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Abstract

This paper presents bounds for the variation of the spectral radius λ(G) of a graph
G after some perturbations or local vertex/edge modifications of G. The perturbations
considered here are the connection of a new vertex with, say, g vertices of G, the
addition of a pendant edge (the previous case with g = 1) and the addition of an edge.
The method proposed here is based on continuous perturbations and the study of their
differential inequalities associated. Within rather economical information (namely, the
degrees of the vertices involved in the perturbation), the best possible inequalities are
obtained. Besides, the cases when equalities are attained are characterized. The
asymptotic behaviors of the obtained bounds are also discussed. For instance, if G is
a connected graph and Gu denotes the graph obtained from G by adding a pendant
edge at vertex u with degree δu, then,

λ(Gu) ≤ λ(G) + δu
λ3(G) + o

(
1

λ3(G)

)
.

Keywords: Graph, Adjacency matrix, Spectral radius, Graph perturbation, Differential
inequalities.
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1 Introduction

When we represent a graph by its adjacency matrix, it is natural to ask how the prop-
erties of the graph are related to the spectrum of the matrix. As it is well-known, the
spectrum does not characterize the graph, that is, there are nonisomorphic cospectral
graphs. However, important properties of the graph stem from the knowledge of its spec-
trum. A summary of these relations can be seen in Schwenk and Wilson [11] and, in a
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more extensive way, in Cvetković, Doob and Sachs [3] and Cvetković, Doob, Gutman and
Torgasev [2].

The perturbation of a graph G is to be thought of as a local modification, such as
the addition or deletion of a vertex or an edge. The cases studied here are the addition
of a vertex (together with some incident edges), an edge and a pendant edge. When we
make the perturbation, the spectrum changes and it is particulary interesting to study
the behavior of the maximum eigenvalue λ(G), which is called spectral radius or index
of G. For a comprehensive survey of results about this parameter, we refer the reader to
Cvetković and Rowlinson [4]. In particular, accurate bounds for λ(G) were obtained, under
some conditions, with the knowledge of the spectral radius, the associated eigenvector and
the second eigenvalue. More details about these methods can be found in the survey by
Rowlinson [9].

The bounds obtained here for the index of a perturbed graph are a bit less precise
than those in Rowlinson [9], but we believe that ours have two aspects of interest. First,
they are derived from a mere knowledge of the degrees of the vertices involved in the
perturbation. Second, they are the best possible, in the sense we characterize the cases in
which the bounds are attained. Our approach is based on the study of some differential
inequalities, seeing the perturbation as a continuous process or, to be more precise, as a
linear matrix perturbation. Although the theory of matrix perturbations (see, for instance,
the textbook by Stewart and Sun [12] or the chapter by Li [6]) has been commonly used
in this context, to the authors’ knowledge, our method has not been used before.

2 Notation and Basic Concepts

Our graphs are undirected, simple (without loops or multiple edges), connected and finite.
The graph G = (V,E) has set of vertices V , with cardinality n = |V |, and set of edges E.
The trivial graph with only one vertex u is denoted by K1 = {u}. If G1 = (V1, E1) and
G2 = (V2, E2), then G1∪G2 = (V1∪V2, E1∪E2) and G1+G2 = (V1∪V2, E1∪E2∪E), where
E is the set of edges that join every vertex of V1 with all vertices of V2. The adjacency
matrix A = (aij) of G has entries aij = 1 if uiuj ∈ E and aij = 0 otherwise. We denote
by j the vector of Rn with all its entries equal to 1. Hence, Aj is the vector of degrees
(δ1, δ2, . . . , δn). In particular, G is regular of degree δ if and only if Aj = δj .

A real matrix M = (mij) is said to be nonnegative if mij ≥ 0, for any i, j. We say
that M is connected if, given any pair i and j, there exists a sequence i0, i1, . . . , ir such
that i0 = i, ir = j and mih−1ih 6= 0, for h = 1, 2, . . . , r. Trivially, the adjacency matrix of
a connected graph is symmetric, nonnegative and connected.

The spectrum of a square matrix is the set of its eigenvalues in the complex plane.
The spectral radius is the maximum of the modulus of its eigenvalues. If the matrix is the
adjacency matrix of a graph, we call it the index of the graph. A symmetric real matrix
has only real eigenvalues, which are numbered in nonincreasing order λ1 ≥ λ2 ≥ · · · ≥ λn.
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Then, the spectral radius is the maximum of |λ1| and |λn|. Also, the spectral radius can
be defined as λ = sup {‖Ax‖ : ‖x‖ = 1}, and defines a norm in the space of symmetric
matrices. Then, ‖Au‖ ≤ ‖A‖ ‖u‖, for any vector u , with equality if and only if u is
an eigenvector associated to an eigenvalue giving the spectral radius. For a connected
nonnegative symmetric real matrix, the theorem of Perron-Frobenius states the following:

1. The first eigenvalue equals the spectral radius λ1 = λ.

2. The eigenvalue λ1 is a simple root of the characteristic polynomial.

3. There is a unitary eigenvector x corresponding to λ1 with strictly positive entries.

3 General Technique

Let S+ (respectively, S+C ) be the subset of symmetric, nonnegative (respectively, and
connected) matrices of the space M(n, n) of real n× n matrices.

When a perturbation modifies a graph into another, we denote by GI the initial graph
and by GF the final graph. Similarly, if AI and AF are the adjacency matrices of the
graphs GI and GF on n vertices, we say that AF is obtained from AI by the perturbation
P = AF −AI .

If GF is connected, then the matrices A(t) = AI + tP belong to S+C for every t ∈ (0, 1].
Similarly, if GI is connected, then A(t) ∈ S+C for t ∈ [0, 1). Also, if GF is connected and
the perturbation matrix P ∈ S+, then AI + tP ∈ S+C for t ∈ (0,∞).

If A and P are symmetric matrices, there exist continuous real functions µ1(t), µ2(t),
. . ., µn(t), and continuous vectorial functions x1(t),x2(t), . . . ,xn(t) that are, respectively,
the eigenvalues of A(t) = A + tP and their eigenvectors associated. From the implicit
function theorem, if µi(t0) is a simple eigenvalue, then µi is a C1-function in a neighborhood
of t0. Therefore, if A(t) ∈ S+C for t belonging to an interval I, the spectral radius is
a continuously differentiable function in I. In the three results that we present, the
perturbation matrix P belongs to S+ and the perturbed matrix AF = AI + P to S+C .
Thus, the normalized positive eigenvector x(t) associated to the spectral radius λ(t) of
the matrix A(t) = AI + tP is a C1(0,∞)-function, which can be extended with continuity
to [0,∞), but now x(t) might have lost the strictly positive character of its entries.

Our technique is based on the following result:

Lemma 3.1 Let x(t) = (α1, α2, . . . , αn)> be the normalized λ(t)-eigenvector of the matrix
A(t) = AI + tP with P = (pij). Then,

λ′ = 〈Px,x〉 =
n∑

i,j=1

pijαiαj . (1)
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Proof. By deriving the expression Ax = (AI + tP )x = λx, we get

Px + Ax′ = λ′x + λx′.

Then, the result follows by taking the inner product by x and observing that, from 〈x,x〉 =
1, we have 〈x′,x〉 = 0 and 〈Ax′,x〉 = 〈x′,Ax〉 = λ〈x′,x〉 = 0. �

A first remark is that if P ∈ S+ and AF = AI + P ∈ S+C , then the spectral radius
increases strictly and, in particular, λI = λ(0) < λ(1) = λF . Also, since there exists
limt→0+ λ(t) =

∑n
i,j=1 pijαi(0)αj(0), by the mean value theorem, we have that λ is also

differentiable at 0 with λ′(0) =
n∑

i,j=1

pijαi(0)αj(0).

We present three results of bounds of the index of a graph for the following perturba-
tions: connecting an isolated vertex, adding an edge and adding a pendant edge. Starting
from Eq. (1), we give differential inequalities with information on the degrees of the ver-
tices involved, and we characterize the case when they become equations. Solving these
equations, we reach our conclusions by using the following result on differential inequalities
(see Szarski [13]):

Lemma 3.2 Let A be an open convex subset of R2 and let f : A → R, (t, x) 7→ f(t, x),
be a continuous function with ∂f

∂x continuous. Let u, v : [t0, α) → R be continuously
differentiable functions, such that:

1. For all t ∈ [t0, α), (t, u(t)) ∈ A, (t, v(t)) ∈ A.

2. Function u satisfies: u′(t) = f(t, u(t)) for all t ∈ [t0, α), u(t0) = x0.

3. Function v satisfies: v′(t) < f(t, v(t)) for all t ∈ (t0, α), v(t0) = x0, v′(t0) ≤
f(t0, v(t0)).

Then, v(t) < u(t) for all ∈ (t0, α).

4 Connection of an isolated vertex

Our first result is on the change of the index of a graph when we connect an isolated
vertex to some other vertices. For this case Rowlinson [10] computed the characteristic
polynomial of the modified graph in terms of the characteristic polynomial of the initial
graph and some entries of its idempotents (see also Cvetković and Rowlinson [5, p.90] for
a shorter proof).

Theorem 4.1 Let GI = (V,E) be a graph with an isolated vertex u. Given some vertices
v1, v2, . . . , vg different from u, we denote by GF the graph (V,E ∪ {uv1, uv2, . . . , uvg}),
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which is assumed to be connected. If λI and λF are the spectral radii of GI and GF ,
respectively, then the following inequality holds:

λF ≤ H−1(λI),

where the function H : (0,+∞)→ R is defined by H(ξ) = ξ − g
ξ . The equality is satisfied

if and only if GF = {u}+G, with G being a regular graph.

Proof. Let n+1 be the order of the graphs GI and GF . The continuous perturbation
of the matrix associated to GI that produces the matrix associated to GF can be described
by

A(t) = AI + tP =


0 0 · · · 0
0
... C
0

+ t


0 · · · w> · · ·
...
w O
...

 , t ∈ [0, 1],

where w is the column binary vector associated to the perturbation and C is the adjacency
matrix of graph GI−{u}. Note that, for any t ∈ (0, 1], the matrix A(t) is nonnegative and
connected. Let λ(t) be the spectral radius of A(t). Let x(t) = (α|z)> = (α, z1, z2, . . . , zn)>

be its normalized positive eigenvector. Then, by Eq. (1),

λ′ = 〈Px,x〉 = 2α〈z,w〉.

From A(t)x(t) = λ(t)x(t), we have(
0 tw>

tw C

)(
α
z

)
=

(
t〈w, z〉

tαw + Cz

)
=

(
λα
λz

)
, (2)

and the first scalar equation gives

λ2α2 = t2〈z,w〉2 ≤ t2‖z‖2g = t2(1− α2)g. (3)

Hence,

λ′ = 2λ
α2

t
≤ 2gtλ

λ2 + gt2
= f(t, λ). (4)

The inequalities (3) and (4) are either equalities or strict inequalities in the whole interval
(0, 1]. Indeed, if the equalities are satisfied for t0, then z(t0), which has only positive
entries, would be proportional to w, which is not null. Therefore, w = j and z(t0) = βj .

Hence, at t = t0 the last n equations of (2) become C j =
(
λ− t0 αβ

)
j, where α = α(t0),

so that GI = {u} ∪ G, GF = {u} + G, and G is a regular graph. To conclude that (4) is
always an equality, let us study the existence of solutions to the following system:

0 t · · · t
t
... C
t




α
β
...
β

 = λ


α
β
...
β

 , α2 + nβ2 = 1.
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Then, for all t, we obtain the solution:

λ =
δ

2
+

√
δ2

4
+ nt2, α =

√
λ− δ
2λ− δ

, β =

√
λ

n(2λ− δ)
,

where δ = λ− tαβ denotes the degree of G.

Now we have the following cases:

(a) λ′ = f(t, λ) for all t ∈ [0, 1], λ(0) = λI , if GF = {u} + G, with G being a regular
graph.

(b) λ′ < f(t, λ) for all t ∈ (0, 1], λ′(0) = f(0, λ(0)), λ(0) = λI , in any other case.

The Cauchy problem

y′ =
2gty

y2 + gt2
, y(0) = λI ,

can be solved by doing the changes y =
√
rs and t =

√
s, so giving

y2(t)− λIy(t)− gt2 = 0.

Hence,

y(1)− g

y(1)
= λF −

g

λF
= λI

and, introducing the bijection H : (0,+∞)→ R, H(ξ) = ξ − g

ξ
, the theorem follows from

Lemma 3.2. �

5 Addition of an edge

The second result that we present is on the change of the index when we add an edge to
a graph. In this context, Rowlinson [8] proved that, under some conditions, the index of
the perturbed graph can be determined by the eigenvalues of the original graph together
with some of its angles. Moreover, some upper and lower bounds for such an index were
given by Maas [7].

Theorem 5.1 Let GI = (V,E) be a graph and let u, v ∈ V be two nonadjacent vertices
with degrees δu, δv. Let GF = (V,E ∪ {uv}), which we assume to be connected. If λI and
λF are, respectively, the indexes of GI and GF , then

λF ≤ 1 +K−1(K(λI)− 1),

where K : (0,∞)→ R is defined as K(ξ) = ξ− δu+δv
ξ . The equality is satisfied if and only

if GI = ({u} ∪ {v}) +G, where G is a regular graph.
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Proof. Let n + 2 be the order of graphs GI and GF with adjacency matrices AI

and AF , respectively. In the language of perturbations, we can consider that AI and AF

are related by AF = AI + P , where P = (pij) has entries p12 = p21 = 1 and pij = 0
otherwise (if necessary, we rearrange the vertices so that v1 = u and v2 = v). Considering
the continuous perturbation, let us consider the uniparametric family of matrices

A(t) = AI + tP =


0 t · · · w>u · · ·
t 0 · · · w>v · · ·
...

...
wu wv C
...

...

 , t ∈ [0, 1],

where wu,wv ∈ {0, 1}n and C is the n×n adjacency matrix of the subgraph GI−{u}−{v}.

Let λ(t) be the spectral radius of A(t), which is a continuous function on t for t ∈ [0, 1],
and it is differentiable for t ∈ (0, 1] by the connectedness of A(t).

Now, with x(t) = (α, β|z) = (α, β, z1, z2, . . . , zn), Eq. (1) becomes

λ′ = 〈Px,x〉 = 2αβ.

Expressing the first two entries of (λ(t)I −A(t))x(t) = 0, we get the system

M

(
α
β

)
=

(
r
s

)
,

with

M =

(
λ −t
−t λ

)
, r = 〈wu, z〉, s = 〈wv, z〉.

Introducing the angles ϕu and ϕv that the vectors wu and wv form with z, we can write

α2 + β2 =

∥∥∥∥M−1
(
r
s

)∥∥∥∥2 ≤ ∥∥M−1∥∥2 (r2 + s2)

= ‖z‖2 (δu cos2 ϕu + δv cos2 ϕv)

(λ− t)2

≤ 1− α2 − β2

(λ− t)2
(δu + δv), (5)

since 1
λ−t is the maximum eigenvalue of M−1 (to which eigenvector (1, 1) is associated).

Then,

2αβ ≤ α2 + β2 ≤ δu + δv
(λ− t)2 + δu + δv

. (6)

Therefore, the spectral radius of A(t) satisfy the following differential inequality:

λ′ ≤ δu + δv
(λ− t)2 + δu + δv

, λ(0) = λI . (7)
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We now prove that, in the interval (0, 1], expression (7) is always an equality or a
strict inequality. Let us assume that there exists t0 ∈ (0, 1] such that (7) is an equality.
Observing (6), we see that the first inequality is equivalent to α = β and the second one
to both equalities in (5). The first one occurs if

√
δu cosϕu =

√
δv cosϕv and the second

if cosϕu = cosϕv = 1. Therefore, the equality in (7) is valid for a value t0 when the
following conditions are simultaneously satisfied:

δu = δv, cosϕu = cosϕv = 1, α = β.

As all the entries of z are different from zero and wu,wv are not null vectors, then it
follows that wu = wv = j and x(t0) = (α, α, β, (n). . ., β). The last n entries of A(t0)x(t0) =
λx(t0) give 2αj + βCj = λβj , that is,

Cj =

(
λ− 2

α

β

)
j ,

which means that GI = ({u} ∪ {v}) + G, with G being a regular graph with adjacency

matrix C . Then, for all t ∈ (0, 1], there exist positive integers α, γ, such that (α, α, γ, (n). . ., γ)
is an eigenvector (since all its entries are positive, it corresponds to the spectral radius).
Indeed, the system

0 t · · · j> · · ·
t 0 · · · j> · · ·
...

...
j j C
...

...




α
α
γ
...
γ

 = λ


α
α
γ
...
γ

 , 2α2 + nγ2 = 1,

has solution

α =
1

2

√
1− δ − t√

(δ − t)2 + 8n
,

γ =
1√
2n

√
1 +

δ − t√
(δ − t)2 + 8n

λ =
1

2

(
t+ δ +

√
(δ − t)2 + 8n

)
,

where δ is the degree of G, and inequalities (5) and (6) are equalities for all t ∈ (0, 1].
Extending by continuity to [0, 1], we have the following possibilities:

(a) λ′ = f(t, λ), for all t ∈ [0, 1], λ(0) = λI if GI = ({u}∪{v})+G, with G being regular;

(b) λ′ < f(t, λ), for all t ∈ (0, 1], λ′(0) ≤ f(0, λ(0)), λ(0) = λI , in any other case;
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where f is the right side of differential inequality (7).

Now, the solution to Cauchy’s problem

y′ =
δu + δv

(y − t)2 + δu + δv
, y(0) = λI ,

is

y − δu + δv
y − t

= λI −
δu + δv
λI

.

By introducing the invertible function

K : (0,∞)→ R, K(ξ) = ξ − δu + δv
ξ

,

we can write y(1) = 1 +K−1(K(λI)− 1).

Lemma 3.2 applied to case (b) completes the proof. �

6 Addition of a pendant edge

The last result presented here is on the change of the index of a graph G when we add
a pendant edge to one of its vertices. In this context, Bell and Rowlinson [1] derived,
under certain conditions, exact values for the index of the perturbed graph in terms of the
spectrum and certain angles of G.

Theorem 6.1 Let GI = (V,E) be a connected graph, let u ∈ V be a vertex of degree δu
and take a vertex v 6∈ V . Let GF = (V ∪{v}, E∪{uv}). If λI and λF are the spectral radii
of GI and GF respectively, then

λF ≤ L−12 L1(λI),

where L1 : (0,+∞) → R is L1(ξ) = ξ − gδu
ξ and L2 : (1,+∞) → R is L2(ξ) = ξ − gδu

ξ− 1
ξ

.

The equality is satisfied if and only if GI = {v}+G, with G being a regular graph.

Proof. Let n+ 1 be the order of GI . Rearranging the vertices suitably, the pertur-
bation matrix P = (pij) has p12 = p21 = 1 and the other entries are zero. Let us consider
the matrices

A(t) =



0 t 0 · · · 0
t 0 · · · w> · · ·

0
...

... w C

0
...


, t ∈ [0, 1],
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such that A(0) is the adjacency matrix of the graph GI = GI∪{u}, with the same spectral
radius as GI .

Now Eq. (1) becomes
λ′ = 〈Px,x〉 = 2αβ,

where x(t) = (α, β|z), with z = (z1, z2, . . . , zn) being the normalized positive eigenvector,
t ∈ (0, 1). The first two entries of the matrix equation (λ(t)I −A(t))x(t) = 0 give the
system

λα− tβ = 0,

−tα+ λβ = 〈w, z〉.

Introducing the angle ϕ determined by z and w, we can express the solution by

α =
√
δu
‖z‖

λ2 − t2
t cosϕ,

β =
√
δu
‖z‖

λ2 − t2
λ cosϕ.

Hence, using α2 + β2 + ‖z‖2 = 1, we obtain

λ′ =
2δutλ cos2 ϕ

δu(λ2 + t2) cos2 ϕ+ (λ2 − t2)2
.

The constraint cos2 ϕ ≤ 1 implies that

λ′ ≤ 2λtδu
(λ2 − t2)2 + δu(λ2 + t2)

(8)

for all t ∈ (0, 1]. Let us observe that the continuous extension of (8) to t = 0 gives an
equality, since α(0) = 0.

We now prove that inequality (8) is either an equality or a strict inequality in the
interval (0, 1]. Indeed, if there existed t0 ∈ (0, 1] for which (8) were an equality, then z(t0)
and w would be proportional. As all the entries of z are strictly positive and w is not a
null vector, then w = j and z(t0) = δj . The last n equations of (λ(t0)I −A(t0))x(t0) = 0

give Cj =

(
λ− β

δ

)
j . Therefore, the graph GI is {v}+G, with G being a regular graph

of degree δ and with adjacency matrix C . Then, z = δj and, therefore, it is proportional
to w = j , for all t ∈ (0, 1]. Indeed, the system

0 t 0 · · · 0

t 0 · · · j> · · ·

0
...

... j C

0
...




α
β
γ
...
γ

 = λ


α
β
γ
...
γ

 , α2 + β2 + nγ2 = 1,
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gives the eigenvector of strictly positive entries

α =
(λ− d)t√

Λ
, β =

(λ− d)λ√
Λ

, γ =
λ√
Λ
,

where Λ = 2(n+ t2)λ2−d(n+ 4t2)λ+ 2t2δ2 and λ is the maximum root of the polynomial
λ3 − δλ2 − (n+ t2)λ+ δt2. By continuity, we thus have the two following possibilities:

(a) λ′ = f(t, λ), for all t ∈ [0, 1], λ(0) = λI if GI = {v} + G, with G being a regular
graph,

(b) λ′ < f(t, λ), for all t ∈ (0, 1], λ′(0) ≤ f(0, λ(0)), λ(0) = λI , in any other case,

where f is the right side of differential inequality (8).

The differential equation

y′ = 2δu
ty

(y2 − t2)2 + δu(y2 + t2)
,

with initial condition y(0) = λI , is transformed into a linear equation by means of the

change: y =
√

S+R
2 , t =

√
S−R
2 . Solving it, we calculate implicitly y(1), represented by ν,

as one root of the equation

(ν2 + 1)(ν2 − 1− δu)2 + (ν2 − 1)3 + 2

(
δu − λ2I −

δ2u
λ2I

)
(ν2 − 1)2 + δ2u(ν2 − 1) = 0,

which may be factorized into the following two cubic equations:

ν3 −
(
λI −

δu
λI

)
ν2 − (δu + 1)ν +

(
λI −

δu
λI

)
= 0,

ν3 +

(
λI −

δu
λI

)
ν2 − (δu + 1)ν −

(
λI −

δu
λI

)
= 0.

The three roots of both equations are real, but only one in the first equation satisfies the
necessary condition ν ≥

√
δu + 1. Introducing the bijective functions

L1 : (0,+∞)→ R, L1(ξ) = ξ − δu
ξ
, L2 : (1,+∞)→ R, L2(ξ) = ξ − δu

ξ − 1
ξ

,

we can express y(1) = L−12 L1(λI). As before, Lemma 3.2 applied to case (b) completes
the proof. �

7 Asymptotic behavior

It is illustrative to compare the bounds obtained in the three above theorems for graphs
with large index. Making the corresponding asymptotic developments, we have the fol-
lowing cases:
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(a) Connection of an isolated vertex (to g vertices):

λF ≤ H−1(λI) = λI +
g

λI
+ o

(
1

λI

)
.

(b) Addition of an edge (between vertices of degrees δu, δv):

λF ≤ 1 +K−1(K(λI)− 1) = λI +
δu + δv
λ2I

+ o

(
1

λ2I

)
.

(c) Addition of a pendant edge (to a vertex of degree δu):

λF ≤ L−12 L1(λI) = λI +
δu
λ3I

+ o

(
1

λ3I

)
.

Let us observe that the maximum possible variation in the spectral radius caused by
the three perturbations considered are, for a large λI , of different orders of magnitude.

Notice also that, by applying iteratively the above formulas, we can obtain asymptotic
bounds for ‘multiple perturbations’. For instance, if GF is obtained from GI by joining all
the vertices u1, u2, . . . , um of a coclique, with respective degrees δ1, δ2, . . . , δm, we get, by
applying the bound for the addition of an edge

(
m
2

)
times,

λF ≤ λI +
m− 1

λ2I

m∑
i=1

δi + o

(
1

λ2I

)
.
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