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Abstract— Hydrogen-1 magnetic resonance spectroscopy
( 1H-MRS) allows noninvasivein vivo quantification of
metabolite concentrations in brain tissue. In this work two
of the most aggressive brain tumors are studied with the
purpose of differentiating them. The challenging aspect in
this task resides in that their radiological appearance is
often similar, despite the fact that treatment of patients
suffering these conditions is quite different. Efforts to dif-
ferentiate between these two profiles are getting increasing
attention, mainly because the consequences of performing
an incorrect diagnosis. Due to the high dimensionality,
initiatives oriented to reduce the description complexity
become important. In this work we present a feature selec-
tion algorithm that generates relevant subsets of spectral
frequencies. Experimental results deliver models that are
both simple in terms of numbers of frequencies and show
good generalization capabilities.

Keywords: Feature Selection; Proton Magnetic Resonance Spec-
troscopy; Classification.

1. Introduction
Hydrogen-1 (1H) magnetic resonance (MR) spectroscopy

allows noninvasivein vivo quantification of metabolite con-
centrations in brain tissue. Nowadays,1H-MRS has proven
its value as a powerful tool in the clinical assessment
of several pathologies –as epilepsy, multiple sclerosis and
several types of cancer, see e.g. [1], [2]. Its application in
brain tumor oncologic diagnosis carries tremendous benefits
to patients, relieving them from complicated surgical proce-
dures and their collateral difficulties.

The use of systematic approaches based on1H-MRS data
for the diagnosis and grading of adult brain tumors is subject
of an extensive scientific research. One of these growing
approaches takes as a backbone well-established machine
learning techniques acting as model building methodlogiesto
discern and predict several classes of brain tumors. Previous
work typically focuses on discriminatingnormal tissue from
high grademalignant tumors,low grademalignant tumors,
meningiomas, as well as other rare tumors or super-classes
thereof [3], [4], [5]. In this work we go a step beyond
by concentrating on the specific internal separation of the
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Fig. 1: Mean spectra for Glioblastomas (left) and Metastases
(right).

superclass formed by the high grade malignant tumors, dif-
ferentiating fromGlioblastomasand Metastases. Although
their radiological appearance is often similar, the clinical
management of patients suffering any of these conditions is
quite different [6]. This circumstance may lead to a surgical
biopsy for a definitive diagnosis, an undesirable situationin
general. Therefore, the use of non-invasive techniques and
the discriminative power of the derived information is ever
encouraged in this setting.

2. High-grade gliomas and Metastases
Glioblastomas (GLI) are the most common and most

aggressive type of primary brain tumor in humans and
account for the 52% of all parenchymal brain tumor cases
and 20% of all intracranial tumors. It affects mainly male
patients aged 45 to 55, with a survival expectation of around
40 weeks after diagnosis and medical treatment [7], [8].

Brain Metastases (MET), which amounts about 35% of
all cancer patients, are a major cause of death from cancer.
Properly speaking, METs are not originated in the Central
Nervous System (CNS). Their source is mostly based in
lung cancer, breast cancer, melanoma, renal cancer and
colon cancer. Mutated cells are spread out trough direct
invasion to normal brain tissue or by alternate routes like
the lymphatic and blood vessels circulating through the
bloodstream. Patients with brain metastases at best reach
a mean survival expectation, after whole brain radiotherapy,
of a little more than seven months [9], [7].



The radiological appearance of GLIs and METs is quite
similar. Figure 1 depicts Mean Long-Echo Time spectral
plots of both pathologies put side by side. Their similarity
in metabolic levels, with the most prominent peaks in the
Choline (Cho) zone, the Lipids-lactate region and Phospho-
creatine (PCr), can be clearly seen. METs commonly show
moderate to marked reduction of N-Acetyl aspartate (NAA, a
major brain metabolite), a decreased Cr signal, and elevated
Cho. Also, some metastases may also contain considerable
concentrations of lipids [10].

As mentioned, efforts to overcome the difficulty of differ-
entiating between these two profiles are scarce but are ac-
quiring increasing attention. For instance, the authors in[6]
studied short echo time spectral data from 23 glioblastomas
and 24 metastases. Anad-hoc tool to analyze metabolites
concentrations was used; they concluded that Lipid and
Macromolecule signals can provide a significant discrimi-
nation. Further, [11] studied 43 patients having one of these
two conditions. The method used was based in MR imaging
and a kind of special signal processing called Dynamic
Susceptibility Contrast Perfusion MR imaging; the study
concludes positively about differentiating the two classes of
tumor.

In the same line of research (MR imaging), several image
processing techniques have been used to asses possible
differences, which are compared with non-parametric statis-
tical tests [12]. A logistic regression analysis with forward
stepwise selection yields an AUC of 0.98. Unfortunately,
in this work the presence of a validation scheme used to
assess the true generalization ability of the proposed model
is not fully specified. Thus, the possibility of an overfitted
model cannot be discarded. Very interesting is recent work
that extract features from 67 brain MRI data set and uses
bagging (bootstrap aggregation with the majority vote rule)
to classify known metastases, gliomas and meningiomas
[13]. From five extracted features, an exhaustive search
was done in order to find the optimal subset of features
that feeds the classification stage. This proposal reaches as
much as 97% of accuracy on discriminating Glioblastomas
from Metastases. However, the best optimal subset has no
medical interpretation due to the fact that the features were
obtained from some purely mathematical transformations
–e.g. symmetry of normal distributions, inverse difference
moments and difference in variances.

More recent work [14] using MRI imaging analyzes a
multi-centre1H-MRS brain tumor database [15]. A wrapper
feature selection process uses direcly the performance of
a single-layer perceptron (SLP), under the assumption that
irrelevance affects negatively the predicted outputs of the
SLP and thus can be used to detect irrelevant frequencies
(seen as features of the model). A backward search strategy
governs the Feature Selection (FS) process and stratified 5x5
cross-validation is carried out to choose among competing
models (characterized by different sets of frequencies) and to

estimate generalization ability. In this experimental setting,
a remarkable 94.40% of accuracy (with 27 spectral frequen-
cies) was reached.

Algorithm 1 Forward-Backward Spectral Selection
1: Input : S = {s1, . . . , sn}: Full feature set;

C: Class feature
J : 2S → R: performance measure, to be maximized

2: BEST ← {argmax
si∈S

J({si})}; j
cur ← J(BEST )

3: S ← S \ {BEST}
4: repeat
5: ***Forward Stage***
6: snew ← argmax

si∈S

J(BEST ∪ {si})

7: jnew ← J(BEST ∪ {snew})
8: if jnew > jcur then
9: BEST ← BEST ∪ {snew}

10: jcur ← jnew

11: S ← S \ {snew}
12: end if
13: ***Backward Stage***
14: repeat
15: snew ← argmax

si∈BEST

J(BEST \ {si})

16: jnew ← J(BEST \ {snew})
17: if jnew ≥ jcur then
18: BEST ← BEST \ {snew}
19: jcur ← jnew

20: end if
21: until BEST does not change
22: until BEST does not change
23: Output : BEST : Best Spectral Subset

3. An algorithm that selects subsets of
spectral points

In this work we analyze this last problem, but tack-
ling it with a simpler method. An interleaved Forward-
Backward Feature Selection search is developed looking for
the improvement in performance of several classification
algorithms. The FS strategy needs no parameter optimization
and its initialization responds to a simple deterministic
criterion. Therefore, it yields an affordable solution in terms
of difficulty of implementation, computational speed and
interpretability by non-experts in machine learning methods.
The algorithm is described in the listingAlgorithm 1 , and
named FBSS: Forward-Backward Spectral Selection. Given
a performance measure, to be maximized (e.g. the resampled
evaluation of a classifier in a data sample), the algorithm
adds and removes, in a step by step fashion, spectral points
with the aim of improving current performance.

Specifically, in every iteration of the outer loop, one
feature is added to the current best solutionBEST , as long
as this step improves on current performancejcur. Then
a variable number of feature removal steps is carried out,
inasmuch the same condition of improved performance is
met. This scheme is oriented to favour solutions with low
numbers of features. The outer iteration also ends when no
further improvement is observed. This strategy bears some



resemblances with a floating search algorithm in its forward
version [16]. However, it has a far lower computational
cost given that discarded features are not considered again
for another inclusion round. Note also that current subset
performance is not compared specifically against the best
performance achieved for thesamesize of the current subset
(as floating methods do).

4. Experimental settings
The examined1H-MRS data is drawn from a database be-

longing to theInternational Network for Pattern Recognition
of Tumors Using Magnetic Resonance(INTERPRET), an
European research project aimed to develop systematic tools
to enable radiologists and other clinicians without special
knowledge or expertise to diagnose and grade brain tumors
routinely using magnetic resonance spectroscopy [15].

An essential variable in the acquisition of1H-MRS spectra
is the choice of echo time. With short echo times (around
20 milliseconds), larger numbers of metabolites are detected
(myoinositol, glutamate, glutamine), but it is more likely
that peak superimposition will occur, causing difficulty in
spectroscopic curve interpretation. By using long echo times
(>135 milliseconds), most metabolites in the brain are lost
(except that of choline, creatine, N-acetyl aspartate and lac-
tate), but with better definition of peaks, thereby facilitating
graphical analysis [10].

The specific data set used is constructed by single voxel
1H-MR spectra acquiredin vivo from brain tumor patients
in two configurations: Long Echo Time (PRESS 135 to
144 ms), named LET, and Short Echo Time (PRESS 30 to
32 ms), named SET. Brain pathologies that conform both
configurations are distributed as following:

• LET: 195 cases which include 55 meningiomas, 78
glioblastomas, 31 metastases, 20 astrocytomas grade II,
6 oligoastrocytomas grade II and 5 oligodendrogliomas
grade II.

• SET: 217 cases with: 58 meningiomas, 86 glioblas-
tomas, 38 metastases, 22 astrocytomas grade II, 6
oligoastrocytomas grade II, and 7 (SET) oligoden-
drogliomas grade II.

Glioblastomas (GLI) and Metastases (MET) were ex-
tracted in this study using both LET and SET data sets.
Moreover, a third configuration (named LSET) was prepared
in order to explore the discriminative power of themerged
LET and SET data, formed by the 195 common observations
of the LET and SET data sets.

Three well-known linear classifiers were used as a cri-
terion function J : Fisher’s Linear Discriminant Classifier
(LDC), the k-nearest-neighbors technique with Euclidean
metric (kNN) and hyper-parameterk ∈ {1 . . . 15}; and the
Support Vector Machine with linear kernel (lSVM)1 and C

1For the experiments, we use a MATLAB implementation; specifically,
for the SVMs we use the MATLAB interface to LIBSVM [17].

Table 1: LET 10x10 cross-validation classification results
(average and standard error).α indicates the value of the
hyper-parameter (if any):k for kNN and C for the lSVM;
theppmcolumn expresses metabolites (in ppm) of the BEST
spectral subset obtained for the LET data set.

Classifier Accuracy α ppm

LDC 86.21± 0.34 – L3.79 L3.22 L3.03 L2.96 L1.32
L3.07

NN 88.59± 0.26 2 L2.75 L2.52 L2.08 L1.80 L1.49
L0.79

lSVM 92.43± 0.39 2−0.5 L3.83 L3.74 L3.39 L3.22 L3.15
L2.58 L2.43 L2.08 L1.91 L1.65
L1.34

Table 2: SET 10x10 cross-validation classification results
(average and standard error).α indicates the value of the
hyper-parameter (if any):k for kNN and C for the lSVM;
theppmcolumn expresses metabolites (in ppm) of the BEST
spectral subset obtained for the SET data set.

Classifier Accuracy α ppm

LDC 85.22± 0.25 – S4.23 S3.51 S2.31 S1.46 S1.36
S0.64

NN 86.48± 0.65 4 S4.19 S2.63 S2.18 S1.86
lSVM 94.71± 0.22 2 S4.23 S3.79 S3.38 S3.26 S3.09

S2.98 S2.71 S2.60 S2.46 S2.35
S2.25 S1.97 S1.36

Table 3: LSET 10x10 cross-validation classification results
(average and standard error).α indicates the value of the
hyper-parameter (if any):k for kNN and C for the lSVM;
theppmcolumn expresses metabolites (in ppm) of the BEST
spectral subset obtained for the combined LSET data set.

Classifier Accuracy α ppm

LDC 92.24± 0.23 – L4.25 L2.37 L2.33 L2.08 L1.57
L1.30 L1.25 S3.96 S3.24 S2.39
S1.72 S1.57

NN 88.32± 0.54 1 S2.69 S2.67 S2.63 S1.49 S1.48
lSVM 92.92± 0.21 2 L4.04 L3.96 L2.94 L2.63 L2.33

L1.25 S4.10 S3.28 S2.37 S2.35
S1.40

regularization constant as the only hyper-parameter (with
C = 2

c, with c running from−7 to 7). In all cases, the FBSS
algorithm described above is used to maximize performance
of several classifiers estimated by means of averaged values
of 10x10 cross-validation (ten times 10-fold cross-validation
or 10x10cv for short).

5. Experimental results and discussion
Tables 1, 2 and 3 contain the experimental results on LET,

SET and LSET data, respectively. It is observed that the
lSVM classifier offers the best overall performance, specially
on the SET data set, with near 95% average 10x10cv accu-
racy and only 13 spectral frequencies. Similar results (around
92% of 10x10cv accuracy) are delivered by LET-lSVM,
LSET-LDC and LSET-lSVM with almost the same number



of spectral points (11 or 12). A non-parametric Wilcoxon
signed-rank test is used for the (null) hypothesis that the
median of the differences between the errors obtained by
SET-lSVM against any of the combinations LET-lSVM and
LSET-lSVM is zero. This hypothesis has to be rejected at
the 95% level of confidence, thus showing a significant
difference in medians. The obtainedp-values are shown in
Table 4 (right part). Figure 2 presents the mean spectra
of the two classes (Glioblastomas and Metastases) for the
SET data and the spectral points of the best solution: the
combined SET-lSVM model. It is observed that most of the
selected points fall into the regions that show a marked
difference between signals. Table 4 (left part) gives the
10x10cv confusion matrix for the SET-lSVM model.
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Fig. 2: The subset of spectral frequencies used by the SET-
lSVM model that yields best performance –see Table 2– as
positioned in the full metabolic spectrum.

Table 4: Left: Averaged 10x10cv accuracies expressed as
a confusion matrix for the SET-lSVM model. True class
falls vertically. Right: Wilcoxon signed rank testp-values
comparing LET-lSVM and LSET-lSVM models against SET-
lSVM.

True SET-lSVM
Class GLI MET

GLI 7.26 ± 0.07 0.34 ± 0.06

MET 0.21 ± 0.04 2.19 ± 0.05

SET-lSVM

LET-lSVM 0.002
LSET-lSVM 0.006

6. Biological interpretation
The metabolic definition of the subset of spectral points

depicted in Figure 1 is as follows [18]:
• S4.23Threonine: A large neutral amino acid.
• S3.79Alanine: A nonessential amino acid that has been

observed in increased levels in meningiomas.
• S3.38 Scyllo-inositol: An isomer associated in high

levels with Alzheimer’s disease.
• S3.26 Myo-inositol: Its function is not enough un-

derstood, although it is believed to be a requirement

in cell growth. Altered levels have been linked with
Alzheimer’s disease, hepatic encephalopathy and brain
injury.

• S3.09: Phenylalanine: An aromatic amino acid that
presents elevated readings in phenylketonuria, an ab-
normal phenylalanine metabolization.

• S2.98-2.60 Glutathione-Cysteine, Glutatione-
Glutamate: An anti-oxidant essential for maintaining
normal red-cell structure. Altered levels have been
reported in Parkinsons’s disease and other neuro-
degenerative diseases.

• S2.71-1.97NAA-Aspartate, NAA-Acetyl: The NAA is a
free amino acid whose function is poorly understood,
but is is commonly believed to provide a marker of
neuronal density. Among the NAA grpous, the N-
Aspartate (3CH2) group and the N-Acetyl (2CH3)
group were selected.

• S2.46-2.35 Glutamate-Glutamine: Glutamate is an exci-
tatory neurotransmitter, which plays a role in mitochon-
drial metabolism. Glutamine plays a role in detoxifica-
tion and regulation of neurotransmitter activities. These
two metabolites resonate closely together.

• 2.25 Valine: An essential amino acid necessary for
protein synthesis.

• S1.36Lipids/Lactatepeak: seen in condition of necro-
sis.

7. Conclusions
Despite being a non-invasive technique that provides rich

information about the biochemistry of brain tissue,1H-
MRS is still not fully consolidated as a standard method
for clinical diagnosis. To become a recurrent tool,1H-MRS
algorithms or machine learning proposals must be robust
and highly reliable. Working towards this direction, the
solutions reported in this paper give a drastic reduction in
dimensionality with competitive performance in subsets of
spectral points from a1H-MRS data set of brain tumors.
Two classes of brain tumors were explored, Glioblastomas
and Metastases which present a certain degree of similarity
in their radiological spectrum, making their differentiation
a difficult undertaking. In light of the promising obtained
results using FBSS under the described experimental settings
and considerations, some conclusions can be pointed out:

• Feature selection appears to be a solid step in dimen-
sionality reduction in this addressed problem.

• With less than 10% of spectral points (13 out of 195, for
the obtained SET-lSVM model), near 95% of accuracy
can be achieved discriminating Glioblastomas from
Metastases.

• Of the three data sets, given by two echo times and their
fusion, the SET data set delivers better performance,
confirming previous findings [5].

• The resulting subset of selected spectral frequencies has
a medical interpretation in terms of known metabolites



–see [18]–, which may become helpful to radiologists
as an aid in medical diagnosis.

Future research in this path will include studying more
than two classes (tumour subtypes) and exploring the poten-
tial of other low-complexity classifiers.
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