 0 0 0 0 0 0
−1 0 0 0 1 1 1 0 0 0
0 −1 0 0 −1 0 0 1 1 0
0 0 −1 0 0 −1 0 −1 0 1
0 0 0 −1 0 0 −1 0 −1 −1

⎞

⎟⎟⎟⎠ . (6)

The Moore–Penrose generalized inverse of �, denoted as �−, is easily shown to be

�− = 1

D
�t . (7)
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The appendix contains a proof of this equality, and a brief summary of those proper-
ties of the Moore–Penrose inverse most useful for this contribution. These two matri-
ces allow us to relate the compositions and their set of K log-ratios, through

yn = ln zn · � = clr(zn) · �,

zn = C
(
exp

(
yn · �−)) = clr−1(yn · �−)

.

This inversion holds exactly, because � and �− are linear transformations with
rank D − 1, the dimension of S D .

Finally, regarding the regression parameters, if all log-ratios are observed, the set
of estimates {β̂0(ij), β̂1(ij)} are compatible with two compositions b̂0 and b̂1, through

βa = ln ba · � = clr(ba) · �,

ba = C
(
exp

(
βa · �−)) = clr−1(βa · �−)

,
(8)

for a = 0 or a = 1.

Sketch of a proof: If one stacks the two vectors b̂0 and b̂1 together in a 2 × D

matrix B, and defines the N × 2 matrix X containing a column of N ones and a col-
umn with all observed values of the predictand variable x, one can compute clr(B) =
(Xt · X)−1 · X−1 · [clr(Z)]. The same can be done ordering the estimates {β̂a(ij)} in a
2 × K matrix β , which can be estimated as β = (Xt · X)−1 · X−1 · [clr(Z) · �]. The
equalities sought after are immediately obtained from these two equations.

3.2 The Undersampled Case

In the case that some parts are lost (either because the variable is a structural zero,
it is below the detection limit or is missing at random), some error terms in (5) will
not be computable. This may affect some log-ratios preferentially, invalidating the
direct estimation with Moore–Penrose pseudo-inverses. This section presents a way
to compensate for the different “sample size” of each involved log-ratio. We follow
the same steps proposed by Daunis-i-Estadella et al. (2002).

1. Solve the regression for each log-ratio independently. Here, one obtains estimates
of the linear regression coefficients {β̂0(ij), β̂1(ij)}, with standard regression,

β̂1(ij) = sxy(ij)

s2
x(ij)

, and β̂0(ij) = ȳ(ij) − β̂1(ij) · x̄(ij),

where sxy(ij) is the covariance of x = φ and y = log(zi/zj ), x̄(ij) and s2
x(ij) are the

mean and variance of φ for the subset of samples where the log-ratio y is observed,
and ȳ(ij) is the average of this log-ratio. It is important to remind here that, for each
(ij), the data set used in the computation of these statistics is different, even for
the explanatory variable x. As explained before, the following situations arise:
samples where parts i and j are observed give an observed datum; samples where
neither part i nor j are observed behave like a missing-at-random value; it is thus
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expected that such values should not induce bias in the estimation, but just increase
its uncertainty (decrease its reliability); samples where either part i or j are not
observed are truncated values, not missing at random. Ignoring this information
could yield some bias, in particular when the proportion of such samples is high.

2. Combine the partial estimates. The goal is now to combine these estimates
{β̂a(ij)}, accounting for their different reliability. Taking (8) as approximately ful-
filled, one could write

β̂a(ij) = log
b̂ai

b̂aj

+ �βa(ij) = (
clr

(
b̂a

) · �)
(ij)

+ �βa(ij),

where �βa(ij) would be the residual error of the approximation. Summing these
residuals errors, squared and as many times as they are “observed”, one obtains
a measure of global discrepancy between the βa(ij) estimates of the first step and
the global b̂a sought

ε =
∑

(ij)

N(ij)�β2
a(ij)

= (
β̂a − clr

(
b̂a

) · �) · diag(N) · (β̂a − clr
(
b̂a

) · �)t
, (9)

where diag(N) is a diagonal matrix with elements {N(ij)}, the number of times the
log-ratio (i, j) is observed. Minimizing discrepancy (9), by differentiation with
respect to b̂a and equating to zero, one gets

0 = ∂ε

∂b̂a

= (
β̂a − clr

(
b̂a

) · �) · diag(N) + diag(N) · (β̂a − clr
(
b̂a

) · �)t
,

which, given that diag(N) is diagonal, is simplified to

0 = (
β̂a − clr

(
b̂a

) · �) · diag(N),

β̂a · diag(N) = clr
(
b̂a

) · � · diag(N).

By taking �N = � · diag(N), this last equation can be rewritten as

b̂a = clr−1((βa · diag(N)
) · �−

N

)
. (10)

Note that �N is the matrix of differences (6), where each column is multiplied
by the number of times that difference was observed. In this sense, (10) as an
estimator of b̂a is a kind of weighted average, where the value β̂a(ij) observed
N(ij) times has a contribution of +N(ij) to the estimation of log(bai) and of −N(ij)

to the estimation of log(baj ).

4 Practical Case

The method proposed before is here applied to the Blatt et al. (1972) data set.
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Fig. 2 Scatter plots of all observed log-ratios against grain size, with indication of each partial regression
line (dashed line) and the final model obtained with the proposed procedure (solid line). The (i, j) plot
represents log(zi/zj ) against φ. Note that all plots in a row share the same vertical scale

Table 2 Number of points where each pair of parts was simultaneously observed (left), and number of
points where only one part of the log-ratio was available, out of the 14 samples of Table 1: the differences
between 14 and the sum of these two tables is the number of missing-at-random values. The upper triangle
of the left table will be used afterwards

Fully observed data Censored data

Rf Qp Qm F M Rf Qp Qm F M

Rf 10 7 8 8 2 0 3 6 4 12

Qp 7 7 5 5 0 3 0 9 7 0

Qm 8 5 12 10 6 6 9 0 2 6

F 8 5 10 10 4 4 9 2 0 8

M 2 0 6 4 6 12 0 6 8 0

1. Solve the regression for each log-ratio independently. Results are shown in Fig. 2,
containing D(D − 1) = 20 plots: each one is a scatter plot of the (i, j)-log-ratio
against φ, where i is the row and j is the column. Note that the plot is “antisym-
metric”, e.g., the y axes of figures (1,2) and (2,1) are equal, but with changed
signs. Note also that the ratio Qp/M is never observed, and the corresponding
plot is empty. Recall that each plot is obtained with a different set of data: Table 2
gives the number of available data used in each regression, and reports also the
number of censored values.
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Fig. 3 Final regression
parameter estimates expressed
as compositions and plotted as a
bar plot

Table 3 Final regression parameter estimates expressed as compositions and as enrichment/depletion
factors with respect to quartz. The table also reports the predicted composition of an hypothetical rock
block following the linear trend at φ ≈ −2

Composition of Slope Multiplicative factors

Rock block Coarse sand (b̂0) (b̂1) Enrichment Depletion

Rf 4.49 × 10−1 4.96 × 10−1 0.04 0.38 2.62

Qp 5.37 × 10−1 2.43 × 10−1 0.03 0.28 3.52

Qm 1.12 × 10−2 2.22 × 10−1 0.11 1 1

F 3.21 × 10−3 3.83 × 10−2 0.09 0.84 1.18

M 4.04 × 10−11 2.10 × 10−7 0.72 6.41 0.16

2. Combine the partial estimates. One needs the matrix diag(N), containing the num-
ber of samples observed for each log-ratio, which can be extracted from Table 2,
its upper triangle, without the diagonal elements. Multiplying then the columns of
matrix � by these numbers, one obtains the weighted difference matrix

�N =

⎛

⎜⎜⎜⎝

7 8 8 2 0 0 0 0 0 0
−7 0 0 0 5 5 0 0 0 0
0 −8 0 0 −5 0 0 10 6 0
0 0 −8 0 0 −5 0 −10 0 4
0 0 0 −2 0 0 −0 0 −6 −4

⎞

⎟⎟⎟⎠ .

Finally, computing its Moore–Penrose generalized inverse (which has no nice
form) and plugging into (10), we get the parameter estimates b̂0 and b̂1 with least
discrepancy.

Resulting estimates are included in Fig. 3 and Table 3. The compositional linear
process is thus described with an “original” coarse sand composition (for φ = 0,
the intercept at the origin, which is the threshold between very coarse and coarse
sand fractions) of approximately 50% rock fragments, 45% quartz (evenly distributed
among mono- and poly-crystalline grains) and 5% feldspar, and a trend towards finer
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Fig. 4 Predicted and observed compositions, as a diagram of evolution with φ

grain sizes of a very steep enrichment on mica (6.5 times that of monocrystalline
quartz enrichment), and depletion of all the other grain types (2.5 times stronger
for rock fragments, 3.5 times for polycrystalline quartz, and for feldspar a slightly
quicker depletion than that of monocrystalline quartz).

The obtained parameters can be transformed back to log-ratios with (8). This
yields some β̂0(ij) and β̂1(ij) different from the original ones, but mutually compati-
ble. The lines associated with these compatible parameters are also included in Fig. 2.
The agreement between original and compatible lines is very high, with the exception
of the ratio Rf/Qp. This ratio shows an extreme around φ = 0, whereas the original
regression looks quite flat around the average of the log-ratio (and does not capture in
any way its non-linear behavior), the compatible one closely follows the decreasing
tail of the trend (for φ ≥ 0).

Given that regression goodness-of-fit tests are in this case rather meaningless (as
they depend on the sample size, i.e., the number of points we decided to use in the
digitalization), the least one must do is visually assess that results fit the data. This
is shown in Fig. 4, where one clearly sees that most features of the original plot
are captured: monocrystalline grains (Qm, F and M) are perfectly described by the
model, whereas polycrystalline grains (Qp and Rf) are only adequately modeled for
−1 < φ. Finally, one can look at several subcompositions, in order to assess the de-
gree to which the relative information of the data set is adequately captured by the
model. Figure 2 already showed all possible 2-part compositions. Figure 5 reports the
3-part subcompositions in ternary diagrams where both the data set and the model
are plotted. Data and model fit very well, even for those diagrams with zeroes, where
samples visually fall on the border.
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Fig. 5 Predicted and observed compositions, displayed in all possible ternary diagrams

5 Discussion

The rather complex plot in Fig. 1 can be described by a compositional linear process,
with an intercept composition (for φ = 0) of approximately 50% rock fragments, 45%
quartz (evenly distributed among mono- and polycrystalline grains) and 5% feldspar,
and a trend of strong enrichment in mica towards finer grain sizes, and quick deple-
tion of polycrystalline quartz and rock fragments. Feldspar grains are slightly less
stable than monocrystalline quartz grains, and polycrystalline grains of quartz de-
crease slightly faster than rock fragments. Assuming a global average sand size of
φ = 1.5–2, the average sand due to our model has a composition of Rf = 29–20,
Qp = 9–6, Qm = 55–65, and F = 7–8 (in percentages). Previous estimates of global
average sand composition are in the range of Rf = 23–24, Qt = (total quartz) 63–68
and F = 10–12. These are based on (i) a rough compilation of the frequency of
common sandstone types worldwide and their average composition (Pettijohn et al.
1987), and (ii) a more substantiated study of the average sand of South America (Pot-
ter 1994). These estimates and our model are in very good agreement, though the
feldspar content is slightly lower in our model (and thus, the ratio F/Q). This is an
effect of linear regression, which does not capture the small-scale variations on the
ratios including F (Fig. 2).

The agreement between model and “data” is very good, specially for sands and
finer sediments (φ ≥ −1), and far beyond what might be obtained with a raw, clas-
sical regression. The quality of this agreement is surprising, given that the plot is
in fact a gathering of disperse information, mostly semi-quantitative or qualitative.
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Therefore, we conclude that the Blatt et al. (1972) understanding of the processes
controlling the relationship between sediment grain type and grain size can be per-
fectly described by a one-dimensional compositional linear process (in the Aitchison
geometry), for sands and finer sediments. Keeping this in mind, one can interpret the
intercept composition as a global average “original” coarse to very coarse sand (for
φ = 0), and the slope composition as the resultant of the relative influences of all
processes controlling sediment composition. One must then conclude that the resul-
tant of these effects acting on the sediment body is constant along the grain size spec-
trum, as this is the implication of a linear process. This does not necessarily contra-
dict the classical idea that chemical weathering is more intense in finer fractions than
in coarser ones, when compared with physical alteration processes (crushing, com-
minution, abrasion), as these processes evolve with time, whereas our linear model
describes the time-independent changes of petrographic composition when changing
grain size. Further research is nevertheless necessary to better understand this issue.

For coarse sediments (φ < −1), the model does not adequately capture the ob-
served distribution between rock fragments and polycrystalline quartz, the only two
grain types (typically) present in these size fractions. The distribution observed seems
mainly inherited from the source rock characteristics, as rock fragments purely made
of quartz become less common for larger blocks. Moreover, the very difference be-
tween these two grain classes is quite arbitrary for grains of this size. In summary,
these arguments suggest that the trend can be safely used as a baseline for the petro-
graphic composition of sands and finer sediments, and should not be extrapolated to
coarser grain fractions.

6 Conclusions

Regression with a compositional response can be equivalently obtained from two ap-
proaches: either one minimizes the average Aitchison distance between the predicted
and the observed compositions (as a function of two parameter compositions playing
the role of slope and intercept); or one applies regression to all possible log-ratios
and combines the estimated slopes or intercepts, to obtain the parameter slope or in-
tercept composition. If no missing value is present, this contribution shows that both
approaches give the same result. In the presence of zeroes, however, only the second
approach provides sensible estimates. In this case, only the ratios where both numer-
ator and denominator were observed do actually contribute to the global regression.

For the case study, we conclude that the Blatt et al. (1972) understanding of the
processes controlling the relationship between sediment grain type and grain size
can be perfectly described by a one-dimensional compositional linear process (in the
Aitchison geometry), for sands and finer-grained sediments. This linear trend globally
balances all processes acting on the sediment body. The fact that the fitted model is
linear implies that the relative influence of all controlling processes is constant along
the grain sizes studied here. As this trend is not based on specific data but is aimed
to describe a global model, it may be taken as a baseline for testing local case studies
against it, and in this case one can split the study in the explanation of the trend itself,
and the explanation of the discrepancies found.
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Appendix A: The Moore–Penrose Generalized Inverse

Definition 1 For any matrix A of N columns and M rows, the Moore–Penrose
generalized inverse is the unique matrix A− satisfying the following set of pseudo-
inversion properties:

1. A · A− · A = A.
2. A− · A · A− = A−.
3. (A · A−)t = A · A−.
4. (A− · A)t = A− · A.

where the superscript t is transposition (or conjugate transposition if the matrix is
complex).

Recall that the Moore–Penrose generalized inverse of a matrix may be computed
with its singular value decomposition: if A = U ·D ·Vt , then A− = V ·D− ·Ut , where
U and V columns form two sets of orthonormal vectors (respectively called left and
right singular vectors), D is a diagonal matrix of non-negative singular values, and
D− is the generalized inverse of D, containing in the diagonal the inverse of each
non-zero singular value (and a zero for each zero singular values).

Property 1 For any matrix A and its generalized inverse A−, the following proper-
ties hold:

1. (A−)− = A (pseudo-inversion is reversible).
2. (α · A)− = α−1 · A−.
3. A = At · (A · At )−.

This is adapted from Ben-Israel and Greville (2003).

Appendix B: A Proof

Proof of equation (7): The first step of the proof is to show that

� · �t =

⎛

⎜⎜⎝

D − 1 −1 · · · −1
−1 D − 1 · · · −1
...

...
. . .

...

−1 −1 · · · D − 1

⎞

⎟⎟⎠ = D · I − 1 =: B, (11)
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because the pseudo-inverse of B is easy to compute. Here, I is the identity, and 1 is
a D × D matrix full of ones. We can see that (11) holds by looking at the structure
of the rows of �: the element (i, j) of matrix B is, in fact, the scalar product of two
of these rows, bij = 〈�i ,�j 〉. If i = j , then bii is the sum of as many (±1)2 = 1
as different log-ratios can be built involving the ith part; thus, bii = D − 1 (the log-
ratio of a part with itself is not useful; and if we counted a given log-ratio, the log
of its inverse ratio is not counted). If i �= j , then bij = −1, given that two parts only
coincide in one single log-ratio, and they have always different signs, being one in
the numerator and the other in the denominator.

Now define the matrix C = (1/D) · B. The second step is to show that it is a
pseudo-identity

C · C =
(

I − 1

D
1
)

·
(

I − 1

D
1
)

= I · I − 1

D
I · 1 − 1

D
1 · I + 1

D2
1 · 1

= I − 2

D
1 + 1

D2
D1 = I − 1

D
1 = C.

Now, by simple recurrence of these calculations and attending to the definition of
generalized inverse, one easily deduces that C− = C.

The third step is to show that B− = (1/D) · C, since then one will be able to
apply Property 1.3. But, given that C is a pseudo-identity, this is immediate thanks to
Property 1.2

B− = (D · C)− = 1

D
· C− = 1

D
· C.

The last step is the application of Property 1.3, giving

�− = �t · B− = �t · 1

D
· C = 1

D
· �t

(
I − 1

D
1
)

= 1

D
· �t − 1

D2
· �t · 1.

This yields (7), by realizing that the term �t · 1 is a matrix full of the sums of the
elements in given columns of �, which are identically zero.
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