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Abstract

This paper presents bounds for the variation of the spectral radius A(G) of a graph
G after some perturbations or local vertex/edge modifications of G. The perturbations
considered here are the connection of a new vertex with, say, g vertices of G, the
addition of a pendant edge (the previous case with g = 1) and the addition of an edge.
The method proposed here is based on continuous perturbations and the study of their
differential inequalities associated. Within rather economical information (namely, the
degrees of the vertices involved in the perturbation), the best possible inequalities are
obtained. Besides, the cases when equalities are attained are characterized. The
asymptotic behaviors of the obtained bounds are also discussed. For instance, if G is
a connected graph and G, denotes the graph obtained from G by adding a pendant
edge at vertex u with degree ¢,, then,
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1 Introduction

When we represent a graph by its adjacency matrix, it is natural to ask how the prop-
erties of the graph are related to the spectrum of the matrix. As it is well-known, the
spectrum does not characterize the graph, that is, there are nonisomorphic cospectral
graphs. However, important properties of the graph stem from the knowledge of its spec-
trum. A summary of these relations can be seen in Schwenk and Wilson [11] and, in a



more extensive way, in Cvetkovié, Doob and Sachs [3] and Cvetkovié, Doob, Gutman and
Torgasev [2].

The perturbation of a graph G is to be thought of as a local modification, such as
the addition or deletion of a vertex or an edge. The cases studied here are the addition
of a vertex (together with some incident edges), an edge and a pendant edge. When we
make the perturbation, the spectrum changes and it is particulary interesting to study
the behavior of the maximum eigenvalue A(G), which is called spectral radius or index
of G. For a comprehensive survey of results about this parameter, we refer the reader to
Cvetkovi¢ and Rowlinson [4]. In particular, accurate bounds for A(G) were obtained, under
some conditions, with the knowledge of the spectral radius, the associated eigenvector and
the second eigenvalue. More details about these methods can be found in the survey by
Rowlinson [9)].

The bounds obtained here for the index of a perturbed graph are a bit less precise
than those in Rowlinson [9], but we believe that ours have two aspects of interest. First,
they are derived from a mere knowledge of the degrees of the vertices involved in the
perturbation. Second, they are the best possible, in the sense we characterize the cases in
which the bounds are attained. Our approach is based on the study of some differential
inequalities, seeing the perturbation as a continuous process or, to be more precise, as a
linear matrix perturbation. Although the theory of matrix perturbations (see, for instance,
the textbook by Stewart and Sun [12] or the chapter by Li [6]) has been commonly used
in this context, to the authors’ knowledge, our method has not been used before.

2 Notation and Basic Concepts

Our graphs are undirected, simple (without loops or multiple edges), connected and finite.
The graph G = (V, E) has set of vertices V, with cardinality n = |V, and set of edges E.
The trivial graph with only one vertex u is denoted by K; = {u}. If G; = (V1, F) and
Gy = (VQ, EQ), then G1UGy = <V1UV2,E1UE2) and G1+Gy = (V1UV2, E1UE2UE), where
FE is the set of edges that join every vertex of V; with all vertices of V5. The adjacency
matrix A = (a;j) of G has entries a;; = 1 if u;u; € E and a;; = 0 otherwise. We denote
by 7 the vector of R™ with all its entries equal to 1. Hence, Aj is the vector of degrees
(01,02,...,0,). In particular, G is regular of degree ¢ if and only if Aj = Jj.

A real matrix M = (m;;) is said to be nonnegative if m;; > 0, for any 4,j. We say
that M is connected if, given any pair ¢ and j, there exists a sequence g, i1, ..., such
that ig =14, %, = j and my,, 4, # 0, for h = 1,2,...,r. Trivially, the adjacency matrix of
a connected graph is symmetric, nonnegative and connected.

The spectrum of a square matrix is the set of its eigenvalues in the complex plane.
The spectral radius is the maximum of the modulus of its eigenvalues. If the matrix is the
adjacency matrix of a graph, we call it the index of the graph. A symmetric real matrix
has only real eigenvalues, which are numbered in nonincreasing order Ay > Ao > --- > A,,.



Then, the spectral radius is the maximum of || and |A,|. Also, the spectral radius can
be defined as A = sup {||Az|| : ||z|| = 1}, and defines a norm in the space of symmetric
matrices. Then, ||Au| < [|A] ||u]|, for any vector uw, with equality if and only if u is
an eigenvector associated to an eigenvalue giving the spectral radius. For a connected
nonnegative symmetric real matrix, the theorem of Perron-Frobenius states the following:

1. The first eigenvalue equals the spectral radius A\; = A.
2. The eigenvalue A; is a simple root of the characteristic polynomial.

3. There is a unitary eigenvector x corresponding to A; with strictly positive entries.

3 General Technique

Let ST (respectively, S7) be the subset of symmetric, nonnegative (respectively, and
connected) matrices of the space M (n,n) of real n x n matrices.

When a perturbation modifies a graph into another, we denote by G, the initial graph
and by Gy the final graph. Similarly, if A; and A, are the adjacency matrices of the
graphs G; and G on n vertices, we say that Ay is obtained from A; by the perturbation
P - AF — AI‘

If G is connected, then the matrices A(t) = A; +tP belong to SZ for every t € (0, 1].
Similarly, if G; is connected, then A(t) € S for t € [0,1). Also, if G is connected and
the perturbation matrix P € ST, then A; +tP € SZ for t € (0, 00).

If A and P are symmetric matrices, there exist continuous real functions (), pa(t),
.+« n(t), and continuous vectorial functions @ (t), x2(t), ..., x,(t) that are, respectively,
the eigenvalues of A(t) = A + tP and their eigenvectors associated. From the implicit
function theorem, if y1;(to) is a simple eigenvalue, then p; is a C'-function in a neighborhood
of tg. Therefore, if A(t) € SI for t belonging to an interval I, the spectral radius is
a continuously differentiable function in I. In the three results that we present, the
perturbation matrix P belongs to ST and the perturbed matrix A, = A; + P to S7.
Thus, the normalized positive eigenvector x(t) associated to the spectral radius A(¢) of
the matrix A(t) = A, +tP is a C}(0, co)-function, which can be extended with continuity
to [0, 00), but now x(¢) might have lost the strictly positive character of its entries.

Our technique is based on the following result:

Lemma 3.1 Letx(t) = (a1, 00,...,a,)" be the normalized \(t)-eigenvector of the matriz
A(t) = A; +tP with P = (p;ij). Then,

N = (Pzx,z) = Z Dij 06 (1)
ij=1



Proof. By deriving the expression Ax = (A; + tP)x = Az, we get
Px + Ax' = Nz + )\

Then, the result follows by taking the inner product by « and observing that, from (@, x) =
1, we have (', x) = 0 and (A2, z) = (&', Ax) = \(z',x) =0. O

A first remark is that if P € St and A, = A, + P € S}, then the spectral radius
increases strictly and, in particular, A\, = A(0) < A(1) = Ap. Also, since there exists
lim; o+ A(t) = 27,1 piji(0)a;(0), by the mean value theorem, we have that A is also

differentiable at 0 with \'(0) = Z Pijai(0)a;(0).
ij=1

We present three results of bounds of the index of a graph for the following perturba-
tions: connecting an isolated vertex, adding an edge and adding a pendant edge. Starting
from Eq. (1), we give differential inequalities with information on the degrees of the ver-
tices involved, and we characterize the case when they become equations. Solving these
equations, we reach our conclusions by using the following result on differential inequalities
(see Szarski [13]):

Lemma 3.2 Let A be an open convex subset of R? and let f : A — R, (t,z) — f(t,z),

be a continuous function with % continuous. Let u,v : [tg,a) — R be continuously

differentiable functions, such that:

1. For allt € [tg, a), (t,u(t)) € A, (t,v(t)) € A.

2. Function u satisfies: u'(t) = f(t,u(t)) for all t € [ty, @), u(to) = xo.

3. Function v satisfies: v'(t) < f(t,v(t)) for all t € (tg,), v(tg) = z0, V'(to) <
f(to, v(to))-

Then, v(t) < u(t) for all € (tg, @).

4 Connection of an isolated vertex

Our first result is on the change of the index of a graph when we connect an isolated
vertex to some other vertices. For this case Rowlinson [10] computed the characteristic
polynomial of the modified graph in terms of the characteristic polynomial of the initial
graph and some entries of its idempotents (see also Cvetkovié¢ and Rowlinson [5, p.90] for
a shorter proof).

Theorem 4.1 Let G; = (V, E) be a graph with an isolated vertex u. Given some vertices
U1, U2,...,0y different from u, we denote by G the graph (V,E U {uvi,uve,...,uvg}),
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which is assumed to be connected. If \; and Ap are the spectral radii of G; and Gg,
respectively, then the following inequality holds:

Ae < H Y,

where the function H : (0,+00) — R is defined by H(§) = & — %. The equality is satisfied
if and only if Gp = {u} + G, with G being a regular graph.

Proof. Let n+1 be the order of the graphs G; and G. The continuous perturbation
of the matrix associated to G; that produces the matrix associated to GGz can be described
by

00 0 0 w'

A(t)= A, +tP 0 :

(t)= A, +tP = 5 c o o . telo,1]
0 .

where w is the column binary vector associated to the perturbation and C' is the adjacency
matrix of graph G; — {u}. Note that, for any ¢ € (0, 1], the matrix A(t) is nonnegative and
connected. Let \(t) be the spectral radius of A(t). Let 2(t) = (a|z) " = (a, 21,22, ..., 2a) "
be its normalized positive eigenvector. Then, by Eq. (1),

N = (Pz,z) = 2a(z, w).
From A(t)z(t) = A(t)z(t), we have
(o & )(2)=(mma)=(22). ®

and the first scalar equation gives

Na? =t (z,w)? < *|z[]g = t*(1 — ?)g. (3)
Hence,
a? 2gt
N =2— < 2" = f(t,\). 4
< e =) @

The inequalities (3) and (4) are either equalities or strict inequalities in the whole interval
(0,1]. Indeed, if the equalities are satisfied for ¢y, then z(ty), which has only positive
entries, would be proportional to w, which is not null. Therefore, w = j and z(t9) = 5j.
Hence, at t = to the last n equations of (2) become Cj = (x\ - t0%> J, where a = a(tp),
so that G; = {u} UG, Gr = {u} + G, and G is a regular graph. To conclude that (4) is
always an equality, let us study the existence of solutions to the following system:

0 t t « «

t 5 B
. =A| . , o +np?=1.

C : :

t 5 B



Then, for all ¢, we obtain the solution:

5[ - X
= — J— 2 — — -
A=s Tyt a=yg T Ay

where § = A — t% denotes the degree of G.

Now we have the following cases:

(a) N = f(t,\) for all t € [0,1], A\(0) = A,, if G = {u} + G, with G being a regular
graph.

(b) N < f(t,\) for all t € (0,1], N (0) = £(0,X(0)), A(0) = )\, in any other case.
The Cauchy problem
r_ 29ty
y* + gt
can be solved by doing the changes y = /rs and t = /s, so giving

y(0) = Ay,

y2(t) — Ary(t) — gt* = 0.

Hence,

g
g?

and, introducing the bijection H : (0, +00) — R, H(§) = £ — =, the theorem follows from

Lemma 3.2. O

5 Addition of an edge

The second result that we present is on the change of the index when we add an edge to
a graph. In this context, Rowlinson [8] proved that, under some conditions, the index of
the perturbed graph can be determined by the eigenvalues of the original graph together
with some of its angles. Moreover, some upper and lower bounds for such an index were
given by Maas [7].

Theorem 5.1 Let G; = (V, E) be a graph and let u,v € V be two nonadjacent vertices
with degrees 8y, 0y. Let Gp = (V, E'U{uv}), which we assume to be connected. If \; and
Ar are, respectively, the indexes of G; and G, then

Ar <1+ K YK (N\) - 1),

where K : (0,00) — R is defined as K(§) =& — % The equality is satisfied if and only
if Gr = ({u} U{v}) + G, where G is a regular graph.



Proof. Let n + 2 be the order of graphs G; and G with adjacency matrices A;
and Ap, respectively. In the language of perturbations, we can consider that A, and Ay
are related by Ap = A; + P, where P = (p;j) has entries p1o = pa1 = 1 and p;; = 0
otherwise (if necessary, we rearrange the vertices so that v; = u and vy = v). Considering
the continuous perturbation, let us consider the uniparametric family of matrices

At)= A, +tP = Do : t €[0,1],
w, W, C

where w,,, w, € {0,1}" and C is the n xn adjacency matrix of the subgraph G;—{u}—{v}.

Let A(t) be the spectral radius of A(t), which is a continuous function on ¢ for ¢ € [0, 1],
and it is differentiable for ¢ € (0, 1] by the connectedness of A(t).

Now, with x(t) = (o, 8]2) = (o, B, 21, 22, - - -, 2n), Eq. (1) becomes
N = (Pz,z) = 2af.

Expressing the first two entries of (A(t)I — A(t))x(t) = 0, we get the system
a r
(5)=(0),

M:(_)‘t _;> = (we,2), 5= (wy,2).

Introducing the angles ¢, and ¢, that the vectors w, and w, form with z, we can write

son = ()
(8, cos? @, + 8, cos? py)

with

2
<M e+ )

= Japplecrpetd,
Lo 2
< Lo (A_t)f (5. +60), (5)

since 11 is the maximum eigenvalue of M ™! (to which eigenvector (1,1) is associated).

Then,
Oy + 0y
(6)

(A=18)2+ 0y + 0y

208 < a? + % <

Therefore, the spectral radius of A(t) satisfy the following differential inequality:

Oy + 0
' < e =\

7



We now prove that, in the interval (0, 1], expression (7) is always an equality or a
strict inequality. Let us assume that there exists ¢y € (0, 1] such that (7) is an equality.
Observing (6), we see that the first inequality is equivalent to « = 8 and the second one
to both equalities in (5). The first one occurs if /&, cos p, = /&, cos g, and the second
if cosp, = cosg, = 1. Therefore, the equality in (7) is valid for a value t; when the
following conditions are simultaneously satisfied:

Ou = Oy, COS (P, = COS Py = 1, a=0.

As all the entries of z are different from zero and w,, w, are not null vectors, then it
follows that w, = w, = j and x(ty) = (o, a, 8, M), B). The last n entries of A(to)z(tg) =
Ax(to) give 2aj + SCj = \Gj, that is,

Cj = (A—2g)j,

which means that G; = ({u} U {v}) + G, with G being a regular graph with adjacency
matrix C. Then, for all ¢ € (0, 1], there exist positive integers «, ~y, such that («, «, 7, () v)
is an eigenvector (since all its entries are positive, it corresponds to the spectral radius).
Indeed, the system

t 0 --- jT o o
: T =27 ], 202 + ny? =1,
JjJ C
: Y Y
has solution
1 o—1
a = =

\/ 5 —t)? +8n’

2
T \ﬁ\/ +8n
A = §<t+5+\/(5—t)2+8n),

where 0 is the degree of G, and inequalities (5) and (6) are equalities for all ¢ € (0,1].
Extending by continuity to [0, 1], we have the following possibilities:

(a) N = f(t,\), forallt € [0,1], \(0) = A\, if G; = ({u}U{v})+G, with G being regular;
(b) N < f(t,N), for all t € (0,1], N(0) < £(0,A(0)), A(0) = A, in any other case;



where f is the right side of differential inequality (7).

Now, the solution to Cauchy’s problem

)
= W , 0) = Ay,
V= t2ranto, YO=M
is
(5u + 6’[) 5u + 5’[}
- == )\I - .
y—t As
By introducing the invertible function
Oy + 0y

K :(0,00) > R, K¢=¢————,

we can write y(1) = 1+ K1 (K()\;) — 1).

Lemma 3.2 applied to case (b) completes the proof. O

6 Addition of a pendant edge

The last result presented here is on the change of the index of a graph G when we add
a pendant edge to one of its vertices. In this context, Bell and Rowlinson [1] derived,
under certain conditions, exact values for the index of the perturbed graph in terms of the
spectrum and certain angles of G.

Theorem 6.1 Let G, = (V, E) be a connected graph, let w € V' be a vertex of degree o,
and take a vertezv € V.. Let Gp = (VU{v}, EU{wv}). If \; and Ap are the spectral radii
of G; and Gy respectively, then

where Ly : (0,+00) — R is L1(§) = & — % and Lo : (1,4+00) — R is La(&) = & —

The equality is satisfied if and only if G; = {v} + G, with G being a regular graph.

g0u
L.
&t

Proof. Let n+ 1 be the order of ;. Rearranging the vertices suitably, the pertur-
bation matrix P = (p;;) has p12 = pa1 = 1 and the other entries are zero. Let us consider
the matrices

0t 0 --- 0
Aty=| 0 : . telo1],
Cow C
0



such that A(0) is the adjacency matrix of the graph G, = G, U{u}, with the same spectral
radius as (G;.

Now Eq. (1) becomes
N = (Pzx,z) = 208,

where x(t) = (o, B|2), with z = (21, 22, ..., 2,) being the normalized positive eigenvector,
t € (0,1). The first two entries of the matrix equation (A(¢)I — A(t))x(t) = 0 give the
system

Aa—t8 = 0,
—ta+ A\ = (w,z).

Introducing the angle ¢ determined by z and w, we can express the solution by
z
v/ Oy )\2” —”t2 t cos o,

z
B = \/EMH_HIQ)\COS@.

Hence, using o + 82 + ||z||*> = 1, we obtain

26t cos?

N = .
du(A2 +t2) cos? p + (A2 — t2)?

The constraint cos? ¢ < 1 implies that

Ve 2\t6,

T (A2 =t2)2 4 0, (A2 +12) (®)

for all t € (0,1]. Let us observe that the continuous extension of (8) to ¢t = 0 gives an
equality, since a(0) = 0.

We now prove that inequality (8) is either an equality or a strict inequality in the
interval (0, 1]. Indeed, if there existed ¢y € (0, 1] for which (8) were an equality, then z(t¢)
and w would be proportional. As all the entries of z are strictly positive and w is not a
null vector, then w = j and z(tg) = Jj. The last n equations of (A(to)I — A(to))x(tp) = 0
give Cj = <)\ — ?) j. Therefore, the graph G is {v} + G, with G being a regular graph
of degree § and with adjacency matrix C. Then, z = §j and, therefore, it is proportional
tow = j, for all t € (0,1]. Indeed, the system

ot 0 --- 0
t 0 - 47 @ @
B B
0 Tl=x] v |, 4B+t =1,
J C :
0 ¥ ¥
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gives the eigenvector of strictly positive entries
(A—d)t ﬂi()\—d))\ A
\/K 9 \/K 9y FY \/K’

where A = 2(n+t2)A2 —d(n+ 4t?)\ 4 2t25? and A is the maximum root of the polynomial
A3 — 6A% — (n + )\ + 6t2. By continuity, we thus have the two following possibilities:

(a) N = f(t,\), for all t € [0,1], A(0) = A, if G; = {v} + G, with G being a regular
graph,

(b) N < f(t,N), for all t € (0,1], N(0) < £(0,A(0)), A(0) = A, in any other case,

where f is the right side of differential inequality (8).

The differential equation

ty
(Y2 —12)2 + 0, (y2 + 12)’

with initial condition y(0) = A;, is transformed into a linear equation by means of the

y =20,

change: y = \/ ‘%TR, t= \/ &TR. Solving it, we calculate implicitly y(1), represented by v,
as one root of the equation
2

0 )<u2—1>2+53<u2—1>:o,

2 2 2 2 3 2 U
(v + 1) —1-08,)"+ (" —1) —|—2((5u—/\1—)\%

which may be factorized into the following two cubic equations:

Ou
v — <)\I—)\I>I/2—(5u+1)l/+</\[—)\1) =0,

The three roots of both equations are real, but only one in the first equation satisfies the
necessary condition v > +/d,, + 1. Introducing the bijective functions

Su Ou
¢’ £ —
we can express y(1) = Ly 'Li()\;). As before, Lemma 3.2 applied to case (b) completes
the proof. O

Li:(0,400) = R, Li(§) =¢&— Ly :(1,400) = R, Ly(§) =& —

)

iy

7 Asymptotic behavior

It is illustrative to compare the bounds obtained in the three above theorems for graphs
with large index. Making the corresponding asymptotic developments, we have the fol-
lowing cases:
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(a) Connection of an isolated vertex (to g vertices):

1
< -1 — i — .
Ar <H (A)) )\I+)\1+O(/\I>

(b) Addition of an edge (between vertices of degrees d,,dy):

_ 8y + Oy 1
A ST+ KN KA) = 1) =X\ + +0<2>.
)\I )\I

(¢) Addition of a pendant edge (to a vertex of degree dy,):

0. 1
—1 . U

Let us observe that the maximum possible variation in the spectral radius caused by
the three perturbations considered are, for a large A;, of different orders of magnitude.

Notice also that, by applying iteratively the above formulas, we can obtain asymptotic
bounds for ‘multiple perturbations’. For instance, if G is obtained from G; by joining all
the vertices w1, us, ..., un of a coclique, with respective degrees 41, da, ..., dm, we get, by
applying the bound for the addition of an edge (7;) times,

m—1 & 1
>\F§)\1+)\%;5i+0<)\?>-
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