ELECTRIC SYSTEMS

Escola d'Enginyeria d'Igualada (UPC)

Author: Dr. Jordi-Roger Riba

Edition: September 2010

SISTEMES ELÈCTRICS. SYLLABUS

UNIT 1: Direct Current (DC) Circuits
2 weeks
UNIT 2: Alternating Current (AC) Circuits
2 weeks
UNIT 3: Three-Phase AC Circuits
3 weeks
UNIT 4: Transformers
3 weeks
UNIT 5: Asynchronous AC Machines
3 weeks
UNIT 6: Other Electrical Machines
1 week
UNIT 7: Electrical Installations and Low Voltage Electrical Protections 1 week

Unit 1. DC CIRCUITS

ELECTRICAL CURRENT

When a metal wire is connected across the two terminals of a DC voltage source, the free electrons of the conductor are forced to drift toward the positive terminal. The free electrons are therefore the current carrier in a typical solid conductor.

According to Ampère's law, an electric current produces a magnetic field.

Unit 1. DC CIRCUITS
 ELECTRICAL RESISTANCE

Electrical resistance

- The electrical resistance of an object is a measure of its opposition to the passage of a steady electric current.
- It was discovered by George Ohm in 1827
- The SI unit of electrical resistance is the ohm (Ω).
- The resistance R of a conductor of uniform cross section can be computed as:

$$
R=\rho \cdot \frac{l}{S}
$$

I is the length of the conductor, measured in meters [m]
\boldsymbol{S} is the cross-sectional area of the current flow, measured in square meters [m^{2}]
$\boldsymbol{\rho}$ (Greek: rho) is the electrical resistivity of the material, measured in ohm-metres $(\Omega \mathrm{m})$. Resistivity is a measure of the material's ability to oppose electric current.

Unit 1. DC CIRCUITS

ELECTRICAL RESISTANCE: temperature dependence

Electrical resistance: temperature dependence

- The electric resistance of a typical metal increases linearly with rising temperature as:

$$
R=R_{0} \cdot\left[1+\alpha \cdot\left(T-T_{0}\right)\right]
$$

Where

- T: metal's temperature
- T_{0} : reference temperature (usually room temperature)
- R_{0} : resistance at T_{0}
- α : percentage change in resistivity per unit temperature. It depends only on the material being considered

Material	Resistivity ($\Omega \cdot \mathrm{m}$) at $20^{\circ} \mathrm{C}$	Temperature coefficient K^{-1}
Silver	1.59×10^{-8}	0.0038
Copper	1.68×10^{-8}	0.0039
Gold	2.44×10^{-8}	0.0034
Aluminium	2.82×10^{-8}	0.0039
Tungsten	5.60×10^{-8}	0.0045
Zinc	5.90×10^{-8}	0.0037
Nickel	6.99×10^{-8}	0.006
Iron	1.0×10^{-7}	0.005
Platinum	1.06×10^{-7}	0.00392

Unit 1. DC CIRCUITS

VOLTAGE AND CURRENT DIVIDERS

The voltage divider

- It is a simple linear circuit that produces an output voltage that is a fraction of its input voltage.
- Voltage is partitioned among the components of the divider.

General case: $\quad V_{R j}=V \cdot \frac{R_{j}}{\sum_{i} R_{i}}$
In the example shown:

$$
V_{R_{2}}=V \cdot \frac{R_{2}}{R_{1}+R_{2}}
$$

The current divider

- A current divider is a simple linear circuit that produces an output current that is a fraction of its input current (IT).
- Current is split between the branches of the divider.

General case: $I_{i}=I \cdot \frac{R_{1} \cdot R_{2} \cdots R_{i-1} \cdot R_{i+1} \cdot R_{n}}{\sum_{i} R_{i}}$

In the example shown: $\quad I_{1}=I \cdot \frac{R_{2}}{R_{1}+R_{2}}$

Unit 1. DC CIRCUITS
 OHM'S LAW

Ohm's law

The current through a conductor between two points is directly proportional to the potential difference -or voltage across the two points-, and inversely proportional to the resistance between them.

$$
I=V / R \quad \text { or } V=I \cdot R
$$

- The electrical resistance of an object is a measure of its opposition to the passage of a steady electric current.
- The electrical resistance was discovered by George Ohm in 1827
- The SI unit of electrical resistance is the ohm (Ω).

The resistance R of a conductor of uniform cross section can be computed as:

Unit 1. DC CIRCUITS
 KIRCHHOFF'S CIRCUIT LAWS

Kirchhoff's current law (KCL)

At any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node.

$$
\sum_{i} I_{i}=0 \quad \text { or } \quad \sum I_{i n p u t}=\sum I_{o u t p u t}
$$

The current entering any junction is equal to the current leaving that junction: $i_{1}+i_{4}=i_{2}+i_{3}$

Kirchhoff's voltage law (KVL)

The directed sum of the electrical potential differences (voltage) around any closed circuit must be zero.

$$
\sum_{i} V_{i}=0
$$

The sum of all the voltages around the loop is equal to zero:

Unit 1. DC CIRCUITS
 ELECTRIC POWER

Electric power

- Is the rate at which electrical energy is transferred by an electric circuit or consumed by an electric load.
- The SI unit of power is the watt.
- The power consumed by a load is considered as positive
- The power delivered by a source is considered as negative

$$
P=+V \cdot I \quad \text { Absorbed power }
$$

$$
P=-V \cdot I \text { Delivered power }
$$

$$
P=+V \cdot I \quad \text { Absorbed power }
$$

$P=-V \cdot I$ Delivered power

Unit 1. DC CIRCUITS ENERGY

Energy

- Energy results form the integral: $\mathrm{W}=\int_{0}^{t} \mathrm{P}(\mathrm{t}) \cdot \mathrm{dt}$
- If power is constant it results: $\mathrm{W}=\mathrm{P} \cdot \mathrm{t}=\mathrm{V} \cdot \mathrm{I} \cdot \mathrm{t}$
- Energy is usually measured in kWh (Kilowatt hour). Energy in watt hours is the multiplication of power in watts and time in hours.
- 1 kWh = 3.6 MJoules
- Electric power meters:

	joule	watt hour	electronvolt	calorie
$1 \mathrm{~J}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}=$	1	2.778×10^{-4}	6.241×10^{18}	0.239
$1 \mathrm{~W} \cdot \mathrm{~h}=$	3600	1	2.247×10^{22}	859.8
$1 \mathrm{eV}=$	1.602×10^{-19}	4.45×10^{-23}	1	3.827×10^{-20}
$1 \mathrm{cal}=$	4.1868	1.163×10^{-3}	2.613×10^{19}	1

Unit 1. DC CIRCUITS
 POWER AND ENERGY

In domestic and industrial supplies the kilowatt-hour (kWh) is usually used. 1 kWh is the energy used when a power of 1 kW is supplied for one hour (3600s). Notice that power $=$ energy/time, therefore energy $=$ power \times time and since 1 kWh is a power multiplied by a time, it is in fact a unit of energy (not power).

Example. How much energy is supplied to a 100Ω resistor which is connected to a 150 V supply for 1 hour?
Power: $P=U^{2} / R=150^{2} / 100=225 \mathrm{~W}$
Energy: $\mathrm{W}=\mathrm{P} \cdot \mathrm{t}=225 \mathrm{~W} \cdot 1 \mathrm{~h}=225 \mathrm{~Wh}=0.225 \mathrm{kWh}$

$$
\mathrm{W}=\mathrm{P} \cdot \mathrm{t}=225 \mathrm{~W} \cdot 1 \cdot 60 \cdot 60 \mathrm{~s}=810000 \mathrm{~J}=810 \mathrm{~kJ}
$$

The number of joules or kWh supplied is a measure of the amount of electrical energy supplied.

Example. A DC motor takes 15A from a 200V supply. It is used for 40 mins. What will it cost to run if the tariff is $0.13 € / \mathrm{kWh}$?

Power: $\quad \mathrm{P}=\mathrm{U} \cdot \mathrm{I}=200.15=3000 \mathrm{~W}=3 \mathrm{~kW}$
Energy in kWh: $\quad \mathrm{W}=\mathrm{P} \cdot \mathrm{t}=3 \cdot(40 / 60)=2 \mathrm{kWh}$
Cost in $€: \quad C=2 \cdot 0.13=0.26 €$

Unit 1. DC CIRCUITS
 TECHNIQUES OF CIRCUIT ANALYSIS: Mesh-current method

The mesh-current method

- Also known as the Loop Current Method.
- It uses simultaneous equations, Kirchhoff's Voltage Law, and Ohm's Law to determine unknown currents in a network.
- is a method that is used to solve planar circuits for the voltage and currents at any place in the circuit.
- EXAMPLE

Mesh current equations:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { loop 1: } \quad I_{1}=2 \mathrm{~A} \\
\text { loop 2: } \quad 10=-10 \cdot I_{1}+30 \cdot I_{2}
\end{array}\right. \\
& \text { It results: } \quad \mathbf{I}_{\mathbf{1}}=\mathbf{2} \mathbf{A}, \mathbf{I}_{\mathbf{2}}=\mathbf{1} \mathbf{A}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}_{10 \mathrm{~V}}=-1 \cdot 10=-10 \mathrm{~W} \text { (delivers power) } \\
& \mathrm{P}_{2 \mathrm{~A}}=-2 \cdot 10=-20 \mathrm{~W} \text { (delivers power) } \\
& \mathrm{P}_{10 \Omega}=+1^{2} \cdot 10=+10 \mathrm{~W} \text { (absorbs power) } \\
& \frac{\mathrm{P}_{20 \Omega}=+1^{2} \cdot 20=+20 \mathrm{~W} \text { (absorbs power) }}{\sum_{i} \mathrm{P}_{i}=0}
\end{aligned}
$$

Unit 1. DC CIRCUITS
 TECHNIQUES OF CIRCUIT ANALYSIS: Mesh-current method

- EXAMPLE

$$
I_{1}=\frac{\left|\begin{array}{ccc}
-25 & -5 & 0 \\
25 & 19 & -4 \\
50 & -4 & 6
\end{array}\right|}{\left|\begin{array}{ccc}
7 & -5 & 0 \\
-5 & 19 & -4 \\
0 & -4 & 6
\end{array}\right|}=-1^{\prime} 306 A
$$

$$
I_{2}=\frac{\left|\begin{array}{ccc}
7 & -25 & 0 \\
-5 & 25 & -4 \\
0 & 50 & 6
\end{array}\right|}{\left|\begin{array}{ccc}
7 & -5 & 0 \\
-5 & 19 & -4 \\
0 & -4 & 6
\end{array}\right|}=3^{\prime} 172 \mathrm{~A}
$$

$$
I_{3}=\frac{\left|\begin{array}{ccc}
7 & -5 & -25 \\
-5 & 19 & 25 \\
0 & -4 & 50
\end{array}\right|}{\left|\begin{array}{ccc}
7 & -5 & 0 \\
-5 & 19 & -4 \\
0 & -4 & 6
\end{array}\right|}=10^{\prime} 4
$$

Unit 1. DC CIRCUITS
 TECHNIQUES OF CIRCUIT ANALYSIS: Mesh-current method

- EXAMPLE

Mesh current equations:

$$
\begin{cases}\text { loop 1: } & 10-5=30 \cdot I_{1}-10 \cdot I_{2} \\ \text { loop 2: } & I_{2}=-2 \mathrm{~A}\end{cases}
$$

$$
\text { It results: } \quad \mathrm{I}_{1}=-0.5 \mathrm{~A}, \mathrm{I}_{2}=-2 \mathrm{~A}
$$

$$
\mathrm{P}_{10 \mathrm{~V}}=+0 ' 5 \cdot 10=+5 \mathrm{~W} \text { (absorbs power) }
$$

$$
10 \mathrm{~V} \underbrace{+}_{-}
$$

Unit 1. DC CIRCUITS
 TECHNIQUES OF CIRCUIT ANALYSIS: Mesh-current method

- EXAMPLE

Mesh current equations:

$$
\begin{aligned}
& \begin{cases}\text { loop 1: } & 9=400 \cdot I_{1}-3000 \cdot I_{2} \\
\text { loop 2: } & 0=-300 \cdot I_{1}+7000 \cdot I_{2}\end{cases} \\
& \text { It results: } \quad I_{1}=3.32 \mathrm{~mA}, \mathrm{I}_{2}=1.42 \mathrm{~A} .
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{9V}}=-3.32 \cdot 9 \mathrm{~mW}=-29.88 \mathrm{~mW} \text { (delivers power) } \\
& \mathrm{P}_{1000 \Omega}=+(3.32)^{2 \cdot 1} \mathrm{~mW}=11.02 \mathrm{~mW} \text { (dissipates power) } \\
& \mathrm{P}_{3000 \Omega}=+(3.32-1.42)^{2} \cdot 3 \mathrm{~mW}=+10.83 \mathrm{~mW} \text { (dissipates power) } \\
& \mathrm{P}_{2000 \Omega}=+(1.42)^{2} \cdot 2 \mathrm{~mW}=4.03 \mathrm{~mW} \text { (dissipates power) } \\
& \mathrm{P}_{2000 \Omega}=+(1.42)^{2} \cdot 2 \mathrm{~mW}=4.03 \mathrm{~mW} \text { (dissipates power) }
\end{aligned}
$$

$$
\sum_{i} \mathrm{P}_{i}=0
$$

Unit 1. DC CIRCUITS
 TECHNIQUES OF CIRCUIT ANALYSIS: Mesh-current method

- EXAMPLE

Determine currents in each loop and perform a power balance.

Answer: a) $\left.I_{1}=-5^{\prime} 037 \mathrm{~A}, \mathrm{I}_{2}=-2^{\prime} 052 \mathrm{~A}, \mathrm{I}_{3}=-9^{\prime} 701 \mathrm{~A} \mathrm{~b}\right) \Sigma \mathrm{P}_{\text {source }}=\Sigma \mathrm{P}_{\text {resist. }}=559^{\prime} 65 \mathrm{~W}$

Unit 1. DC CIRCUITS
 TECHNIQUES OF CIRCUIT ANALYSIS: Mesh-current method

- EXAMPLE

Determine currents in each loop and perform a power balance.

Answer a) $\left.I_{1}=-5 \mathrm{~A}, \mathrm{I}_{2}=-2 \mathrm{~A} \mathrm{~b}\right) \Sigma \mathrm{P}_{\text {source }}=\Sigma \mathrm{P}_{\text {resist. }}=143 \mathrm{~W}$

Unit 1. DC CIRCUITS
 TECHNIQUES OF CIRCUIT ANALYSIS: Mesh-current method

- EXAMPLE

Determine currents in each loop and perform a power balance.

Answer a) $I_{1}=-5 \mathrm{~A}, \mathrm{I}_{2}=-2 \mathrm{~A}$ b) $\Sigma \mathrm{P}_{\text {source }}=\Sigma \mathrm{P}_{\text {resist. }}=119 \mathrm{~W}$

Unit 1. DC CIRCUITS
 TECHNIQUES OF CIRCUIT ANALYSIS: Mesh-current method

- EXAMPLE

Determine currents in each loop and perform a power balance.

The mesh current equations are:

$$
\begin{aligned}
31 i_{1}-5 i_{2}-26 i_{3} & =80 \\
-5 i_{1}+125 i_{2}-90 i_{3} & =0 \\
-26 i_{1}-90 i_{2}+124 i_{3} & =0
\end{aligned}
$$

$$
\begin{aligned}
& \Delta=\left|\begin{array}{lll}
31 & -5 & -26 \\
-5 & 125 & -90 \\
-26 & -90 & 124
\end{array}\right|
\end{aligned} \quad i_{1}=\frac{\left|\begin{array}{ccc}
80 & -5 & -26 \\
0 & 125 & -90 \\
0 & -90 & 124
\end{array}\right|}{\Delta}=5 A
$$

(a) $p_{80 \mathrm{~V}}=-(80) i_{1}=-(80)(5)=-400 \mathrm{~W}$

Therefore the 80 V source is delivering 400 W to the circuit.

Unit 1. DC CIRCUITS
TECHNIQUES OF CIRCUIT ANALYSIS: Mesh-current method

- EXAMPLE

Given the following mesh current directions, solve for the charging current through battery \#1.

$\left\{29-23.5=0.5 I_{1}+0.2 \mathrm{I}_{1}+0.2\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)+1.5\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)\right.$
(23.5-24.1 = 1.5 $\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)+0.2\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)+0.2 \mathrm{I}_{2}+\mathrm{I}_{2}+0$

The result is $\mathrm{I}_{\text {bat } 1}=1.7248 \mathrm{~A}$

Unit 1. DC CIRCUITS
 TECHNIQUES OF CIRCUIT ANALYSIS: Mesh-current method

- EXAMPLE

Given the following mesh current directions, solve for the mesh currents.

$$
\begin{cases}\text { Loop 1: } & 10=170 \mathrm{I}_{1}+50 \mathrm{I}_{2}-120 \mathrm{I}_{3} \\ \text { Loop 2: } & 0=50 \mathrm{I}_{1}+300 \mathrm{I}_{2}+100 \mathrm{I}_{3} \\ \text { Loop 3: } & 0=-120 \mathrm{I}_{1}+100 \mathrm{I}_{2}+420 \mathrm{I}_{3}\end{cases}
$$

Unit 1. DC CIRCUITS
 TECHNIQUES OF CIRCUIT ANALYSIS: Mesh-current method

- EXAMPLE

A very interesting style of voltage divider which uses three series-connected strings of resistors and connection clips to provide 1000 steps of voltage division with only 31 resistors, of only 3 different resistance values.
Are you able to solve the two following circuits?

Unit 1. DC CIRCUITS
 TECHNIQUES OF CIRCUIT ANALYSIS: Mesh-current method


```
Unit 1. DC CIRCUITS
TECHNIQUES OF CIRCUIT ANALYSIS: Node-voltage method
```


The node-voltage method

- Also known as the Nodal Analysis or Branch Current Method.
- It uses simultaneous equations, Kirchhoff's Voltage Law, and Ohm's Law to determine unknown currents in a network.
- It is a method used to solve planar circuits for the voltage and currents at any place in the circuit.

Unit 1. DC CIRCUITS
 THÉVENIN'S THEOREM

Thévenin's theorem

- Any two terminals circuit composed of a combination of voltage sources, current sources and resistors is electrically equivalent to a single voltage source V in series with a single resistor R.

Steps for calculating the Thévenin's equivalent circuit:

- Calculate the output voltage, $V_{A B}$, in open circuit condition. This is $V_{T h}$.
- Replace voltage sources with short circuits and current sources with open circuits. Measure the total resistance, $R_{A B}$. This is Rth
- EXAMPLE

Vth:
$15=\mathrm{I} \cdot(2000+1000+1000) \rightarrow \mathrm{I}=0.00375 \mathrm{~A}$
$\mathrm{~V}_{\mathrm{AB}}=\mathrm{I} \cdot(1000+1000) \rightarrow \mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{Th}}=7.5 \mathrm{~V}$
Rth:

$$
\mathrm{R}_{\mathrm{Th}}=(2000 / / 2000)+1000=2000 \Omega
$$

Unit 1. DC CIRCUITS
 NORTON'S THEOREM

Norton's theorem

- Any two terminals circuit composed of a combination of voltage sources, current sources and resistors is electrically equivalent to a single voltage source V in series with a single resistor R.

Steps for calculating the Thévenin's equivalent circuit:

- Calculate the output current, laB, with a short circuit as the load This is Ino.
- Replace voltage sources with short circuits and current sources with open circuits. Measure the total resistance, $R_{A B}$. This is $R_{N o}$
- EXAMPLE

Unit 1. DC CIRCUITS
 THÉVENIN-NORTON RELATIONSHIP

Equivalence between Thévenin and Norton

- Rth = Rno
- $V_{T h}=R_{\text {No }} I_{\text {INo }}$
- $\quad I_{N o}=V_{T h} / R_{T h}$
- EXAMPLE

2) Rth, Rno

3) Vth:

$$
\begin{gathered}
28-7=\mathrm{I} \cdot(4+1) \rightarrow \mathrm{I}=4.2 \mathrm{~A} \\
0.8 \Omega \\
\mathrm{~V}_{\mathrm{AB}}=28-\mathrm{I} \cdot 4 \rightarrow \mathrm{~V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{Th}}=11.2 \mathrm{~V}
\end{gathered}
$$

3) INo: $\mathrm{I}_{\mathrm{No}}=\mathrm{V}_{\mathrm{Th}} / \mathrm{R}_{\mathrm{No}}=11.2 / 0.8=14 \mathrm{~A}$

- EXAMPLE

1) V TH :

$\mathrm{V}_{\mathrm{Th}}=\mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{AC}}-\mathrm{V}_{\mathrm{BC}}=8-3=5 \mathrm{~V}$
2) $\mathrm{Rth}_{\text {, }} \mathrm{R}_{\mathrm{No}}$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{Th}}=\mathrm{R}_{\mathrm{No}}= \\
&=2 / / 4+3 / / 1 \mathrm{k} \Omega=2.08 \widehat{3} \mathrm{k} \Omega \\
& \text { 3) } \mathrm{I}_{\mathrm{No}} \text { : }
\end{aligned}
$$

$$
\mathrm{I}_{\mathrm{No}}=\mathrm{V}_{\mathrm{Th}} / \mathrm{R}_{\mathrm{No}}=2.4 \mathrm{~mA}
$$

Unit 1. DC CIRCUITS
 THÉVENIN-NORTON RELATIONSHIP

- EXAMPLE

$$
I_{N}=6.25 \mathrm{~A} ., \mathrm{R}_{T b}=2.4 \mathrm{Ohm}
$$

- EXAMPLE

Unit 1. DC CIRCUITS
 THÉVENIN-NORTON RELATIONSHIP

- EXAMPLE

$$
\mathrm{R}_{T b}=2 \Omega, V_{T b}=6 \mathrm{~V}
$$

Online resources:
http://utwired.engr.utexas.edu/rgd1/lesson07.cfm

Unit 1. AC SINGLE-PHASE CIRCUITS ELECTRICAL MEASUREMENTS

Voltmeters

- Instruments used for measuring the electrical potential difference between two points in an electric circuit.
- Have internal impedance of several $M \Omega$ (infinite).
- They are connected in parallel.

Voltmeter usage

Unit 1. AC SINGLE-PHASE CIRCUITS
 ELECTRICAL MEASUREMENTS

Ammeters

- Instruments used for measuring the electric current in a circuit.
- Have internal impedance close to zero.
- They are connected in series.

WELL DONE
Battery

Unit 1. AC SINGLE-PHASE CIRCUITS

ELECTRICAL MEASUREMENTS

Multimeters

- Electronic measuring instruments that combines several measurement functions in one unit: voltage, current and resistance.

Clamp multimeters

- Current clamp: electrical device having two jaws which open to allow clamping around an electrical conductor. This allows the electrical current in the conductor to be measured, without having to make physical contact with it, or to disconnect it for insertion through the probe.
- Also allow measuring voltage, current and resistance.

Unit 1. AC SINGLE-PHASE CIRCUITS ELECTRICAL MEASUREMENTS

Wattmeters

- Instruments for measuring the electric power in watts of any given circuit.
- They have 4 terminals (2 for voltage and 2 for current measurement)

Analog

Digital

Unit 1. AC SINGLE-PHASE CIRCUITS ELECTRICAL MEASUREMENTS

00.0

Wattmeter connection

Unit 2. AC SINGLE-PHASE CIRCUITS

Alternating Current Single-Phase Circuits

Unit 2. AC SINGLE-PHASE CIRCUITS

CONTENTS LIST:

- Basics of AC circuits
- Importance of AC
- RMS and mean values
- Phasorial magnitudes
- Ohm's law for AC circuits
- AC loads
- Instantaneous power
- Power triangle
- AC power: P, Q and S
- Power factor and $\cos \varphi$
- Power factor improvement
- Electrical measurements
- Exercises

Unit 2. AC SINGLE-PHASE CIRCUITS
 BASICS OF AC CIRCUITS

Direct Current

- Current flowing in a constant direction
- Voltage with constant polarity.

electron
\rightarrow electron flow

Unit 2. AC SINGLE-PHASE CIRCUITS
 BASICS OF AC CIRCUITS

Alternating Current

- Current flowing with alternating polarity, reversing positive and negative over time.
- Voltages with alternating in polarity.

Unit 2. AC SINGLE-PHASE CIRCUITS
 WHY AC? Importance of AC

- Electric power is generated, transmitted, distributed and consumed in AC
$■ \approx 90 \%$ of the total electric power is consumed as AC
- AC amplitude can be easily changed (step up or step down) by means of simple and cost effective electrical machines called transformers
- Electric power can be transmitted efficiently and economically as High Voltage AC, minimizing power losses

■ Three-phase AC motors/generators have better performance (higher efficiency, lower maintenance, ...) than DC motors/generators

Unit 2. AC SINGLE-PHASE CIRCUITS
 MEASUREMENTS OF AC MAGNITUDES

Time \longrightarrow Time

Peak, Peak-to-Peak and Average Values

-SAME VALUES for sinusoidal, rectangular and triangular waveforms
-Average value $=0$

Root Mean Square Value (RMS)

-For sinusoidal waveform RMS = Amplitude/sqrt(2)

True average value of all points (considering their signs) is zero!
-T: period of signal (s)

$$
\mathrm{V}_{\mathrm{RMS}}=\sqrt{\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{v}^{2}(\mathrm{t}) \mathrm{dt}}=\frac{\mathrm{V}_{0}}{\sqrt{2}} \quad \mathrm{I}_{\mathrm{RMS}}=\sqrt{\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{i}^{2}(\mathrm{t}) \mathrm{dt}}=\frac{\mathrm{I}_{0}}{\sqrt{2}}
$$

Unit 2. AC SINGLE-PHASE CIRCUITS
 MATHEMATICAL FORMULATION OF AC MAGNITUDES

A phase vector ("phasor") is a representation of a sine wave whose amplitude (A), phase (φ), and frequency (ω) are time-invariant.

$\longrightarrow \quad \mathrm{v}(\mathrm{t})=\mathrm{V}_{0} \cos \left(\omega \mathrm{t}+\varphi_{\mathrm{V}}\right)$
$\omega=2 \cdot \pi \cdot f \mathrm{rad} / \mathrm{s}$

Time \longrightarrow

Phasorial expression (phasor = phase vector)

$$
\overline{\mathrm{V}}=\mathrm{V}_{\mathrm{RMS}}{ }^{\varphi_{\mathrm{V}}{ }^{\circ}}
$$

Modulus: RMS value of the AC magnitude Phase: initial phase angle of the AC magnitude Frequency: does not appear in the phasor

Unit 2. AC SINGLE-PHASE CIRCUITS
 OHM'S LAW FOR AC CIRCUITS

- Ohm's law for DC circuits: $\quad V=I . R$
- Ohm's law for AC circuits: $\quad \overline{\mathrm{V}}=\overline{\mathrm{I}} \overline{\mathrm{Z}}$
being

$$
\bar{Z}=R+j X=Z^{\circ}
$$

Z : impedance $\quad R$: resistance $\quad X$: reactance
All quantities expressed in complex, not scalar form

$$
\varphi_{Z}=\varphi=\varphi V_{V}-\varphi \left\lvert\, \quad \begin{aligned}
& v(t)=v_{o} \cos \left(\omega t+\varphi_{v}\right) \\
& i(t)=l_{o} \cos \left(\omega t+\varphi_{ı}\right)
\end{aligned}\right.
$$

Unit 2. AC SINGLE-PHASE CIRCUITS

PHASE IN AC CIRCUITS

- Out of phase waveforms

- Phase shift of 90 degrees:

A leads B
B lags A

Unit 2. AC SINGLE-PHASE CIRCUITS
 AC PURE RESISTIVE CIRCUITS

- Voltage and current are "in phase"
- Instantaneous AC power is always positive.
- $\varphi=0^{\circ}$ phase shift between voltage and current $\rightarrow \cos \varphi=1$

Unit 2. AC SINGLE-PHASE CIRCUITS
 AC PURE INDUCTIVE CIRCUITS

- Inductor current lags inductor voltage by 90°.
- Instantaneous AC power may be positive or negative

- $\varphi=90^{\circ}$ phase shift between voltage and current $\rightarrow \cos \varphi=0$

$$
v_{L}(t)=L \cdot d i(t) / d t
$$

$$
v(t)=V_{0} \cos (\omega t+\varphi)
$$

$$
\mathrm{I}=\mathrm{I}_{\mathrm{L}}
$$

$$
\mathrm{i}(\mathrm{t})=\frac{1}{\mathrm{~L}} \int \mathrm{v}(\mathrm{t}) \mathrm{dt}=\frac{\mathrm{V}_{0}}{\omega L} \sin \left(\omega \mathrm{t}+\varphi_{V}\right)=\frac{\mathrm{V}_{0}}{\omega L} \cos \left(\omega \mathrm{t}+\varphi_{V}-90^{\circ}\right)
$$

$$
\begin{gathered}
\mathrm{i}(\mathrm{t})=\mathrm{I}_{0} \cos \left(\omega \mathrm{t}+\varphi_{\mathrm{I}}\right) \\
\varphi_{\mathrm{V}}=\varphi_{1}+90^{\circ} \\
Z=0+j \omega L
\end{gathered}
$$

Unit 2. AC SINGLE-PHASE CIRCUITS
 AC PURE CAPACITIVE CIRCUITS

- Capacitor voltage lags capacitor current by 90°.
- Instantaneous AC power may be positive or negative
- $\varphi=-90^{\circ}$ phase shift between voltage and current $\rightarrow \cos \varphi=0$

$$
\begin{aligned}
& i_{c}(t)=c \cdot d v(t) / d t \\
& v(t)=v_{0} \cos (\omega t+\varphi)
\end{aligned}
$$

$$
\mathrm{i}(\mathrm{t})=\mathrm{C} \frac{\mathrm{dv}(\mathrm{t})}{\mathrm{dt}}=-\omega \mathrm{CV}_{0} \sin \left(\omega \mathrm{t}+\varphi_{V}\right)=\omega \mathrm{CV}_{0} \cos \left(\omega \mathrm{t}+\varphi_{V}+90^{\circ}\right)
$$

Unit 2. AC SINGLE-PHASE CIRCUITS

AC LOADS SUMMARY

- PURE RESISTANCE

- PURE INDUCTOR
V leads I by $90^{\circ}, \varphi=90^{\circ}$
$\mathrm{P}=0$ and $\mathrm{Q}>0$

$$
\cos \varphi=0
$$

$$
Z=0+j \omega L
$$

- PURE CAPACITOR

$$
\begin{aligned}
& V \text { lags I by } 90^{\circ}, \varphi=-90^{\circ} \\
& P=0 \text { and } Q<0 \\
& \cos \varphi=0 \\
& Z=0-j /(\omega C)
\end{aligned}
$$

Unit 2. AC SINGLE-PHASE CIRCUITS POWER IN THE TIME DOMAIN

- Instantaneous power:

$$
\begin{aligned}
& p(t)=v(t) \cdot i(t)=V_{0} \cos \left(w t+\varphi_{V}\right) \cdot I_{0} \cos \left(w t+\varphi_{I}\right) \\
& \cos A \cdot \cos B=1 / 2 \cdot[\cos (A+B)+\cos (A-B)]
\end{aligned}
$$

$$
p(t)=1 / 2 V_{0} I_{0} \cos \left(\varphi_{V}-\varphi_{1}\right)+1 / 2 V_{0} I_{0} \cos \left(2 w t+\varphi_{V}+\varphi_{1}\right) \text { watt }
$$

- The average value is the active or true power:

$$
P=1 / 2 \cdot V_{0} \cdot I_{0} \cdot \cos \left(\varphi_{V}-\varphi_{1}\right)=V_{R M S} \cdot \|_{R M S} \cdot \cos \varphi \text { watts }
$$

Unit 2. AC THREE-PHASE CIRCUITS
 INSTANTANEOUS POWER

Unit 2. AC SINGLE-PHASE CIRCUITS
 AC POWER

- Active/true power:

$$
P=V \cdot I \cdot \cos \varphi \quad P=I^{2} \cdot R \text { (Watt) }
$$

- Reactive power: $\quad Q=V \cdot \cdot \cdot \sin \varphi \quad Q=I^{2} \cdot X(V A r)$
- Apparent power

$$
S=V \cdot 1=\operatorname{sqrt}\left(P^{2}+Q^{2}\right) \quad S=I^{2} \cdot Z \quad(V A)
$$

- Complex power

$$
\overline{\mathrm{S}}=\overline{\mathrm{V}} \overline{\mathrm{I}}^{*}=\mathrm{I}^{2} \cdot \overline{\mathrm{Z}}=\mathrm{P}+\mathrm{jQ}(V A)
$$

V, I: RMS values

Unit 2. AC SINGLE-PHASE CIRCUITS
 THE POWER TRIANGLE

φ $\operatorname{Re}(S)$

AC POWER: PARALLEL-CONNECTED NETWORKS

Unit 2. AC SINGLE-PHASE CIRCUITS
 QUESTION

Is it safe to close the breaker between these two alternators if their output frequencies are different? Explain why or why not.

Solution: When the frequencies of two or more AC voltage sources are different, the phase shift(s) between them are constantly changing.

Unit 2. AC SINGLE-PHASE CIRCUITS
 QUESTION

Given the output voltages of the two alternators, it is not safe to close the breaker. Explain why.

Solution: The greatest problem with closing the breaker is the 37° phase shift between the two alternators' output voltages.
http://powerelectrical.blogspot.com/2007/04/short-questions-and-solved-problems-in.html

Unit 2. AC SINGLE-PHASE CIRCUITS
 QUESTION

Are the readings of the voltmeters possible? If true, how would you represent the tree voltages in this circuit in rectangular and polar forms?.

http://powerelectrical.blogspot.com/2007/04/short-questions-and-solved-problems-in.html

- Power factor definition: PF = P/S
- $\cos \varphi$ definition: $\quad \cos \varphi=\cos \left(\varphi_{v}-\varphi_{1}\right)$

$$
\begin{cases}\varphi>0 & \text { lagging } \\ \varphi<0 & \text { leading }\end{cases}
$$

- When dealing with single-frequency single-phase circuits:

$$
P F=P / S=(V \cdot I \cdot \cos \varphi) /(V \cdot I)=\cos \varphi
$$

Unit 2. AC SINGLE-PHASE CIRCUITS
 EXAMPLE

Example. A circuit has equivalent impedance $Z=3+j \cdot 4 \Omega$ and an applied voltage $\mathrm{v}(\mathrm{t})=42.5 \cdot \cos \left(1000 \mathrm{t}+30^{\circ}\right)$ (volt). Give complete power information.

$$
\begin{aligned}
& \overline{\mathrm{V}}_{\mathrm{RMS}}=\frac{42.5^{30^{\circ}}}{\sqrt{2}} \mathrm{~V} \\
& \overline{\mathrm{I}}_{\mathrm{RMS}}=\frac{\overline{\mathrm{V}}_{\mathrm{RMS}}}{\overline{\mathrm{Z}}}=\frac{42.5 / \sqrt{2}}{3+j \cdot 4}=\frac{42.5 / \sqrt{2}^{30^{\circ}}}{5^{53.13^{\circ}}}=6.01^{-23.13^{\circ}} \mathrm{A} \\
& \overline{\mathrm{~S}}=\overline{\mathrm{V}}_{\mathrm{RMS}} \cdot \overline{\mathrm{I}}_{\mathrm{RMS}} *=42.5 / \sqrt{2}^{30^{\circ}} \cdot 6.01^{+23.13^{\circ}}=180.61^{53.13^{\circ}} \mathrm{VA} \\
& \overline{\mathrm{~S}}=180.61^{53.13^{\circ}}=108.4(\mathrm{~W})+\mathrm{j} \cdot 144.5(\mathrm{VAr})
\end{aligned}
$$

$$
\text { Hence, } \mathrm{P}=108.4 \mathrm{~W}, \mathrm{Q}=144.5 \operatorname{VAr}(\mathrm{i}), \mathrm{S}=180.6 \mathrm{VA} \text {, }
$$

$$
\text { and } \mathrm{PF}=\cos 53.13^{\circ}=0.6(\mathrm{i}) .
$$

Unit 2. AC SINGLE-PHASE CIRCUITS
 POWER FACTOR IMPROVEMENT

- Inductive circuits:

C in parallel

$$
\operatorname{tg} \varphi^{\prime}=\frac{\mathrm{Q}-\left|\mathrm{Q}_{\mathrm{C}}\right|}{\mathrm{P}}=\frac{\mathrm{Q}-\left|\frac{\mathrm{V}^{2}}{1 /(2 \pi \mathrm{fC})}\right|}{\mathrm{P}}=\frac{\mathrm{Q}-\left|\mathrm{V}^{2} 2 \pi \mathrm{fC}\right|}{\mathrm{P}}
$$

Capacitive circuits:
L in parallel

Unit 2. AC SINGLE-PHASE CIRCUITS
 QUESTIONS REGARDING PF IMPROVEMENT

- Transformers, distribution systems, and utility company alternators are all rated in kVA or MVA.
- Consequently, an improvement in the power factor, with its corresponding reduction in kVA, releases some of this generation and transmission capability so that it can be used to serve other customers.
- This is the reason that make it more costly for an industrial customer to operate with a lower power factor.

Example. A load of $P=23 \mathrm{~kW}$ with $\mathrm{PF}=0.5$ (i) is fed by a 230 V source. A capacitor is added in parallel such that the power factor is improved to 1 . Find the reduction in current drawn from the generator.

Before improvement:

$$
P=23000 \mathrm{~W}=230 \cdot I \cdot 0.5 \rightarrow \mathrm{I}=200 \mathrm{~A}
$$

After improvement:

$$
\mathrm{P}=23000 \mathrm{~W}=230 \cdot \mathrm{I} \cdot 1 \rightarrow \mathrm{I}=100 \mathrm{~A}
$$

Unit 2. AC SINGLE-PHASE CIRCUITS PF IMPROVEMENT BENEFITS

- Reduces reactive power and amps absorbed by the load.
- Active power driven by transformers is optimized
- Reduce voltage drop in the conductors
- Reduces power losses in the conductors of the consumer.
- Reduces power losses in the conductors during transmission.
- Conductor section can be minimized (capital savings).
- Base price of electrical energy (kWh) increases if PF is low.
- Installation is used more efficiently.
- Energy is used more efficiently
- Less power has to be generated (environmental benefits).

Unit 2. AC SINGLE-PHASE CIRCUITS PF IMPROVEMENT

Electric bill reduction

The improvement of the PF of an existing electrical installation has many economical advantages and allows to reduce the base cost of the kWh.

$$
K r=17 / \cos ^{2} \varphi-21 \%
$$

Kr is limited within:

$$
\begin{aligned}
& +47 \%(\mathrm{PF}=0.5) \\
& -4 \%(\mathrm{PF}=1)
\end{aligned}
$$

Unit 2. AC SINGLE-PHASE CIRCUITS PF IMPROVEMENT

- Capacitor banks with automatic regulation allow to adaptate the compensation to variable load.
- Capacitor banks with automatic regulation are placed at the end of the LV installation or in the distributing switch-board (cuadro de distribución) with an important consumption of reactive power.
- Capacitor banks with automatic regulation consist of several steps of reactive power.

Automatic capacitor bank for PF correction

Automatic capacitor bank with several steps

Unit 2. AC SINGLE-PHASE CIRCUITS PF IMPROVEMENT

Types of power faction correction:

- Global
- Partial
- Individual.

Global correction

This method is suitable for stable and continuous operated loads.

Partial correction

This method is suitable when distribution of loads is unbalanced and when a distributing switch-board (quadre de distribució) feeds an

Unit 2. AC SINGLE-PHASE CIRCUITS PF IMPROVEMENT

Individual correction

This method is suitable when exist loads which are very heavy in relation to the total load.

It is the most advantageous method.

Unit 2. AC SINGLE-PHASE CIRCUITS
 QUESTIONS REGARDING PF IMPROVEMENT

Example. A sinusoidal source ($230 \mathrm{~V}, 50 \mathrm{~Hz}$) feeds an inductive load which absorbs 8 A and 1000 W . Calculate the PF, Q and S in the load. Improve the PF to unit and calculate the associated expenses savings.

$$
\begin{aligned}
& P=V \cdot I \cdot \cos \varphi ; \quad 1000=230 \cdot 8 \cdot \cos \varphi \Rightarrow \cos \varphi=0.54(i) \\
& Q=V \cdot I \cdot \sin \varphi=230 \cdot 8 \cdot 0.84 \Rightarrow Q=1545 \mathrm{VAr} \\
& S=V \cdot I=230.8 \Rightarrow S=1840 V A \Rightarrow P F=P / S=0.54(i)=\cos \varphi
\end{aligned}
$$

Capacitor needed to improve the PF to unit: $Q_{c}=-1545$ VAr.
It results $C=93 \mu \mathrm{~F}$
Increase in basis price due to PF: $\mathrm{Kr}=17 / \cos ^{2} \varphi-21 \%$
When $\mathrm{PF}=0.54 \Rightarrow \mathrm{Kr}=17 / 0,54^{2}-21=+37,3 \%$ (increase)
When PF $=1.0 \Rightarrow \mathrm{Kr}=17 / 1,0-21=-4 \%$ (discount)

Unit 2. AC SINGLE-PHASE CIRCUITS
 EXAMPLE 1

A 230 V and 50 Hz AC power supply feeds a 5 KVA single-phase load that presents a $P F=0,6$ lagging. Improve the PF to: a) $0,9(i)$ b) $0,9(c)$.

$$
\operatorname{tg} \varphi^{\prime}=\frac{\mathrm{Q}-\left|\mathrm{Q}_{\mathrm{C}}\right|}{\mathrm{P}} \quad \begin{aligned}
& \text { lagging }=(\mathrm{i}) \\
& \text { leading }=(\mathrm{c})
\end{aligned}
$$

Before improving the PF: $\mathrm{P}=\mathrm{S} \cdot \cos \varphi=3 \mathrm{~kW}, \mathrm{Q}=\mathrm{S} \cdot \sin \varphi=4 \mathrm{kVAr}$
a) $\cos \varphi^{\prime}=0.9 \rightarrow \varphi^{\prime}=25.84^{\circ}$
$\operatorname{tg} \varphi^{\prime}=\frac{\mathrm{Q}-\left|\mathrm{Q}_{\mathrm{C}}\right|}{\mathrm{P}} \rightarrow \operatorname{tg} 25.84=\frac{4000-\left|\mathrm{Q}_{\mathrm{C}}\right|}{3000} \rightarrow \quad\left|\mathrm{Q}_{\mathrm{C}}\right|=2547.16 \mathrm{VAr}=230^{2}(2 \pi 50 \mathrm{C})$
It results $C=153.26 \mu \mathrm{~F}$
b) Operating in a similar manner as in a) the result is: $\mathrm{C}=328.1 \mu \mathrm{~F}$

Unit 2. AC SINGLE-PHASE CIRCUITS

EXAMPLE 2

The consumption of the 2Ω resistance is 20 W . Represent the power triangle of the figure whole circuit.

$$
\begin{aligned}
& \mathrm{P}_{2 \Omega}=20=\mathrm{I}_{1}^{2} 2 \rightarrow \mathrm{I}_{1}=3.162 \mathrm{~A} \\
& \mathrm{~V}_{\text {TOT }}=\mathrm{I}_{1} \mathrm{Z}_{1}=3.162 \cdot\left(2^{2}+5^{2}\right)^{1 / 2}=17.03 \mathrm{~V} \\
& \mathrm{I}_{2}=\mathrm{V}_{\mathrm{TOT}} / \mathrm{Z}_{2}=17.03 /\left(1^{2}+1^{2}\right)^{1 / 2}=12.04 \mathrm{~A} \\
& \mathrm{P}_{\text {TOT }}=\mathrm{P}_{1 \Omega}+\mathrm{P}_{2 \Omega}=20+12.04^{2} \cdot 1=165 \mathrm{~W} \\
& \mathrm{Q}_{\text {TOT }}=\mathrm{Q}_{5 \Omega}+\mathrm{Q}_{1 \Omega}=-3.162^{2} \cdot 5+12.04^{2} \cdot 1=95 \mathrm{VAr} \\
& \mathrm{~S}_{\text {TOT }}=\left(\mathrm{P}_{\mathrm{TOT}}{ }^{2}+\mathrm{Q}_{\text {TOT }}{ }^{2}\right)^{1 / 2}=190.4 \mathrm{VA} \\
& \varphi_{\text {TOT }}=\operatorname{arctg}\left(\mathrm{Q}_{\text {TOT }} / \mathrm{P}_{\text {TOT }}\right)=29.93^{\circ}
\end{aligned}
$$

Unit 2. AC SINGLE-PHASE CIRCUITS

EXAMPLE 3

Determine the PF_{2} when the measured $\mathrm{PF}_{\text {TOTAL }}=0.90$ (i).

$$
\cos \varphi_{\text {TOTAL }}=0.90(\mathrm{i}) \rightarrow \varphi_{\text {TOTAL }}=+25.84^{\circ}
$$

$$
\begin{array}{ll}
P_{1}=2000 \cdot 0.8=1600 \mathrm{~W} & Q_{1}=2000 \cdot 0.6=1200 \mathrm{VAr} \\
P_{2}=500 \cdot \cos \varphi_{2} W & Q_{2}=500 \cdot \sin \varphi_{2} \mathrm{VAr}
\end{array}
$$

$\operatorname{tg} \varphi_{\text {ТОТ }}=\frac{\mathrm{Q}_{1}+\mathrm{Q}_{2}}{\mathrm{P}_{1}+\mathrm{P}_{2}} \rightarrow \operatorname{tg} 25.84^{\circ}=\frac{1200+500 \sin \varphi_{2}}{1600+500 \cos \varphi_{2}}$
$-425.08=500 \sin \varphi_{2}-242.16 \cos \varphi_{2}$ resulting in: $\varphi_{2}=-24.07^{\circ} \rightarrow P F_{2}=0.913(\mathrm{c})$

Unit 2. AC SINGLE-PHASE CIRCUITS
 EXAMPLE 4

From the following circuit, determine P, Q, S and $P F$ in the load.

The equivalent impedance of the circuit is: $\overline{\mathrm{Z}}_{\text {eq }}=7.52^{19^{\circ}} \Omega$

$$
\begin{aligned}
& \mathrm{PF}=\cos \left(19^{\circ}\right)=0.945(\mathrm{i}) \\
& \overline{\mathrm{I}}=\overline{\mathrm{V}} / \overline{\mathrm{Z}_{\mathrm{eq}}}=230^{\circ \circ} / 7.52^{19^{\circ}}=30.61-19^{\circ} \mathrm{A} \\
& \overline{\mathrm{~S}}=\overline{\mathrm{V}} \cdot \overline{I^{*}}=230^{\circ} \cdot 30.61^{+19^{\circ}}=7039.25^{19^{\circ}} \mathrm{VA}=6655.75(\mathrm{~W})+\mathrm{j} \cdot 2291.76(\mathrm{VAr})
\end{aligned}
$$

Unit 2. AC SINGLE-PHASE CIRCUITS

EXAMPLE 5. The mesh method (malles)

From the following circuit, determine the current in the 200 V voltage sources.

Mesh 1: $\Sigma \mathrm{V}_{\mathrm{i}}=\Sigma \mathrm{I}_{\mathrm{i}} \mathrm{Z}_{\mathrm{i}} \quad 200^{\circ}=\mathrm{I}_{1}(10+\mathrm{j} 50+30+\mathrm{j} 10)-\mathrm{I}_{2}(30+\mathrm{j} 10)$
Mesh 1: $\left.\Sigma \mathrm{V}_{\mathrm{i}}=\Sigma \mathrm{l}_{\mathrm{i}} \mathrm{Z}_{\mathrm{i}} \quad-200^{\circ}=-\mathrm{I}_{1}(30+\mathrm{j} 10)+\mathrm{I}_{2}(10+30+\mathrm{j} 10)\right\}$

$$
\begin{aligned}
& \overline{\mathrm{I}}_{1}=\frac{\left|\begin{array}{cc}
200 & -30-j 10 \\
-200 & 40+j 10
\end{array}\right|}{\left|\begin{array}{cc}
40+j 60 & -30-j 10 \\
-30-j 10 & 40+j 10
\end{array}\right|}=\frac{2000}{200+j 2000}=0.995^{-84.29^{\circ}} \mathrm{A} \\
& \overline{\mathrm{I}}_{2}=\frac{\left|\begin{array}{cc}
40+j 60 & 200 \\
-30-j 10 & -200
\end{array}\right|}{\left|\begin{array}{cc}
40+j 60 & -30-j 10 \\
-30-j 10 & 40+j 10
\end{array}\right|}=\frac{-2000-j 10000}{200+j 2000}=5.704^{-185.60^{\circ}} \mathrm{A}
\end{aligned}
$$

Unit 2. AC SINGLE-PHASE CIRCUITS
 EXAMPLE 6. Series RLC circuit

Determine a) Voltage and current in each element. c) P, Q and S in each element and the overall power factor. c) The resonance frequency (frequency at which the imaginary part of the equivalent impedance is null).

Unit 2. AC SINGLE-PHASE CIRCUITS
 EXAMPLE 7. Parallel RLC circuit

Determine a) Voltage and current in each element. c) P, Q and S in each element and the overall power factor. c) The resonance frequency of this circuit.

Unit 2. AC SINGLE-PHASE CIRCUITS
 EXAMPLE 8. The mesh method (malles)

Calculate the impedance value necessary to balance this AC bridge, expressing your answer in both polar and rectangular forms. What type and size of component will provide this exact amount of impedance at 400 Hz ?

$\mathrm{Z}=1.975 \mathrm{k} \Omega^{90^{\circ}}$ (polar form)
$\mathrm{Z}=0+\mathrm{j} 1.975 \mathrm{k} \Omega$ (rectangular form)

Unit 2. AC SINGLE-PHASE CIRCUITS ELECTRICAL MEASUREMENTS

INSTRUMENTS FOR INDUSTRIAL MAINTENANCE

Multimeters

- Voltage AC/DC
- Current AC/DC
- Resistance

- Others: capacitance, frequency, temperature, ...

Current probes

- Voltage AC/DC (depending on models)
- Current AC/DC

Wattmeters

- Voltage AC
- Current AC
- Power : S, P, Q AC
- PF
- Frequency
- Single-phase or three-phase

Unit 2. AC SINGLE-PHASE CIRCUITS ELECTRICAL MEASUREMENTS

Three-phase

1P2W Wiring Connection Diagram

Unit 2. AC SINGLE-PHASE CIRCUITS ELECTRICAL MEASUREMENTS

INSTRUMENTS FOR INDUSTRIAL MEASUREMENT AND CONTROL

- Useful for carrying out low cost energy control checks on electrical consumption
- Can also be used to carry out an accurate control of the consumption of any other physical unit which has a meter with a digital impulse output.

Possible measurements:

- Voltage
- Current
- Hz
- Power (S, P, Q, PF)
- Energy
- Single-phase or three-phase

Unit 2. AC SINGLE-PHASE CIRCUITS ELECTRICAL MEASUREMENTS

LAB MEASURES: OSCILLOSCOPE

Unit 3. AC THREE-PHASE CIRCUITS

Alternating Current

 Three-Phase Circuits

Unit 3. AC THREE-PHASE CIRCUITS

CONTENTS LIST:

- Three-phase systems characteristics
- Generation of three-phase voltages
- Three-phase loads
- $\Delta-\mathrm{Y}$ and $\mathrm{Y}-\Delta$ transformation
- Instantaneous power
- Three-phase power: S, P and Q
- Power measurement. Aaron connection
- Power factor improvement
- Electrical measurements
- Exercises

Unit 3. AC THREE-PHASE CIRCUITS

THREE-PHASE SYSTEMS CHARACTERISTICS

Unit 3. AC THREE-PHASE CIRCUITS
 THREE-PHASE SYSTEMS CHARACTERISTICS

- Instantaneous electric power has sinusoidal shape with double frequency than voltage or current
- SINGLE-PHASE AC CIRCUITS: instantaneous electric power is negative twice a period (power flows from load to generator) and positive twice a period, falling to zero.
- BALANCED THREE-PHASE AC CIRCUITS: instantaneous electric power is constant. Three-phase power never falls to zero
- Three-phase electric motors have better performance than single-phase AC motors
- Three-phase power systems allow two voltage levels (L-L, L-N)
- When transmitting electric power, three-phase AC systems require 25% less of $\mathrm{Cu} / \mathrm{Al}$ than single-phase AC systems

Unit 3. AC THREE-PHASE CIRCUITS

GENERATION OF THREE-PHASE VOLTAGES

- Three-phase generators contain three sinusoidal voltage sources with voltages of the same frequency but a 120°-phase shift with respect to each other
- This is realized by positioning three coils at 120° electrical angle separations on the same rotor
- Amplitudes of the three phases are also equal
- The generator is then balanced

Unit 3. AC THREE-PHASE CIRCUITS INTRODUCTION

3-Phase Transmission Line

Unit 3. AC THREE-PHASE CIRCUITS INTRODUCTION

- N : neutral point
- R S T (or A B C) direct sequence or sequence RST
- $\mathrm{V}_{\mathrm{RS}}, \mathrm{V}_{\mathrm{ST}}, \mathrm{V}_{\mathrm{TR}}$: line voltages or line-to-line voltages
- $\mathrm{V}_{\mathrm{RN}}, \mathrm{V}_{\mathrm{SN}}, \mathrm{V}_{\mathrm{TN}}$: line-to-neutral voltages

$$
\begin{aligned}
& V_{R N}(t)=V_{0} \cdot \cos \left(\omega \cdot t+90^{\circ}\right) \quad V \\
& V_{S N}(t)=V_{0} \cdot \cos \left(\omega \cdot t-30^{\circ}\right) \quad V
\end{aligned}
$$

$$
\text { - } \mathrm{V}_{\text {line }}=\sqrt{3} \mathrm{~V}_{\text {line-to-neutral }} \quad \mathrm{V}_{\mathrm{TN}}(\mathrm{t})=\mathrm{V}_{0} \cdot \cos \left(\omega \cdot \mathrm{t}+210^{\circ}\right) \mathrm{V}
$$

Unit 3. AC THREE-PHASE CIRCUITS INTRODUCTION

$$
\mathrm{V}_{\text {line }}=\sqrt{3} \cdot \mathrm{~V}_{\substack{\text { line-to- }-\mathrm{N} \\ p \text { maxe }}}
$$

50 Hz	Usual system
$\mathrm{V}_{\text {phase }}=\mathrm{V}_{\text {line-to-neutral }}$	$\mathbf{2 3 0}$ volt
$\mathrm{V}_{\text {line }}$	$\mathbf{4 0 0}$ volt
Frequency	$\mathbf{5 0} \mathbf{H z}$

Unit 3. AC THREE-PHASE CIRCUITS
 THREE-PHASE LOADS CLASSIFICATION

- WYE (two voltages)

Balanced
3-wires
4-wires
Unbalanced
3-wires

4-wires

- DELTA (one voltage)

Balanced
Unbalanced

Unit 3. AC THREE-PHASE CIRCUITS
 BALANCED WYE-CONNECTED LOAD

- The wye or star connection is made by connecting one end of each of the three-phase loads together
- The voltage measured across a single load or phase is known as the phase voltage
- The voltage measured between the lines is known as the line-to-line voltage or simply as the line voltage
- In a wye-connected system, the line voltage is higher than the load phase voltage by a factor of the square root of 3
- In a wye-connected system, phase current and line current are the same

Unit 3. AC THREE-PHASE CIRCUITS BALANCED DELTA-CONNECTED LOAD

- This connection receives its name from the fact that a schematic diagram of this connection resembles the Greek letter delta (Δ)
- In the delta connection, line voltage and phase voltage in the load are the same
- The line current of a delta connection is higher than the phase current by a factor of the square root of 3

Unit 3. AC THREE-PHASE CIRCUITS
 $\Delta-Y$ TRANSFORMATION

Z between nodes 1 and 2: $\quad \Delta: \bar{Z}_{\Delta 1,2}=\frac{\bar{Z}_{12} \cdot\left(\bar{Z}_{13}+\bar{Z}_{23}\right)}{\bar{Z}_{12}+\left(\bar{Z}_{13}+\bar{Z}_{23}\right)} \quad \mathrm{Y}: \quad \bar{Z}_{Y 1,2}=\bar{Z}_{1}+\bar{Z}_{2}$
Z nodes 1-2: (1) $\quad \bar{Z}_{1}+\bar{Z}_{2}=\frac{\bar{Z}_{12} \cdot\left(\bar{Z}_{13}+\bar{Z}_{23}\right)}{\bar{Z}_{12}+\left(\bar{Z}_{13}+\bar{Z}_{23}\right)}$
Z nodes 1-3: (2) $\quad \bar{Z}_{1}+\bar{Z}_{3}=\frac{\bar{Z}_{13} \cdot\left(\bar{Z}_{12}+\bar{Z}_{23}\right)}{\bar{Z}_{12}+\left(\bar{Z}_{13}+\bar{Z}_{23}\right)}$
Z nodes 2-3: (3) $\quad \bar{Z}_{2}+\bar{Z}_{3}=\frac{\bar{Z}_{23} \cdot\left(\bar{Z}_{12}+\bar{Z}_{13}\right)}{\bar{Z}_{12}+\left(\bar{Z}_{13}+\bar{Z}_{23}\right)}$

From expressions (1), (2) and (3) it results:

$$
\bar{Z}_{1}=\frac{\bar{Z}_{12} \cdot \bar{Z}_{13}}{\bar{Z}_{12}+\bar{Z}_{13}+\bar{Z}_{23}} \quad \bar{Z}_{2}=\frac{\bar{Z}_{12} \cdot \bar{Z}_{23}}{\bar{Z}_{12}+\bar{Z}_{13}+\bar{Z}_{23}} \quad \bar{Z}_{3}=\frac{\bar{Z}_{13} \cdot \bar{Z}_{23}}{\bar{Z}_{12}+\bar{Z}_{13}+\bar{Z}_{23}}
$$

Balanced loads: $\quad Z_{Y}=Z_{\Lambda} / 3$

Unit 3. AC THREE-PHASE CIRCUITS

BALANCED THREE/FOUR-WIRE, WYE-CONNECTED LOAD

$$
\begin{aligned}
& \overline{\mathrm{I}}_{\mathrm{R}}=\frac{\overline{\mathrm{V}}_{\mathrm{RN}}}{\overline{\mathrm{Z}}} \quad \overline{\mathrm{I}}_{\mathrm{S}}=\frac{\overline{\mathrm{V}}_{\mathrm{SN}}}{\overline{\mathrm{Z}}} \quad \overline{\mathrm{I}}_{\mathrm{T}}=\frac{\overline{\mathrm{V}}_{\mathrm{TN}}}{\overline{\mathrm{Z}}} \\
& \overline{\mathrm{I}}_{\mathrm{N}}=-\left(\overline{\mathrm{I}}_{\mathrm{R}}+\overline{\mathrm{I}}_{\mathrm{S}}+\overline{\mathrm{I}}_{\mathrm{T}}\right)=0 \\
& \overline{\mathrm{~S}}_{\text {total }}=3 \cdot \overline{\mathrm{~S}}_{\text {fase }}=3 \cdot \overline{\mathrm{~V}}_{\mathrm{RN}} \cdot \overline{\mathrm{I}}_{\mathrm{R}}^{*}=\sqrt{3} \cdot \mathrm{~V}_{\text {linia }} \cdot \mathrm{I}_{\text {linia }}{ }^{\varphi^{\circ}} \\
& =\underbrace{\sqrt{3} \cdot \mathrm{~V}_{\text {linia }} \cdot \mathrm{I}_{\text {linia }} \cdot \cos \varphi}_{\mathrm{P}}+j \underbrace{\sqrt{3} \cdot \mathrm{~V}_{\text {linia }} \cdot \mathrm{I}_{\text {linia }} \cdot \sin \varphi}_{\mathrm{Q}}
\end{aligned}
$$

- The three currents are balanced
- Thus the sum of them is always zero
- Since the neutral current of a balanced, Yconnected, three-phase load is always zero, the neutral conductor may, for computational purposes, be removed, with no change in the results

Unit 3. AC THREE-PHASE CIRCUITS

BALANCED THREE/FOUR-WIRE, WYE-CONNECTED LOAD

Example A three-phase, RST system ($400 \mathrm{~V}, 50 \mathrm{~Hz}$), has a three-wire Y-connected load for which $Z=10^{30^{\circ}} \Omega$. Obtain the line currents and the complex power consumption-

$$
\begin{aligned}
& \overline{\mathrm{I}}_{\mathrm{R}}=\frac{\overline{\mathrm{V}}_{\mathrm{RN}}}{\overline{\mathrm{Z}}}=\frac{400 / \sqrt{3}^{90^{\circ}}}{10^{30^{\circ}}}=\frac{40}{\sqrt{3}}^{60^{\circ}} \mathrm{A} \\
& \overline{\mathrm{I}}_{\mathrm{S}}=\frac{\overline{\mathrm{V}}_{\mathrm{SN}}}{\overline{\mathrm{Z}}}=\frac{400 / \sqrt{3}-30^{\circ}}{10^{30^{\circ}}}=\frac{40^{-60^{\circ}}}{\sqrt{3}} \mathrm{~A}
\end{aligned}
$$

$$
\overline{\mathrm{I}}_{\mathrm{T}}=\frac{\overline{\mathrm{V}}_{\mathrm{TN}}}{\overline{\mathrm{Z}}}=\frac{400 / \sqrt{3}^{210^{\circ}}}{10^{30^{\circ}}}=\frac{40}{}_{\sqrt{3}}{ }^{180^{\circ}} \mathrm{A}
$$

$$
\begin{aligned}
\overline{\mathrm{S}}_{\text {total }} & =3 \cdot \overline{\mathrm{~S}}_{\text {phase }}=3 \cdot \overline{\mathrm{~V}}_{\mathrm{RN}} \cdot \overline{\mathrm{I}}_{\mathrm{R}}=3 \cdot\left(400 / \sqrt{3}^{90^{\circ}}\right) \cdot\left(40 / \sqrt{3}^{60^{\circ}}\right)^{*}= \\
& =16000^{30^{\circ}} \mathrm{VA}=13856.41(\text { watt })+\mathrm{j} 8000(\mathrm{VAr})
\end{aligned}
$$

$$
\int \mathrm{S}_{\text {total }}=\sqrt{3} \cdot \mathrm{~V}_{1} \cdot \mathrm{I}_{1}=\sqrt{3} \cdot 400 \cdot \frac{40}{\sqrt{3}}=16000 \mathrm{VA}
$$

$$
\left\{\mathrm{P}_{\text {total }}=\sqrt{3} \cdot \mathrm{~V}_{1} \cdot \mathrm{I}_{1} \cdot \cos \varphi=\sqrt{3} \cdot 400 \cdot \frac{40}{\sqrt{3}} \cdot \cos 30^{\circ}=13856.41 \mathrm{watt}\right.
$$

$$
\mathrm{Q}_{\text {total }}=\sqrt{3} \cdot \mathrm{~V}_{1} \cdot \mathrm{I}_{1} \cdot \sin \varphi=\sqrt{3} \cdot 400 \cdot \frac{40}{\sqrt{3}} \cdot \sin 30^{\circ}=8000 \mathrm{VAr}
$$

Unit 3. AC THREE-PHASE CIRCUITS
 UNBALANCED FOUR-WIRE, WYE-CONNECTED LOAD

$$
\begin{aligned}
& \stackrel{\overline{\mathrm{I}}_{\mathrm{R}}=\frac{\overline{\mathrm{V}}_{\mathrm{RN}}}{\overline{\mathrm{Z}}_{\mathrm{R}}}}{\stackrel{\mathrm{I}_{\mathrm{R}}}{\mathrm{R}}} \begin{array}{l}
\overline{\mathrm{I}}_{\mathrm{S}}=\frac{\overline{\mathrm{V}}_{\mathrm{SN}}}{\overline{\mathrm{Z}}_{\mathrm{S}}} \\
\overline{\mathrm{I}}_{\mathrm{T}}=\frac{\overline{\mathrm{V}}_{\mathrm{TN}}}{\overline{\mathrm{Z}}_{\mathrm{T}}} \\
\overline{\mathrm{I}}_{\mathrm{N}}=-\left(\overline{\mathrm{I}}_{\mathrm{R}}+\overline{\mathrm{I}}_{\mathrm{S}}+\overline{\mathrm{I}}_{\mathrm{T}}\right) \neq 0
\end{array} \\
& \overline{\mathrm{~S}}_{\mathrm{total}}=\overline{\mathrm{V}}_{\mathrm{RN}} \cdot \overline{\mathrm{I}}_{\mathrm{R}}^{*}+\overline{\mathrm{V}}_{\mathrm{SN}} \cdot \overline{\mathrm{I}}_{\mathrm{S}}^{*}+\overline{\mathrm{V}}_{\mathrm{TN}} \cdot \overline{\mathrm{I}}_{\mathrm{T}}^{*}
\end{aligned}
$$

Unit 3. AC THREE-PHASE CIRCUITS
 UNBALANCED THREE-WIRE, WYE-CONNECTED LOAD

Unit 3. AC THREE-PHASE CIRCUITS
 UNBALANCED THREE-WIRE, WYE-CONNECTED LOAD

$$
\begin{aligned}
& \text { 1) } \bar{V}_{\mathrm{ON}}=\frac{\overline{\mathrm{V}}_{\mathrm{RN}} \cdot \overline{\mathrm{Y}}_{\mathrm{R}}+\overline{\mathrm{V}}_{\mathrm{SN}} \cdot \overline{\mathrm{Y}}_{\mathrm{S}}+\overline{\mathrm{V}}_{\mathrm{TN}} \cdot \overline{\mathrm{Y}}_{\mathrm{T}}}{\overline{\mathrm{Y}}_{\mathrm{R}}+\overline{\mathrm{Y}}_{\mathrm{S}}+\overline{\mathrm{Y}}_{\mathrm{T}}} \\
& \text { 2) } \overline{\mathrm{I}}_{\mathrm{R}}=\frac{\overline{\mathrm{V}}_{\mathrm{RO}}}{\overline{\mathrm{Z}}_{\mathrm{R}}}=\frac{\overline{\mathrm{V}}_{\mathrm{RN}}-\overline{\mathrm{V}}_{\mathrm{ON}}}{\overline{\mathrm{Z}}_{\mathrm{R}}} \\
& \overline{\mathrm{I}}_{\mathrm{S}}=\frac{\overline{\mathrm{V}}_{\mathrm{SO}}}{\overline{\mathrm{Z}}_{\mathrm{S}}}=\frac{\overline{\mathrm{V}}_{\mathrm{SN}}-\overline{\mathrm{V}}_{\mathrm{ON}}}{\overline{\mathrm{Z}}_{\mathrm{S}}} \\
& \overline{\mathrm{I}}_{\mathrm{T}}=\frac{\overline{\mathrm{V}}_{\mathrm{TO}}}{\overline{\mathrm{Z}}_{\mathrm{T}}}=\frac{\overline{\mathrm{V}}_{\mathrm{TN}}-\overline{\mathrm{V}}_{\mathrm{ON}}}{\overline{\mathrm{Z}}_{\mathrm{T}}} \\
& \text { 3) } \overline{\mathrm{S}}_{\text {total }}=\overline{\mathrm{V}}_{\mathrm{RO}} \cdot \overline{\mathrm{I}}_{\mathrm{R}}^{*}+\overline{\mathrm{V}}_{\mathrm{SO}} \cdot \overline{\mathrm{I}}_{\mathrm{S}}^{*}+\overline{\mathrm{V}}_{\mathrm{TO}} \cdot \overline{\mathrm{I}}_{\mathrm{T}}^{*}
\end{aligned}
$$

Unit 3. AC THREE-PHASE CIRCUITS
 UNBALANCED THREE-WIRE, WYE-CONNECTED LOAD

Example• A three-phase, RST system ($400 \mathrm{~V}, 50 \mathrm{~Hz}$), has a three-wire unbalanced Y-connected load for which $Z_{R}=10^{\circ} \Omega, Z_{S}=10^{\circ} \Omega$ i $Z_{T}=10^{30^{\circ}} \Omega$. Obtain the line currents and the total complex power consumption.

$$
\begin{aligned}
& \mathrm{O} \neq \mathrm{N} \\
& \overline{\mathrm{~V}}_{\text {ON }}=\frac{\overline{\mathrm{V}}_{\mathrm{RN}} \cdot \overline{\mathrm{Y}}_{\mathrm{R}}+\overline{\mathrm{V}}_{\mathrm{SN}} \cdot \overline{\mathrm{Y}}_{\mathrm{S}}+\overline{\mathrm{V}}_{\text {TN }} \cdot \overline{\mathrm{Y}}_{\mathrm{T}}}{\overline{\mathrm{Y}}_{\mathrm{R}}+\overline{\mathrm{Y}}_{\mathrm{S}}+\overline{\mathrm{Y}}_{\mathrm{T}}} \\
& \bar{V}_{R O}=\bar{V}_{R N}-\bar{V}_{\mathrm{ON}}=230^{90^{\circ}}-40.93^{114.89^{\circ}}=193.64^{84.90^{\circ}} \mathrm{V} \\
& \bar{V}_{\text {SO }}=\bar{V}_{\text {SN }}-\nabla_{\text {ON }}=230^{-30^{\circ}}-40.93^{114.89^{\circ}}=264,54^{-35.10^{\circ}} \mathrm{V} \\
& \overline{\mathrm{~V}}_{\text {TO }}=\overline{\mathrm{V}}_{\text {TN }}-\overline{\mathrm{V}}_{\mathrm{ON}}=230^{210^{\circ}}-40.93^{114.89^{\circ}}=237,18^{-140.10^{\circ}} \mathrm{V} \\
& \bar{I}_{R}=\bar{V}_{R O} / \bar{Z}_{R}=193.6484 .90^{\circ} / 10^{\circ}=19,3684.90^{\circ} \mathrm{A} \\
& \bar{I}_{S}=\bar{V}_{S O} / \bar{Z}_{S}=264.54^{-35.10^{\circ}} / 10^{\circ}=26,45^{-35.10^{\circ}} \mathrm{A} \\
& \bar{I}_{\mathrm{T}}=\overline{\mathrm{V}}_{\mathrm{TO}} / \bar{Z}_{\mathrm{T}}=237.18^{-140.10^{\circ}} / 10^{30^{\circ}}=23.72^{-170.10^{\circ}} \mathrm{A} \\
& \overline{\mathrm{~S}}_{\mathrm{tot}}=\overline{\mathrm{V}}_{\mathrm{RO}} \cdot \overline{\mathrm{I}}_{\mathrm{R}}{ }^{*}+\overline{\mathrm{V}}_{\mathrm{SO}} \cdot \bar{I}_{\mathrm{S}}{ }^{*}+\overline{\mathrm{V}}_{\mathrm{TO}} \cdot \overline{\mathrm{I}}_{\mathrm{T}}{ }^{*}=15619.56 \mathrm{~W}+\mathrm{j} 2812.72 \mathrm{VAr}{ }^{977}
\end{aligned}
$$

Unit 3. AC THREE-PHASE CIRCUITS
 BALANCED DELTA-CONNECTED LOAD

$$
\begin{array}{ll}
\overline{\mathrm{I}}_{\mathrm{RS}}=\frac{\overline{\mathrm{V}}_{\mathrm{RS}}}{\overline{\mathrm{Z}}} & \overline{\mathrm{I}}_{\mathrm{R}}=\overline{\mathrm{I}}_{\mathrm{RS}}-\overline{\mathrm{I}}_{\mathrm{TR}} \\
\overline{\mathrm{I}}_{\mathrm{ST}}=\frac{\overline{\mathrm{V}}_{\mathrm{ST}}}{\overline{\mathrm{Z}}} & \overline{\mathrm{I}}_{\mathrm{S}}=\overline{\mathrm{I}}_{\mathrm{ST}}-\overline{\mathrm{I}}_{\mathrm{RS}} \\
\overline{\mathrm{I}}_{\mathrm{TR}}=\frac{\overline{\mathrm{V}}_{\mathrm{TR}}}{\overline{\mathrm{Z}}} & \overline{\mathrm{I}}_{\mathrm{T}}=\overline{\mathrm{I}}_{\mathrm{TR}}-\overline{\mathrm{I}}_{\mathrm{ST}}
\end{array}
$$

$$
\begin{aligned}
\overline{\mathrm{S}}_{\text {total }} & =3 \cdot \overline{\mathrm{~S}}_{\text {fase }}=3 \cdot \overline{\mathrm{~V}}_{\mathrm{RS}} \cdot \overline{\mathrm{I}}_{\mathrm{RS}}^{*}=\sqrt{3} \cdot \mathrm{~V}_{\text {linia }} \cdot \mathrm{I}_{\text {linia }}{ }^{\varphi^{\circ}} \\
& =\underbrace{\sqrt{3} \cdot \mathrm{~V}_{\text {linia }} \cdot \mathrm{I}_{\text {linia }} \cdot \cos \varphi}_{\mathrm{P}}+j \underbrace{\sqrt{3} \cdot \mathrm{~V}_{\text {lininia }} \cdot \mathrm{I}_{\text {linia }} \cdot \sin \varphi}_{\mathrm{Q}}
\end{aligned}
$$

Unit 3. AC THREE-PHASE CIRCUITS
 UNBALANCED DELTA-CONNECTED LOAD

$$
\begin{array}{ll}
\overline{\mathrm{I}}_{\mathrm{RS}}=\frac{\overline{\mathrm{V}}_{\mathrm{RS}}}{\overline{\mathrm{Z}}_{\mathrm{RS}}} & \overline{\mathrm{I}}_{\mathrm{R}}=\overline{\mathrm{I}}_{\mathrm{RS}}-\overline{\mathrm{I}}_{\mathrm{IR}} \\
\overline{\mathrm{I}}_{\mathrm{ST}}=\frac{\overline{\mathrm{V}}_{\mathrm{ST}}}{\overline{\mathrm{Z}}_{\mathrm{ST}}} & \overline{\mathrm{I}}_{\mathrm{S}}=\overline{\mathrm{I}}_{\mathrm{ST}}-\overline{\mathrm{I}}_{\mathrm{RS}} \\
\overline{\mathrm{I}}_{\mathrm{TR}}=\frac{\overline{\mathrm{V}}_{\mathrm{TR}}}{\overline{\mathrm{Z}}_{\mathrm{TR}}} & \overline{\mathrm{I}}_{\mathrm{T}}=\overline{\mathrm{I}}_{\mathrm{TR}}-\overline{\mathrm{I}}_{\mathrm{ST}}
\end{array}
$$

$$
\overline{\mathrm{S}}_{\text {total }}=\overline{\mathrm{V}}_{\mathrm{RS}} \overline{\mathrm{I}}_{\mathrm{RS}}^{*}+\overline{\mathrm{V}}_{\mathrm{ST}} \cdot \overline{\mathrm{I}}_{\mathrm{ST}}^{*}+\overline{\mathrm{V}}_{\mathrm{TR}} \cdot \overline{\mathrm{I}}_{\mathrm{TR}}^{*}
$$

Unit 3. AC THREE-PHASE CIRCUITS

UNBALANCED THREE-WIRE, \triangle-CONNECTED LOAD

Example. A three-phase, RST system ($400 \mathrm{~V}, 50 \mathrm{~Hz}$), has an unbalanced Δ connected load for which $Z_{R S}=10^{\circ} \Omega, Z_{S T}=10^{30^{\circ}} \Omega$ i $Z_{T R}=10^{-30^{\circ}} \Omega$. Obtain the line currents and the complex power consumption-

$$
\begin{aligned}
& \overline{\mathrm{I}}_{\mathrm{RS}}=\frac{\overline{\mathrm{V}}_{\mathrm{RS}}}{\overline{\mathrm{Z}}_{\mathrm{RS}}}=\frac{400^{120^{\circ}}}{10^{0^{\circ}}}=40^{120^{\circ}} \mathrm{A} \\
& \overline{\mathrm{I}}_{\mathrm{ST}}=\frac{\overline{\mathrm{V}}_{\mathrm{ST}}}{\overline{\mathrm{Z}_{\mathrm{ST}}}}=\frac{400^{0^{\circ}}}{10^{30^{\circ}}}=40^{-30^{\circ}} \mathrm{A} \\
& \overline{\mathrm{I}}_{\mathrm{TR}}=\frac{\overline{\mathrm{V}}_{\mathrm{TR}}}{\overline{\mathrm{Z}_{\mathrm{TR}}}}=\frac{400^{-120^{\circ}}}{10^{-30^{\circ}}}=40^{-90^{\circ}} \mathrm{A} \\
& \overline{\mathrm{I}}_{\mathrm{R}}=\overline{\mathrm{I}}_{\mathrm{RS}}-\overline{\mathrm{I}}_{\mathrm{TR}}=77.29^{105^{\circ}} \mathrm{A} \\
& \overline{\mathrm{I}}_{\mathrm{S}}=\overline{\mathrm{I}}_{\mathrm{ST}}-\overline{\mathrm{I}}_{\mathrm{RS}}=77.29^{-45^{\circ}} \mathrm{A}
\end{aligned}
$$

$$
\overline{\mathrm{I}}_{\mathrm{T}}=\overline{\mathrm{I}}_{\mathrm{TR}}-\overline{\mathrm{I}}_{\mathrm{ST}}=40.00^{-150^{\circ}} \mathrm{A}
$$

$$
\begin{aligned}
\overline{\mathrm{S}}_{\text {total }} & =\overline{\mathrm{V}}_{\mathrm{RS}} \cdot \cdot_{\mathrm{I}}^{*}+\overline{\mathrm{V}}_{\mathrm{ST}} \cdot \cdot_{\mathrm{I}}^{*}+\overline{\mathrm{V}}_{\mathrm{TR}} \cdot \cdot_{\mathrm{I}}^{*}=43712.81(\mathrm{~W})+\mathrm{j} 0(\mathrm{VAr})= \\
& =43712.81 \mathrm{VA}
\end{aligned}
$$

Unit 3. AC THREE-PHASE CIRCUITS
 POWER MEASURMENT. Four-wires load

Balanced wye-connected, four-wires load

$$
\mathrm{W}=\mathrm{V}_{\mathrm{RN}} \cdot I_{\mathrm{R}} \cdot \cos \left(\mathrm{~V}_{\mathrm{RN}}-I_{\mathrm{R}}\right)
$$

$$
P_{\text {total }}=3 W
$$

Unbalanced wye-connected, four-wires load

$$
\begin{gathered}
W_{R}=V_{R N} \cdot I_{R} \cdot \cos \left(V_{R N}-I_{R}\right) \\
W_{S}=V_{S N} \cdot I_{S} \cdot \cos \left(\mathrm{~V}_{S N}-I_{S}\right) \\
W_{T}=V_{T N} \cdot I_{T} \cdot \cos \left(\mathrm{~V}_{T N}-I_{T}\right) \\
P_{\text {total }}=W_{R}+W_{S}+W_{T}
\end{gathered}
$$

Unit 3. AC THREE-PHASE CIRCUITS
 POWER MEASURMENT. ARON CONNECTION

General 3-wires load. Two-wattmeter method (ARON connection)

Demonstration done for a balanced 3 -wires load

$\mathrm{W}_{1}=\mathrm{V}_{\mathrm{RT}} \cdot \mathrm{I}_{\mathrm{R}} \cdot \cos \left(\varphi_{\mathrm{V}_{\mathrm{RT}}}^{\text {/10 }}-\varphi_{\mathrm{I}_{\mathrm{R}}}^{\circ}\right)^{900^{\circ}}=\mathrm{V} \cdot \mathrm{I} \cdot \cos \left(-30^{\circ}+\varphi\right)$

$$
\mathrm{W}_{2}=\mathrm{V}_{\mathrm{ST}} \cdot \mathrm{I} \cdot \cos \left(\varphi_{\mathrm{V}_{\mathrm{ST}}}-\varphi_{\mathrm{I}_{\mathrm{S}}}\right)=\mathrm{V} \cdot \mathrm{I} \cdot \cos \left(30^{\circ}+\varphi\right)
$$

$$
\mathrm{P}_{\text {TOTAL }}=\mathrm{W}_{1}+\mathrm{W}_{2}=\mathrm{V} \cdot \mathrm{I} \cdot\left[\cos \left(-30^{\circ}+\varphi\right)+\cos \left(30^{\circ}+\varphi\right)\right]=\sqrt{3} \cdot \mathrm{~V} \cdot \mathrm{I} \cdot \cos \varphi
$$

$$
\mathrm{Q}_{\text {TOTAL }}=\sqrt{3} \cdot\left[\mathrm{~W}_{1}+\mathrm{W}_{2}\right]=\sqrt{3} \cdot \mathrm{~V} \cdot \mathrm{I} \cdot\left[\cos \left(-30^{\circ}+\varphi\right)-\cos \left(30^{\circ}+\varphi\right)\right]=\sqrt{3} \cdot \mathrm{~V} \cdot \mathrm{I} \cdot \sin \varphi
$$

Unit 3. AC THREE-PHASE CIRCUITS POWER MEASURMENT. BALANCED LOAD

Balanced load, general (Y/D, 3/4 wires). Two-wattmeter method (ARON connection)

$$
\begin{aligned}
& P_{\text {total }}=W_{1}+W_{2} \\
& Q_{\text {total }}=\sqrt{3} \cdot\left(W_{1}-W_{2}\right) \\
& \varphi=\operatorname{arctg}\left(\sqrt{3} \cdot \frac{W_{1}-W_{2}}{W_{1}+W_{2}}\right)
\end{aligned}
$$

Unbalanced wye/delta-connected, three-wires load

$$
P_{\text {total }}=W_{1}+W_{2}
$$

Unit 3. AC THREE-PHASE CIRCUITS
 POWER MEASURMENT; THE TWO-WATTMETER METHOD

Aron Cyclic Permutations

W1		W2	
\mathbf{V}	I	V	I
RT	R	ST	S
SR	S	TR	T
TS	T	RS	R

Q measurement: Cyclic Permutations

\mathbf{W}	
\mathbf{V}	\mathbf{I}
ST	R
TR	S
RS	T

$$
\mathrm{Q}_{\text {тот }}=\sqrt{3} \mathrm{~W}
$$

Unit 3. AC THREE-PHASE CIRCUITS

INSTANTANEOUS THREE-PHASE POWER

-Single-phase load: $\quad \cos A \cdot \cos B=0 \cdot 5 \cdot[\cos (A+B)+\cos (A-B)]$

$$
\begin{gathered}
\mathrm{p}(\mathrm{t})=\mathrm{v}(\mathrm{t}) \cdot \mathrm{i}(\mathrm{t})=\mathrm{V}_{0} \cdot \cos \left(\mathrm{w} \cdot \mathrm{t}+\varphi_{\mathrm{V}}\right) \cdot I_{0} \cdot \cos \left(\mathrm{wt}+\varphi_{\mathrm{I}}\right) \\
\mathrm{p}(\mathrm{t})=1 / 2 \cdot \mathrm{~V}_{0} \cdot I_{1} \cdot \cos \left(\varphi_{\mathrm{V}}-\varphi_{\mathrm{I}}\right)+\underbrace{1 / 2 \cdot \mathrm{~V}_{0} \cdot I_{0} \cdot \cos \left(2 \mathrm{wt}+\varphi_{\mathrm{V}}+\varphi_{\mathrm{I}}\right) \text { watt }}_{\text {Onscillates twice mains frequency!!!! }}
\end{gathered}
$$

-Three-phase wye balanced load:

$$
\begin{aligned}
p(t)= & V_{R N}(t) \cdot i_{R}(t)+V_{S N}(t) \cdot i_{S}(t)+V_{T N}(t) \cdot i_{T}(t)= \\
= & \sqrt{ } 2 V_{p} \cdot \cos \left(w t+\varphi_{V}\right) \cdot \sqrt{ } 2 I_{p} \cdot \cos \left(w t+\varphi_{I}\right) \\
& +\sqrt{ } 2 V_{p} \cdot \cos \left(w t-120^{\circ}+\varphi_{V}\right) \cdot \sqrt{ } 2 I_{p} \cdot \cos \left(w t-120^{\circ}+\varphi_{I}\right) \\
& +\sqrt{ } 2 V_{p} \cdot \cos \left(w t+120^{\circ}+\varphi_{V}\right) \cdot \sqrt{ } 2 I_{p} \cdot \cos \left(w t+120^{\circ}+\varphi_{I}\right) \\
= & \\
& V_{p} \cdot I_{p} \cdot \cos \left(\varphi_{V}-\varphi_{1}\right)+V_{p} \cdot I_{p} \cdot \cos \left(2 w t+\varphi_{V}+\varphi_{I}\right) \\
& +V_{p} \cdot I_{p} \cdot \cos \left(\varphi_{V}-\varphi_{I}\right)+V_{p} \cdot I_{p} \cdot \cos \left(2 w t-240^{\circ}+\varphi_{V}+\varphi_{I}\right) \\
& +V_{p} \cdot I_{p} \cdot \cos \left(\varphi_{V}-\varphi_{I}\right)+V_{p} \cdot 1 / \cos \left(2 w t+240^{\circ}+\varphi_{V}+\varphi_{I}\right) \\
= & 3 / 2 \cdot V_{p} \cdot I_{p} \cdot \cos \left(\varphi_{V}-\varphi_{I}\right)=3 / 2 \cdot V_{p} \cdot I_{p} \cdot \cos \varphi=\operatorname{constant!!!}
\end{aligned}
$$

Unit 3. AC THREE-PHASE CIRCUITS
 INSTANTANEOUS POWER: SINGLE PHASE LOAD

Unit 3. AC THREE-PHASE CIRCUITS
 POWER LOSSES THREE-PHASE/SINGLE PHASE

Single-phase line

$$
\begin{aligned}
& I=\frac{P_{\text {load }}}{\mathrm{V} \cdot \cos \varphi} \\
& \mathrm{P}_{\text {losses }}=2 \cdot \mathrm{R}_{1} \cdot \mathrm{I}^{2}=2 \cdot \mathrm{R}_{1} \cdot \frac{\mathrm{P}_{\text {load }}^{2}}{\mathrm{~V}^{2} \cdot \cos ^{2} \varphi}
\end{aligned}
$$

Three-phase line

$$
\begin{aligned}
& \mathrm{I}=\frac{\mathrm{P}_{\text {load }}}{\sqrt{3} \cdot \mathrm{~V}_{1}^{\cos \varphi}} \\
& \mathrm{P}_{\text {losses }}=3 \cdot \mathrm{R}_{2} \cdot \mathrm{I}^{2}=3 \cdot \mathrm{R}_{2} \cdot \frac{\mathrm{P}_{\text {load }}^{2}}{(\sqrt{3})^{2} \cdot \mathrm{~V}^{2} \cdot \cos ^{2} \varphi}=\mathrm{R}_{2} \cdot \frac{\mathrm{P}_{\text {load }}^{2}}{\mathrm{~V}^{2} \cdot \cos ^{2} \varphi}
\end{aligned}
$$

Supposing $\mathbb{N}^{2 m e ~ l o s s e s ~} \quad \begin{aligned} 2 \mathrm{R}_{1} & \stackrel{\mathrm{R}_{1}}{\mathrm{R}_{2}} \rightarrow 2 \rho \frac{l}{\mathrm{~S}_{1 \mathrm{p}}}=\rho \frac{l}{\mathrm{~S}_{3 \mathrm{p}}} \rightarrow \mathrm{S}_{3 \mathrm{p}}=\frac{1}{2} \mathrm{~S}_{1 \mathrm{p}}\end{aligned}$
Single-phase line: 2 conductors of length l and section $\mathrm{S}_{1 \text { p }}$
Three-phase line: 3 conductors of length l and section $S_{3 p}=1 / 2 S_{1 p}$
As a result: weight $_{3 p-c a b l e s}=3 / 4$ weight $_{1 \text { p-cables }}$

Unit 3. AC THREE-PHASE CIRCUITS

Example 1

Three-phase, balanced RST system for which $\mathrm{A}_{1}=1.633 \mathrm{~A}, \mathrm{~A}_{2}=5.773 \mathrm{~A}, \mathrm{~W}_{1}=6928.2$ $\mathrm{W}, \mathrm{W}_{2}=12000 \mathrm{~W}, \mathrm{U}=6000 \mathrm{~V}, \mathrm{Z}_{\text {line }}=4+\mathrm{j} 3 \Omega \cdot \mathrm{a}$) Obtain the complex power in the loads, the ammeter A and the voltmeter U_{1} readings b) Obtain the value of C_{Δ} to improve the load's PF to 1 , supposing $U=6000 \mathrm{~V}$.

$$
\mathrm{P}_{2}=3 \mathrm{~W}_{2}=36000 \mathrm{~W}=\sqrt{3} \mathrm{UI}_{2} \cos \varphi_{2}
$$

Balanced load 1 capacitive

$$
\mathrm{Q}_{1}=-\sqrt{3 \mathrm{~W}_{1}}=-12000 \mathrm{VAr}
$$

$$
\mathrm{Q}_{1}=-12000 \mathrm{VAr}=\sqrt{3} \mathrm{UI}_{1} \sin \varphi_{1}
$$

$$
\varphi_{1}=-45^{\circ}
$$

$$
\mathrm{P}_{1}=\sqrt{3} \mathrm{UI}_{1} \cos \varphi_{1}=12000 \mathrm{~W}
$$

$$
\varphi_{2}=53.12^{\circ}
$$

$$
\mathrm{Q}_{2}=\sqrt{3 \mathrm{UI}_{2} \sin \varphi_{2}=48000 \mathrm{VAr}}
$$

$$
\begin{aligned}
& \overline{\mathrm{S}}_{1+2}=\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right)+\mathrm{j}\left(\mathrm{Q}_{1}+\mathrm{Q}_{2}\right)=48000+\mathrm{j} 36000=60000^{36.87^{\circ}} \mathrm{VA} \\
& \overline{\mathrm{I}}_{\text {TOTAL }}=\overline{\mathrm{I}}_{1}+\overline{\mathrm{I}}_{2}=1.633^{90^{\circ}+45^{\circ}}+5.773^{90^{\circ}-53.12^{\circ}}=5.774^{90^{\circ}-36.85^{\circ}} \mathrm{A}
\end{aligned}
$$

$$
\overline{\mathrm{U}}_{1, p h a s e}=\overline{\mathrm{I}} . \overline{\mathrm{Z}}_{\mathrm{L}}+\overline{\mathrm{U}}_{\text {phase }}=5.774^{90^{\circ}-36.85^{\circ}}(4+j 3)+{\frac{6000^{90^{\circ}}}{\sqrt{3}}}^{0}=3492.97^{90^{\circ}} \mathrm{V} \quad \mathrm{U}_{1}=\sqrt{3} \mathrm{U}_{1, \text { phase }}=6050 \mathrm{~V}
$$

$$
\mathrm{Q}_{1 C, \Delta}=-\mathrm{Q} / 3=-36000 / 3 \mathrm{VAr}=-\frac{(6000)^{2}}{1 /\left(2 \pi .50 . \mathrm{C}_{\Delta}\right)} \quad \mathrm{C}_{\Delta}=1.06 \mu \mathrm{~F}
$$

Unit 3. AC THREE-PHASE CIRCUITS

Example 2

Three-phase 50 Hz system, for which $\mathrm{V}=400 \mathrm{~V}, \mathrm{~W}_{1}=-8569.24 \mathrm{~W}, \mathrm{~W}_{2}=-5286.36 \mathrm{~W}$, $A_{S}=21.56 \mathrm{~A}$. Obtain a) the value of $R \mathrm{~b}$) the reading of $A_{R} c$) the value of the inductance L

$$
\begin{gathered}
\mathrm{W}_{1}^{\prime}=-\mathrm{W}_{1} \\
\text { and } \\
\mathrm{W}_{2}^{\prime}=-\mathrm{W}_{2}
\end{gathered}
$$

\mathbf{W}_{1}		$\mathbf{W}_{\mathbf{2}}$	
\mathbf{V}	\mathbf{I}	\mathbf{V}	\mathbf{I}
RT	R	ST	S
SR	S	TR	T
TS	T	RS	R

a) $\mathrm{P}_{\text {total }}=\mathrm{W}_{1}{ }^{\prime}+\mathrm{W}_{2}{ }^{\prime}=13855.6 \mathrm{~W}=2 \cdot \frac{400^{2}}{\mathrm{R}} \quad$ resulting in: $\quad \mathrm{R}=23.095 \Omega$

b) $\overline{\mathrm{I}}_{\mathrm{SR}}=\frac{\overline{\mathrm{V}}_{\mathrm{SR}}}{\mathrm{R}}=\frac{400^{-60^{\circ}}}{23.095}=17.32^{-60^{\circ}} \mathrm{A} \quad \overline{\mathrm{I}}_{\mathrm{RT}}=\frac{\overline{\mathrm{V}}_{\mathrm{RT}}}{\mathrm{R}}=\frac{400^{+60^{\circ}}}{23.095}=17.32^{+60^{\circ}} \mathrm{A}$

It results: $\quad \bar{I}_{R}=\overline{\mathrm{I}}_{\mathrm{RT}}-\overline{\mathrm{I}}_{\mathrm{SR}}=30^{90^{\circ}} \mathrm{A}$
c) $\overline{\mathrm{I}}_{\mathrm{S}}=\overline{\mathrm{I}}_{\mathrm{SR}}-\overline{\mathrm{I}}_{\mathrm{TS}}=17.32^{-60^{\circ}}-\frac{\overline{\mathrm{V}}_{\mathrm{TS}}}{\mathrm{j} \mathrm{X}_{\mathrm{L}}}=17.32^{-60^{\circ}}-\frac{400^{180^{\circ}}}{\mathrm{X}_{\mathrm{L}}{ }^{90^{\circ}}}=8.66-\mathrm{j} 15-\mathrm{j} \frac{400}{\mathrm{X}_{\mathrm{L}}}$

$$
\mathrm{I}_{\mathrm{S}}=21.56 \mathrm{~A}=\sqrt{8.66^{2}+\left(-15-\frac{400}{\mathrm{X}_{\mathrm{L}}}\right)^{2}} \rightarrow \mathrm{X}_{\mathrm{L}}=84.308 \Omega=2 \pi 50 \mathrm{~L}
$$

The result is: $\mathrm{L}=0.2684 \mathrm{H}$

Unit 3. AC THREE-PHASE CIRCUITS

Example 3

Varley phase-sequence indicator Calculate the voltage in each element and deduce practical consequences. Three-phase $400 \mathrm{~V} / 50 \mathrm{~Hz}$ system.

$$
\begin{aligned}
& \mathrm{C}=1 \mu \mathrm{~F} \rightarrow \mathrm{X}_{\mathrm{C}}=3183 \Omega \\
& \mathrm{R}_{2 \text { bulbs }}=2 \cdot \mathrm{~V}^{2} / \mathrm{P}=2 \cdot 230^{2} / 20=5290 \Omega \\
& \overline{\mathrm{~V}}_{\mathrm{ON}}=\frac{\overline{\mathrm{V}}_{\mathrm{RN}} \cdot \overline{\mathrm{Y}}_{\mathrm{R}}+\overline{\mathrm{V}}_{\mathrm{SN}} \cdot \overline{\mathrm{Y}}_{\mathrm{S}}+\overline{\mathrm{V}}_{\mathrm{TN}} \cdot \overline{\mathrm{Y}}_{\mathrm{T}}}{\overline{\mathrm{Y}}_{\mathrm{R}}+\overline{\mathrm{Y}}_{\mathrm{S}}+\overline{\mathrm{Y}}_{\mathrm{T}}}
\end{aligned}
$$

$$
=\frac{230^{90^{\circ}} / 3183^{-90^{\circ}}+230^{-30^{\circ}} / 5290^{0^{\circ}}+230^{210^{\circ}} / 5290^{0^{\circ}}}{1 / 3183^{-90^{\circ}}+1 / 5290^{0^{\circ}}+1 / 5290^{0^{\circ}}}
$$

$$
=171.55^{171.31^{\circ}} \mathrm{V} \text { 1uF, } 400 \mathrm{~V}
$$

$$
\overline{\mathrm{V}}_{\mathrm{RO}}=\overline{\mathrm{V}}_{\mathrm{RN}}-\overline{\mathrm{V}}_{\mathrm{ON}}=230^{90^{\circ}}-171.55^{171.31^{\circ}}=265.34^{50.28^{\circ}} \mathrm{V}
$$

$$
\overline{\mathrm{V}}_{\mathrm{SO}}=\overline{\mathrm{V}}_{\mathrm{SN}}-\overline{\mathrm{V}}_{\text {2Nulbs in series }}=230^{-30^{\circ}-171.55^{171.31^{\circ}}=394.78^{-20.91^{\circ}} \mathrm{V}}
$$

Conductor R is that where the capacitor is placed, conductor S is that where placed the brighter bulb and the remaining one is T.

2 bulbs in series

Unit 3. AC THREE-PHASE CIRCUITS

Example 4

A 400 V and 50 Hz three-phase line feeds two balanced loads through a line which has an internal impedance $Z_{L}=0.5+j \cdot 1 \Omega$. The Δ-connected load has phase impedances which values are $45+j \cdot 30 \Omega$, whereas the Y -connected load has phase impedances of $15-j \cdot 30 \Omega$. Determine: a) The reading of the ammeter Ab) The reading of the voltmeter V c) The readings of watt-meters W_{1} and W_{2}

$\overline{\mathrm{Z}}_{\text {Tот }}=\overline{\mathrm{Z}}_{\mathrm{L}}+\left(\overline{\mathrm{Z}}_{\Delta \rightarrow Y} / / \overline{\mathrm{Z}}_{\mathrm{Y}}\right)=\overline{\mathrm{Z}}_{\mathrm{L}}+\overline{\mathrm{Z}}_{/ /}=(0.5+\mathrm{j} \cdot 1)+(16.731+\mathrm{j} \cdot 1.154)=17.365^{7.125^{\circ}} \Omega$
a) $\overline{\mathrm{I}}_{\mathrm{R}}=\frac{\overline{\mathrm{V}}_{\mathrm{RN}}}{\overline{\mathrm{Z}}_{\text {TOT }}}=\frac{400 / \sqrt{3}+90^{\circ}}{17.365^{7.125^{\circ}}}=13.30^{82.875^{\circ}} \mathrm{A}$
b) $\mathrm{V}=\sqrt{3} \cdot\left(\mathrm{I} \cdot \mathrm{Z}_{/ /}\right)=\sqrt{3} \cdot(13.30 \cdot 16.7706)=386.33 \mathrm{~V}$

W1		W2	
\mathbf{V}	I	V	I
RT	R	ST	S
SR	S	TR	T
TS	T	RS	R

c) $\mathrm{P}_{\text {LOAD }}=\mathrm{W}_{1}+\mathrm{W}_{2}=3 \cdot 13.30^{2} \cdot 16.731$

$$
\left.\mathrm{Q}_{\mathrm{LOAD}}=\sqrt{3} \cdot\left(\mathrm{~W}_{1}-\mathrm{W}_{2}\right)=3 \cdot 13.30^{2} \cdot 1.154\right\}
$$

From the Aron connection it results:

$$
\mathrm{W}_{1}=4616,1 \mathrm{~W}, \quad \mathrm{~W}_{2}=4262,5 \mathrm{~W}
$$

Unit 3. AC THREE-PHASE CIRCUITS

Example 5

Three phase $400 \mathrm{~V}-50 \mathrm{~Hz}$ line. When switch K_{2} is closed $\mathrm{W}_{\mathrm{A}}=4000 \mathrm{~W}$. When K_{1} and K_{3} are closed, $W_{A}=28352.6$ and $W_{B}=-11647.4 \mathrm{~W}$. Determine: a) R_{2} b) R_{1} c) A_{T}
a) \mathbf{K}_{2} closed: $\mathrm{W}_{\mathrm{A}}=\mathrm{V}_{\mathrm{ST}} \cdot \mathrm{I}_{\mathrm{S}} \cdot \cos \left(\varphi_{\mathrm{VST}}-\varphi_{\mathrm{IS}}\right)$

$$
4000=400 \cdot \mathrm{I}_{\mathrm{S}} \cdot \cos \left(0^{\circ}+30^{\circ}\right) \rightarrow \mathrm{I}_{\mathrm{S}}=11.55 \mathrm{~A}
$$

$$
\mathbf{R}_{2}=\mathrm{V}_{\mathrm{SN}} / \mathrm{I}_{\mathrm{S}}=(400 / \sqrt{ } 3) / 11.55=\mathbf{2 0} \Omega
$$

b) K_{1} and K_{3} closed:

$$
\mathrm{P}_{\mathrm{TOT}}=\mathrm{W}_{1}+\mathrm{W}_{2}=-\mathrm{W}_{\mathrm{B}}+\mathrm{W}_{\mathrm{A}}=40000 \mathrm{~W}=2 \cdot 400^{2} / \mathrm{R}_{1}+400^{2} / \mathrm{R}_{2} \xrightarrow{20} \mathbf{R}_{\mathbf{1}}=\mathbf{1 0} \Omega
$$

c) K_{1} and K_{3} closed:

$$
\begin{aligned}
& I_{T 1}=I_{T S}-I_{R T}=\frac{V_{T S}}{R_{1}}-\frac{V_{R T}}{R_{1}}=\frac{400^{180^{\circ}}}{10}-\frac{400^{60^{\circ}}}{10}=-60-j \cdot 34.64 \mathrm{~A} \\
& I_{T 2}=\frac{V_{T S}}{R_{2}}=\frac{400^{180^{\circ}}}{20}=-20+j \cdot 0 \mathrm{~A} \\
& I_{T \text { total }}=I_{T 1}+I_{T 2}=(-60-j \cdot 34.64)+(-20+j \cdot 0)=-80-j \cdot 34.64=87.18^{87.18^{\circ}} \mathrm{A}
\end{aligned}
$$

$$
\text { It results, } \mathrm{A}_{\mathrm{T}}=87.18 \mathrm{~A}
$$

Unit 3. AC THREE-PHASE CIRCUITS
 Question 1

An electrical lineman is connecting three single-phase transformers in a Y (primary)Y (secondary) configuration, for power service to a business. Draw the connecting wires necessary between the transformer windings, and between the transformer terminals and the lines. Note: fuses have been omitted from this illustration, for simplicity.

Unit 3. AC THREE-PHASE CIRCUITS
 Question 2

Identify the primary-secondary connection configuration of these pole-mounted power transformers (i.e. Y-Y, Y-Delta, Delta-Y, etc.).

These transformers are connected in a Yy configuration.

Unit 3. AC THREE-PHASE CIRCUITS
 Question 3

Identify the primary-secondary connection configuration of these pole-mounted power transformers (i.e. Y-Y, Y-Delta, Delta-Y, etc.).

These transformers are connected in a Yd configuration.

Unit 3. AC THREE-PHASE CIRCUITS
 Question 3

Identify the primary-secondary connection configuration of these pole-mounted power transformers (i.e. Y-Y, Y-Delta, Delta-Y, etc.).

These transformers are connected in open-delta configuration.

- Utilizing 3 single-phase transformers is normally not done because it is more expensive than utilizing 1 three-phase transformer.
- However, there is an advantage which is called the open-Delta or V-Connection
- It functions as follows: a defective single-phase transformer in a Dd three-phase bank can removed for repair. Partial service can be restored using the open-Delta configuration until a replacement transformer is obtained.
- With two transformers three-phase is still obtained, but at reduced power 57.7% of original power.
- It is a very practical transformer application for emergency conditions.

Unit 3. AC THREE-PHASE CIRCUITS

Question 4

One of the conductors connecting the secondary of a three-phase power distribution transformer to a large office building fails open. Upon inspection, the source of the failure is obvious: the wire overheated at a point of contact with a terminal block, until it physically separated from the terminal. What is strange, though, is that the overheated wire is the neutral conductor, not any one of the "line" conductors. Based on this observation, what do you think caused the failure?
After repairing the wire, what would you do to verify the cause of the failure?

-Here's a hint ("pista"): if you were to repair the neutral wire and take current measurements with a digital instrument (using a clamp-on current probe, for safety), you would find that the predominant frequency of the current is 150 Hz , rather than 50 Hz .

- This scenario is all too common in modern power systems, as non-linear loads such as switching power supplies and electronic power controls become more prevalent. Special instruments exist to measure harmonics in power systems, but a simple DMM (digital multimeter) may be used as well to make crude assessments.

Unit 4. TRANSFORMERS

TRANSFORMERS

SINGLE-PHASE AND THREE-PHASE TRANSFORMERS

Miracle transformers
Overhead power lines

Unit 4. TRANSFORMERS

CONTENTS LIST:

- Introduction
- Core designs
- Energy loss
- Electrical steel
- The Ideal transformer
- Quantities referred to the primary/secondary side
- The practical transformer
- Equivalent circuit
- Standard tests
- Efficiency
- Parallel connected transformers
- Three-phase bank
- Three-phase connections. Vector/phasor group
- Preferred connections
- Exercises

Unit 4. TRANSFORMERS POWER GRID

- Utility frequency: 50 Hz (60 Hz in some countries)
- Use of transformers made it possible to transmit the power economically hundreds of kilometers away from the generating station.
- The success of the current AC power system is in grand extend due to power, transmission and distribution transformers.
- Generators voltages: from 6 to 25 kV .
- Transmission voltages(>100 km) : 220 and 400 kV
- Primary distribution voltages(<100 km): 132, 66, 45 kV
- Medium voltage distribution(<10 km): 3, 6, 10, 15, 20 kV

RATED VOLTAGE (kV) Overhead power lines	
3rd category	3
	6
	10
	15
	20*
	25
	30
2nd Category	45
	66*
$\begin{gathered} \text { 1st } \\ \text { category } \end{gathered}$	110
	132*
	150
special category	220*
	400*

Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión 2008

ITC-LAT 07

* Suggested

Unit 4. TRANSFORMERS POWER GRID

Unit 4. TRANSFORMERS
 INTRODUCTION

- Transformers were invented towards the end of the nineteenth century
- Transformers make possible the development of the modern constant voltage AC supply system, with power stations often located many miles from centers of electrical load.
- The transformer is an electromagnetic conversion device which has a primary and a secondary windings. It accomplishes: $\mathrm{V}_{1} \mathrm{I}_{1} \approx \mathrm{~V}_{2} \mathrm{I}_{2}$.
- The primary and secondary windings are not connected electrically, but coupled magnetically.
- A transformer is termed as either a step-up or step-down transformer.
- Machines with higher efficiency, up to 99.7\%

Unit 4. TRANSFORMERS
 INTRODUCTION

- High power \approx three-phase transformers
- Low power \approx single-phase transformers
- General Electric makes single-phase distribution transformers up to 167 kVA for residential power distribution.
- Single-phase power distribution is used especially in rural areas, where the cost of a three-phase distribution network is high and motor loads are small and uncommon.
- Small single-phase transformers are also used in electronic appliances such as TV, video, ...

 rated at 16 kVA 11 000/200 250 V (Allenwest Brentford)

Unit 4. TRANSFORMERS
 DEFINITIONS

- Rating: The nominal value of any electrical, thermal, mechanical, or environmental quantity assigned to define the operating conditions under which a component, machine, apparatus, electronic device, etc., is expected to give satisfactory service.
- Rated frequency (\mathbf{f}_{n}): The frequency of the alternating current for which a device is designed.
- Rated continuous current $\left(\mathbf{I}_{\mathrm{n}}\right)$: The current expressed in amperes, root mean square, that the device can carry continuously under specified service conditions without exceeding the allowable temperature rise.
- Rated voltage: The RMS voltage, at rated frequency, which may be impressed between the terminals of the device under standard operating conditions.

Rated value: nominal o assignat

Unit 4. TRANSFORMERS
 CORE DESIGNS

Type of windings

Low-current: circular-section wires with varnish insulation
High-current: flat bars with paper insulation

- Concentric: windings with shape of coaxial cylinders
- Alternate: windings are divided into different sections, placed consecutively as Low-Voltage/High-Voltage/Low-Voltage/ High-Voltage/Low-Voltage ...

(3)

Unit 4. TRANSFORMERS
 CORE DESIGNS

Core-type designs (de columnes)

- Predominate throughout most of the world
- The coil surrounds the core

cocotre

Unit 4. TRANSFORMERS
 CORE DESIGNS

Shell-type designs (acuirassat)

- The core surrounds the coil
- The flux-return paths of the core are external to and enclose the windings.
- This design provides better magnetic shielding \rightarrow suitable for supplying power at low voltage and heavy current, as, for example, in the case of arc furnace transformers.

Single-phase shell-type core

Three-pahse shell-type core

造

Unit 4. TRANSFORMERS
 CORE DESIGNS

Core sections

- Core laminations are built up to form a limb or leg having as near as possible a circular cross-section.
- Circular cross-sections allow to obtain optimum use of space within the cylindrical windings.
- The stepped cross-section approximates to a circular shape depending only on how many different widths of strip there are.

Unit 4. SINGLE-PHASE TRANSFORMERS MAGNETIC FLUX

Unit 4. TRANSFORMERS
 CORE DESIGNS

Refrigeration systems

- Power loss generate heat
- Dry transformers: for low power
- Oil-filled transformers: for large power, the transformer is completely submerged in an oil tank. The oil actuates as a coolant and an insulator. Mineral oil (from distillation of petrol) and silicone oil (most actual)
- Dry-type transformers encapsulated in epoxy resin: for installations that require high security, specially in indoor. They don't spread fire. High voltage windings are completely encapsulate in epoxy resin.

Kotsons Catalogue

Oil insulated type transformer

- 33 kV to 400 V
- 25 KVA - 20 MVA
- Refrigeration: mineral oil a low flammability synthetic fluid
- Ventilation (possibility)

Kotsons Catalogue

Dry type transformer

- 33 kV to 400 V
- 40 KVA - 5 MVA
- Insulation: epoxy resin
- Ventilation
- Indoor
- Very safe

Unit 4. TRANSFORMERS
 CORE DESIGNS

Refrigeration systems

Insulation	Symbol	Type of circulation	Symbol		
Mineral oil	O	Natural	N		
Pyralene	L	Forced	F		
Gas	G				
Water	W				
Air	A				
Solid insulation	S				

ONAN: Oil Natural (transformer submerged in an oil tank; oil with natural convection) It is refrigerated by Air with Natural convection

ONAF: In this case the Air is Forced by means of a fan

Unit 4. TRANSFORMERS

TRANSFORMER ASSEMBLY

Unit 4. TRANSFORMERS
 FARADAY'S LAW OF INDUCTION

Faraday's Law

The induced electromotive force (EMF) in any closed circuit is equal to the time rate of change of the magnetic flux through the circuit.

Unit 4. TRANSFORMERS
 IDEAL TRANSFORMER

- Transformer: static device that transfers electrical energy from one circuit to another by electromagnetic induction without the change in frequency. It changes the relationship between voltage and current in primary and secondary sides.
- It is made of steel lamination wrapped with two coils of wire.
- The coil-ratio or turns-ratio derives the voltage change.

$$
\begin{aligned}
& \text { Turns-ratio } \quad r_{t}=\frac{N_{1}}{N_{2}} \\
& \mathrm{r}_{\mathrm{t}}=\left|\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right|=\frac{\mathrm{N}_{1} \mathrm{~d} \Phi_{\mathrm{m}} / \mathrm{dt}}{\mathrm{~N}_{2} \mathrm{~d} \Phi_{\mathrm{m}} / \mathrm{dt}}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}
\end{aligned}
$$

Operating principle of a zero-loss transformer:

$$
\mathrm{S}_{1} \approx \mathrm{~S}_{2} \quad \Rightarrow \quad \mathrm{~V}_{1} \mathrm{I}_{1} \approx \mathrm{~V}_{2} \mathrm{I}_{2} \quad \Rightarrow \quad \mathrm{r}_{\mathrm{t}} \xlongequal{\Phi_{\mathrm{m}_{1}}^{\mathrm{N}_{2}}}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}} \quad \mathrm{I}_{2}
$$

The transformer alters the relationship between voltages and currents, but does not change the power transferred

Unit 4. TRANSFORMERS
 ENERGY LOSS. GENERAL

```
IDEAL TRANSFORMER
    Zero-energy loss
    Efficiency=100%
L
PRACTICAL TRANSFORMER
    WINDINGS LOSS (resistive)
    IRON LOSS
    Hysteresis
    Eddy currents
    Magnetostriction
    Efficiency: < 100%
```

- It has been estimated that some 5\% of all electricity generated is dissipated as iron losses in electrical equipment.
- Larger transformers are generally more efficient, and those rated for electricity distribution usually perform better than 98\%.

Unit 4. TRANSFORMERS
 ENERGY LOSS. WINDING RESISTANCE

Winding resistance

Current flowing through the windings causes resistive heating of the conductors. At higher frequencies, skin effect and proximity effect create additional winding resistance and losses.

$$
\begin{gathered}
R=\rho \cdot L / S \\
P_{\text {TOTAL }}=P_{1}+P_{2}=I_{1}{ }^{2} R_{1}+I_{2}^{2} R_{2} \\
\rho_{\mathrm{Cu}}=1.72 \cdot 10^{-8} \Omega \mathrm{~m}\left(20^{\circ} \mathrm{C}\right) \\
\rho_{\mathrm{AI}}=2.82 \cdot 10^{-8} \Omega \mathrm{~m}\left(20^{\circ} \mathrm{C}\right)
\end{gathered}
$$

Unit 4. TRANSFORMERS

ENERGY LOSS. HYSTERESIS LOSS

Hysteresis loop

- Ferromagnetic materials have microscopic ferrc
- In the presence of an exterior magnetic field, th domains become faced towards the direction of

(a)

(b)

Each time the magnetic field is rever a hysteresis within the core due to a friction process.

- Hysteresis losses are minimized by use of a better grade of core material.

Unit 4. TRANSFORMERS

ENERGY LOSS. EDDY CURRENTS

Eddy currents

- Ferromagnetic materials are good conductors.
- A solid core made from such a material also constitutes a single short-circuited turn throughout its entire length.
- Eddy currents therefore circulate within the core in a plane normal to the flux, and are responsible for resistive heating of the core material.
- Eddy losses are minimized by use of thinner laminations.
- Currently the lowest thickness available is 0.23 mm , and the popular thickness range is 0.23 mm to 0.35 mm for power transformers.

Unit 4. TRANSFORMERS
 ENERGY LOSSES. MAGNETOSTRICTION

Magnetostriction (Transformer noise)

- Magnetic flux in a ferromagnetic material, such as the core, causes it to physically expand and contract slightly with each cycle of the magnetic field, an effect known as magnetostriction.
- This produces the buzzing sound commonly associated with transformers, and in turn causes losses due to frictional heating in susceptible cores.
- Transformers located near a residential area should have sound level as low as possible.

Unit 4. TRANSFORMERS
 ELECTRICAL STEEL XAPA MAGNĖTICA

- Electrical steel is designed to produce small hysteresis area (low core loss) and high permeability.
- Electrical steel is an iron alloy which may have from zero to 6.5% silicon.
- Silicon significantly increases the electrical resistivity of the steel, which decreases the induced eddy currents and thus reduces core losses.
- The presence of silicon has the disadvantage that the steel becomes brittle and hard. For workability reasons and ease of manufacture, the quantity must be limited.
- The elimination of impurities, including carbon, also has a significant effect in the reduction of losses.
- The material is usually manufactured in the form of cold-rolled strips.
- These strips are called laminations when stacked together to form a core.
- Silicon steel laminations of thickness from 0.2 mm to 0.5 mm (predominantly 0.35 mm) are used in transformers.

Unit 4. TRANSFORMERS ELECTRICAL STEEL

Grain-oriented electrical steel

- Usually has a silicon level of 3\%.

- Optimum properties are developed in the rolling direction, due to a tight control of the crystal orientation relative to the sheet.
- The magnetic flux density is increased by 30% in the coil rolling direction, although its magnetic saturation is decreased by 5%.
- Used for the cores of high-efficiency transformers, electric motor and generators.

Non-oriented electrical steel

- Usually has a silicon level of 2 to 3.5%.
- Similar magnetic properties in all directions, which makes it isotropic.
- Less expensive. Used in applications where the direction of magnetic flux changes.
- It is also used when efficiency is less important or when there is insufficient space to correctly orient components to take advantage of the anisotropic properties of grain-oriented electrical steel.

Unit 3. TRANSFORMERS
 ELECTRICAL STEEL

Quality	Nominal thickness (mm)	$\begin{aligned} & \text { Maxim } \\ & \text { total lo } \\ & \text { at peak } \\ & 1.5 \mathrm{~T} \end{aligned}$	n specific ($\mathrm{W} \mathrm{kg}^{-1}$) iduction 1.0 T	Minimum 1 in direct or strength $2500 \mathrm{Am}^{-1}$	agnetic flux alternating f $5000 \mathrm{Am}^{-1}$	ensity (T) Id at field $10000 \mathrm{Am}^{-1}$
250-35-A5	0.35	2.50	1.00	1.49	1.60	1.71
270-35-A5	0.35	2.70	1.10	1.49	1.60	1.71
300-35-A5	0.35	3.00	1.20	1.49	1.60	1.71
330-35-A5	0.35	3.30	1.30	1.49	1.60	1.71
270-50-A5	0.50	2.70	1.10	1.49	1.60	1.71
290-50-A5	0.50	2.90	1.15	1.49	1.60	1.71
310-50-A5	0.50	3.10	1.25	1.49	1.60	1.71
330-50-A5	0.50	3.30	1.35	1.49	1.60	1.71
350-50-A5	0.50	3.50	1.50	1.50	1.60	1.71
400-50-A5	0.50	4.00	1.70	1.51	1.61	1.72
470-50-A5	0.50	4.70	2.00	1.52	1.62	1.73
530-50-A5	0.50	5.30	2.30	1.54	1.64	1.75
600-50-A5	0.50	6.00	2.60	1.55	1.65	1.76
700-50-A5	0.50	7.00	3.00	1.58	1.68	1.76
800-50-A5	0.50	8.00	3.60	1.58	1.68	1.78
350-65-A5	0.65	3.50	1.50	1.49	1.60	1.71
400-65-A5	0.65	4.00	1.70	1.50	1.60	1.71
470-65-A5	0.65	4.70	2.00	1.51	1.61	1.72
530-65-A5	0.65	5.30	2.30	1.52	1.62	1.73
600-65-A5	0.65	6.00	2.60	1.54	1.64	1.75
700-65-A5	0.65	7.00	3.00	1.55	1.65	1.76
800-65-A5	0.65	8.00	3.60	1.58	1.68	1.76
1000-65-A5	0.65	10.00	4.40	1.58	1.68	1.78

Standard IEC specification for nonoriented magnetic steel sheet

Unit 4. TRANSFORMERS ELECTRICAL STEEL

a) Grade	Thickness (mm)	Maxi (Wkg 1.5 T	total loss duction 1.7 T	Minimum magnetic flux density (T) for $H=800 \mathrm{Am}^{-1}$	Minimum stacking factor
089-27-N 5	0.27	0.89	1.40	1.75	0.950
097-30-N 5	0.30	0.97	1.50	1.75	0.955
111-35-N 5	0.35	1.11	1.65	1.75	0.960
b) Grade	Thickness (mm)	Maxi (W kg	total loss eak induction	Minimum magnetic flux density (T) for $H=800 \mathrm{Am}^{-1}$	Minimum stacking factor
130-27-S 5	0.27	1.30		1.78	0.950
140-30-S 5	0.30	1.40		1.78	0.955
155-35-S 5	0.35	1.55		1.78	0.960
c) Grade	Thickness (mm)	Maximum specific total loss ($\mathrm{W} \mathrm{kg}^{-1}$) at 1.7 T peak induction		Minimum magnetic flux density (T) for $H=800 \mathrm{Am}^{-1}$	Minimum stacking factor
111-30-P 5	0.30	1.11		1.85	0.955
117-30-P 5	0.30	1.17		1.85	0.955
125-35-P 5	0.35	1.25		1.85	0.960
135-35-P 5	0.35	1.35		1.85	0.960

Standard IEC speci.cation for grain-oriented magnetic steel sheet. (a) normal material; (b) material with reduced loss; (c) high-permeability material.

Unit 4. TRANSFORMERS ELECTRICAL STEEL

Unit 4. TRANSFORMERS
 LEAKAGE FLUX

In a practical transformer, some part of the flux linking primary winding does not link the secondary.

Unit 4. SINGLE-PHASE TRANSFORMERS
 THE IDEAL TRANSFORMER

The ideal transformer has not energy loss

$$
\Phi_{1}=\Phi_{2}=\Phi_{\mathrm{m}}
$$

$$
\mathrm{e}_{1}=\mathrm{N}_{1} \cdot \frac{\mathrm{~d} \cdot \Phi_{\mathrm{m}}}{\mathrm{dt}} \quad e_{2}=\mathrm{N}_{2} \cdot \frac{\mathrm{~d} \Phi_{\mathrm{m}}}{\mathrm{dt}}
$$

Under load conditions Φ_{m} results unaltered because E_{1} is imposed by the mains

$$
\begin{aligned}
& S_{1}=S_{2} \rightarrow \mathrm{~N} / \mathrm{H}_{1}=\mathrm{E}_{2} \cdot \mathrm{I}_{2} \rightarrow \mathrm{E}_{7} \frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}} \uparrow \\
& \left\{\begin{array}{l}
E_{1}=r_{t} \cdot E_{2} \\
I_{1}=I_{2} / r_{t}
\end{array}\right. \\
& \Phi_{\mathrm{m}}
\end{aligned}
$$

Unit 4. TRANSFORMERS
 QUANTITIES REFERED TO THE PRIMARY/SECONDARY SIDE

- Quantities referred to the primary side:

$$
\begin{gathered}
\mathrm{V}_{2}^{\prime}=\mathrm{V}_{2} \cdot \mathrm{r}_{\mathrm{t}} \\
\mathrm{I}_{2}^{\prime}=\mathrm{I}_{2} / \mathrm{r}_{\mathrm{t}} \\
\mathrm{Z}_{2}^{\prime}=\mathrm{V}_{2}^{\prime} / \mathrm{I}_{2}^{\prime}=\mathrm{Z}_{1} \cdot r_{\mathrm{t}}^{2} \\
\mathrm{~S}_{2}^{\prime}=\mathrm{V}_{2}^{\prime} \mathrm{I}_{2}^{\prime}=\mathrm{V}_{1} \mathrm{I}_{1}=\mathrm{S}_{1}
\end{gathered}
$$

- Quantities referred to the secondary side:
$r_{t}=$ turns ratio

$$
\begin{gathered}
\mathrm{V}_{1}^{\prime}=\mathrm{V}_{2} / \mathrm{r}_{\mathrm{t}} \\
\mathrm{I}_{1}^{\prime}=\mathrm{I}_{2} \cdot \mathrm{r}_{\mathrm{t}} \\
\mathrm{Z}_{1}^{\prime}=\mathrm{V}_{1}^{\prime} / \mathrm{I}_{1}^{\prime}=\mathrm{Z}_{2} / \mathrm{r}_{\mathrm{t}}^{2} \\
\mathrm{~S}_{1}^{\prime}=\mathrm{V}_{1}^{\prime} \mathrm{I}_{1}^{\prime}=\mathrm{V}_{2} \mathrm{I}_{2}=\mathrm{S}_{2}
\end{gathered}
$$

Unit 4. SINGLE-PHASE TRANSFORMERS
 THE PRACTICAL TRANSFORMER

The practical transformer experiments power loss
$-R_{1}, R_{2}$: resistances of windings 1 and 2 , respectively.
$\cdot \mathrm{X}_{1}, \mathrm{X}_{2}$: inductive reactances due to leakage flux
$-R_{m}, X_{m}$: resistance of iron and magnetizing reactance

Unit 4. SINGLE-PHASE TRANSFORMERS
 THE PRACTICAL TRANSFORMER

Unit 4. SINGLE-PHASE TRANSFORMERS
 THE PRACTICAL TRANSFORMER. EQUIVALENT CIRCUIT

Exact equivalent circuit

Simplified equivalent circuit ($\mathrm{R}_{\mathrm{m}} \gg \mathrm{R}_{1}, \mathrm{R}_{2}{ }^{\prime} \quad \mathrm{X}_{\mathrm{m}} \gg \mathrm{X}_{\mathrm{L} 1}, \mathrm{X}_{\mathrm{L} 2}{ }^{\prime}$)

Unit 4. SINGLE-PHASE TRANSFORMERS STANDARD TESTS

Two standard tests to measure power loss and the parameters of the equivalent circuit:

- STANDARD NO LOAD TEST
- STANDARD SHORT-CIRCUIT TEST

In both tests the following variables are measured:

- Applied voltage
- Input current
- Input electrical power

Unit 4. SINGLE-PHASE TRANSFORMERS

STANDARD NO LOAD TEST (Low current, rated voltage)

- No load conditions = open circuit $\mathrm{I}_{0} \ll \mathrm{I}_{\text {Full-load }}$
- The rated voltage is applied to one winding and other winding is kept open (usually LV winding is supplied, while HV is kept open).
- $\mathrm{P}_{0}, \mathrm{~V}_{10}=\mathrm{V}_{1 \text { n }}$ and I_{10} are measured
- Q_{0} is deduced from P_{0}

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{m}}=\frac{\mathrm{V}_{10}^{2}}{\mathrm{P}_{\mathrm{o}}-\mathrm{I}_{01}^{2} K_{1}} \approx \frac{\mathrm{~V}_{10}^{2}}{\mathrm{P}_{0}} \\
& \mathrm{X}_{\mathrm{m}}=\frac{\mathrm{V}_{10}^{2}}{\mathrm{Q}_{0}-I_{1}^{2} X_{1}} \approx \frac{\mathrm{~V}_{10}^{2}}{\mathrm{P}_{0} \mathrm{tg} \varphi_{0}} \\
& \mathrm{P}_{\text {ionn }}=\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{\mathrm{ln}}}\right)^{2} \mathrm{P}_{0}
\end{aligned}
$$

Unit 4. SINGLE-PHASE TRANSFORMERS

STANDARD SHORT-CIRCUIT TEST (Low voltage, rated current)

- $I_{1}=I_{1 \text { rated }}=I_{1 \text { n }}$
- $\mathrm{I}_{\mathrm{O}} \ll \mathrm{I}_{1} \rightarrow \mathrm{I}_{2}{ }^{\prime}=\mathrm{I}_{1}=\mathrm{I}_{1 \text { n }}$
- Secondary winding short-circuited.
- Primary winding is fed with an increasing variable voltage, starting from 0 volt, such that $I_{1}=I_{1 n}$

- $P_{s c}, V_{1 s c}$ and $I_{1 s c}=I_{1 n}$ are measured $\left(Q_{s c}\right.$ is deduced $)$

$$
\begin{aligned}
& \mathrm{R}_{1 \mathrm{sc}}=\frac{\mathrm{P}_{\mathrm{sc}}-\mathrm{V}_{1 \mathrm{sc}}^{2} / \mathrm{R}_{\mathrm{m}}}{\mathrm{I}_{1 \mathrm{n}}^{2}} \approx \frac{\mathrm{P}_{\mathrm{sc}}}{\mathrm{I}_{\mathrm{ln}}^{2}} \\
& \mathrm{X}_{1 \mathrm{sc}} \approx \frac{\mathrm{Q}_{\mathrm{sc}}}{\mathrm{I}_{1 \mathrm{n}}^{2}}=\frac{\mathrm{P}_{\mathrm{sc}} \operatorname{tg} \varphi_{\mathrm{sc}}}{\mathrm{I}_{1 \mathrm{n}}^{2}} \\
& \mathrm{P}_{\mathrm{Cu}}=\left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{1 \mathrm{n}}}\right)^{2} \mathrm{P}_{\mathrm{sc}}=\mathrm{c}^{2} \mathrm{P}_{\mathrm{sc}}
\end{aligned}
$$

Unit 4. SINGLE-PHASE TRANSFORMERS EFFICIENCY

- The efficiency of a transformer is defined as the ratio of useful output power to input power

$$
\eta=\frac{\text { output power }}{\text { output power }+ \text { losses }}
$$

$$
\eta=\frac{\mathrm{P}_{\text {out }}}{\mathrm{P}_{\text {in }}}=\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{\mathrm{V}_{2} \mathrm{I}_{2} \cos \varphi}{\mathrm{~V}_{2} \mathrm{I}_{2} \cos \varphi+\mathrm{P}_{\text {iron }}+\mathrm{P}_{\mathrm{Cu}}}=\frac{\mathrm{V}_{2} \mathrm{I}_{2} \cos \varphi}{\mathrm{~V}_{2} \mathrm{I}_{2} \cos \varphi+\left(\mathrm{V}_{1} / \mathrm{V}_{1 \mathrm{n}}\right)^{2} \mathrm{P}_{\mathrm{O}}+\mathrm{c}^{2} \mathrm{P}_{\text {sc }}}
$$

Being c the load index, defined as: $\quad c=\frac{I}{I_{n}}$
The efficiency can be rewritten as:

$$
\eta=\frac{c V_{2} \mathrm{I}_{2 \mathrm{n}} \cos \varphi}{\mathrm{cV}_{2} \mathrm{I}_{2 \mathrm{n}} \cos \varphi+\mathrm{P}_{\text {iron }}+\mathrm{c}^{2} \mathrm{P}_{\mathrm{sc}}}=\frac{\mathrm{V}_{2} \mathrm{I}_{2 \mathrm{n}} \cos \varphi}{\mathrm{~V}_{2} \mathrm{I}_{2 \mathrm{n}} \cos \varphi+\mathrm{P}_{\text {iron }} / \mathrm{c}+\mathrm{cP} \mathrm{P}_{\mathrm{sc}}}
$$

Maximizing the efficiency with respect to c it results:

$$
c_{\eta \max }=\sqrt{\frac{\mathrm{P}_{\mathrm{iron}}}{\mathrm{P}_{\mathrm{sc}}}}
$$

Unit 4. SINGLE-PHASE TRANSFORMERS
 VOLTAGE DROP IN THE WINDINGS

Per-unit drop in the winding resistances: $\quad \varepsilon_{R s c}=\frac{I_{1 n} R_{1 s c}}{V_{1 n}}=\frac{I_{2 n} R_{2 s c}}{V_{2 n}}$

Per-unit drop in the winding reactances:

$$
\varepsilon_{\mathrm{Xsc}}=\frac{\mathrm{I}_{1 \mathrm{n}} \mathrm{X}_{1 \mathrm{sc}}}{\mathrm{~V}_{1 \mathrm{n}}}=\frac{\mathrm{I}_{2 \mathrm{n}} \mathrm{X}_{2 \mathrm{sc}}}{\mathrm{~V}_{2 \mathrm{n}}}
$$

Per-unit drop in the winding impedances: $\quad \varepsilon_{\mathrm{sc}}=\frac{I_{1 \mathrm{n}} Z_{1 \mathrm{sc}}}{V_{1 \mathrm{n}}}=\frac{I_{2 n} Z_{2 \mathrm{sc}}}{V_{2 \mathrm{n}}}$

- $\varepsilon_{\mathrm{sc}}$ increases with the power of the transformer to limit the short circuit current
- Distribution transformers $\left(\mathrm{S}_{\mathrm{n}}<1000 \mathrm{kVA}\right): \varepsilon_{\mathrm{sc}} \approx 1-6 \%$
- Power transformers: $\varepsilon_{\mathrm{sc}} \approx 6-13 \%$.

Unit 4. SINGLE-PHASE TRANSFORMERS SHORT CIRCUIT CURRENT

Standard short-circuit test

$$
\mathrm{I}_{\mathrm{ln}}=\frac{\mathrm{V}_{1 \mathrm{sc}}}{\mathrm{Z}_{\mathrm{lsc}}}
$$

Accidental short-circuit

$$
\mathrm{I}_{\text {lacs sc }}=\frac{\mathrm{V}_{\mathrm{ln}}}{\mathrm{Z}_{\mathrm{lsc}}}=\frac{\mathrm{V}_{\mathrm{ln}}}{\varepsilon_{\mathrm{sc}} \mathrm{~V}_{\mathrm{ln}} / \mathrm{I}_{\mathrm{ln}}}=\frac{\mathrm{I}_{\mathrm{ln}}}{\varepsilon_{\mathrm{sc}}}
$$

[^0]
Unit 4. TRANSFORMERS
 NO LOAD CURRENT

- V is sinusoidal (imposed by the power supply)
- The relationship between V and I is not linear
- Thus, the current in the transformer under no-load conditions is not perfectly sinusoidal and has some harmonic content (specially 3rd harmonic)
- It generates harmonic distortion in line voltages (harmonics causes voltages drops in lines and loads)
- Solution: working point under the saturation threshold by increasing the core section, but Cost increase!

Unit 4. TRANSFORMERS
 PARALLEL CONNECTED TRANSFORMERS

- Economics is a major consideration in the design or modification of electrical systems
- One critical decision concerns between the choice between a single transformer unit or paralleling two units.

Operating conditions that suggest paralleling of transformers:

- The load has grown beyond the capacity of the existing transformer kVA rating.
- In new installations, parallel operation of two duplicate units will provide lower over-all system reactance. In addition, the 50 percent of the total transformer capacity will be available in the event of failure of one unit.
- Stiffen an existing bus. It can be accomplished through the parallel operation of transformers.

Unit 4. TRANSFORMERS
 PARALLEL CONNECTED TRANSFORMERS

CONDITIONS FOR CONNECTING 2 TRANSFORMERS A AND B IN PARALLEL

1. Same turns-ratio: $r_{t A}=r_{t B}\left(V_{1 n, A}=V_{1 n, B}\right.$ and $\left.V_{2 n, A}=V_{2 n, B}\right)$
2. Similar $\varepsilon_{\mathrm{sc}}: \varepsilon_{\mathrm{scA}} \approx \varepsilon_{\mathrm{scB}} \quad\left(\mathrm{C}_{\mathrm{A}} \varepsilon_{\mathrm{scA}}=\mathrm{C}_{\mathrm{B}} \varepsilon_{\mathrm{scB}}\right)$

$$
\begin{gathered}
\mathrm{I}_{2 \mathrm{~A}} \mathrm{Z}_{2 \mathrm{scA}}=\mathrm{I}_{2 \mathrm{~B}} \mathrm{Z}_{2 \mathrm{scB}} \rightarrow \mathrm{c}_{\mathrm{A}} \mathrm{I}_{2 \mathrm{An}} \mathrm{Z}_{2 \mathrm{scA}}=\mathrm{c}_{\mathrm{B}} \mathrm{I}_{2 \mathrm{Bn}} \mathrm{Z}_{2 \mathrm{scB}} \\
\mathrm{c}_{\mathrm{A}} \frac{\mathrm{I}_{2 \mathrm{An}} \mathrm{Z}_{2 \mathrm{scA}}}{\mathrm{~V}_{2 \mathrm{n}}}=\mathrm{c}_{\mathrm{B}} \frac{\mathrm{I}_{2 \mathrm{Bn}} \mathrm{Z}_{2 \mathrm{scB}}}{\mathrm{~V}_{2 \mathrm{n}}} \rightarrow \mathrm{c}_{\mathrm{A}} \varepsilon_{\mathrm{scA}}=\mathrm{c}_{\mathrm{B}} \varepsilon_{\mathrm{scB}}
\end{gathered}
$$

Unit 4. SINGLE-PHASE TRANSFORMERS
 EXAMPLE 1

A 230/6-V, single-phase transformer is tested with its secondary winding short circuited. a) A low voltage $(20 \mathrm{~V})$ is applied to the primary terminals and it then takes an input current of 1 A ; the power supplied being 10 watts. Calculate the values of $R_{1 s \mathrm{c}}, \mathrm{X}_{1 \mathrm{sc}}$, $\mathrm{R}_{2 \text { sc }}$ and $\mathrm{X}_{2 \mathrm{sc}}$. b) If the magnetizing impedance is neglected, calculate the secondary terminal voltage when a $\mathrm{Z}_{\text {load }}=0.12+\mathrm{j} 0.09 \Omega$ is connected.

$$
\text { a) } r_{t}=V_{1 n} / V_{2 n}=230 / 6=38.33
$$

$$
V_{1 \mathrm{sc}}=20=1 . Z_{1 \mathrm{sc}} \rightarrow Z_{\text {1sc }}=20 \Omega
$$

$$
P_{s c}=10=1^{2} \cdot R_{1 s c} \rightarrow R_{1 \mathrm{sc}}=10 \Omega
$$

$$
\mathrm{X}_{1 \mathrm{sc}}=17.32 \Omega
$$

$$
\begin{aligned}
& \mathrm{R}_{2 \mathrm{sc}}=\mathrm{R}_{1 \mathrm{sc}} / \mathrm{r}_{\mathrm{t}}^{2}=0.0068 \Omega \\
& \mathrm{X}_{2 \mathrm{sc}}=\mathrm{X}_{1 \mathrm{sc}} / \mathrm{r}_{\mathrm{t}}^{2}=0.0118 \Omega
\end{aligned}
$$

b) $\bar{Z}_{\text {total }}={\overline{Z_{1 s c}}}^{\text {sc }}+{\overline{Z_{\text {load }}^{\prime}}}^{\prime}=10+j 17.32+(0.12+j 0.09) r_{t}^{2}=238.943^{38.75^{\circ}} \Omega$
$\mathrm{V}_{1}=\mathrm{I}_{1} \mathrm{Z}_{\text {total }} \rightarrow 230=\mathrm{I}_{1} 238.94 \rightarrow \mathrm{I}_{1}=\mathrm{I}_{2}{ }^{\prime}=0.963 \mathrm{~A} \rightarrow \mathrm{~V}_{2}^{\prime}=\mathrm{I}_{2}{ }^{\prime} \cdot \mathrm{Z}_{\text {load }}{ }^{\prime}=212.15 \mathrm{~V}$

$$
V_{2}=V_{2}^{\prime} / r_{t}=5.53 \mathrm{~V}
$$

Unit 4. SINGLE-PHASE TRANSFORMERS
 EXAMPLE 2

A 44kVA 2200/220-V, single-phase transformer takes an input power of 176 W when feed at 2200 V and with its secondary winding in open circuit. Values $\varepsilon_{\text {Rsc }}=1.4 \%$ and $\varepsilon_{\mathrm{Xcc}}=2.1 \%$ are known. Calculate the primary terminal voltage $\left(\mathrm{V}_{1}\right)$ and the power taken by the transformer when a 30 kW load with $\mathrm{PF}=0.8$ (i) is connected at 220 V .
From the statement it results: $\mathrm{I}_{1 \mathrm{n}}=20 \mathrm{~A} \quad \mathrm{I}_{2 \mathrm{n}}=200 \mathrm{~A} \quad \mathrm{r}_{\mathrm{t}}=10$

$$
\begin{aligned}
& \varepsilon_{\mathrm{Rsc}}=\frac{\mathrm{I}_{\mathrm{ln}} \mathrm{R}_{\text {lsc }}}{\mathrm{V}_{1 \mathrm{n}}} \rightarrow \mathrm{R}_{1 \mathrm{sc}}=1.54 \Omega \quad \varepsilon_{\mathrm{Xsc}}=\frac{\mathrm{I}_{1 \mathrm{n}} \mathrm{X}_{1 \mathrm{sc}}}{\mathrm{~V}_{1 \mathrm{n}}} \rightarrow \mathrm{X}_{1 \mathrm{sc}}=2.31 \Omega \\
& \overline{\mathrm{Z}}_{1 \mathrm{sc}}=\mathrm{R}_{1 \mathrm{sc}}+\mathrm{j} \mathrm{X}_{1 \mathrm{sc}}=1.54+\mathrm{j} 2.31=2.78^{56.31^{\circ}} \Omega \\
& \mathrm{I}_{2}=\mathrm{P}_{2} /\left(\mathrm{V}_{2} \cos \varphi_{2}\right)=170.45 \mathrm{~A} \quad \mathrm{I}_{2}^{\prime}=\mathrm{I}_{2} / \mathrm{r}_{\mathrm{t}}=17.045 \mathrm{~A} \quad \cos \varphi_{2}=0.8 \rightarrow \varphi_{2}=36.87^{\circ} \\
& \overline{\mathrm{V}}_{1}=\overline{\mathrm{V}}_{2}^{\prime}+\overline{\mathrm{I}}_{2} \bar{Z}_{\text {Isc }}=2200^{0^{\circ}}+17.045^{-36.87^{\circ}} 2.78^{56.31^{\circ}}=2244.74^{0.40^{\circ}} \mathrm{V} \\
& \mathrm{P}_{1}=\mathrm{P}_{2}+\mathrm{P}_{\text {iron }}+\mathrm{P}_{\mathrm{Cu}}=30000+176\left(\frac{2244.74}{2200}\right)^{2}+17.045^{2} 1.54=30630.65 \mathrm{~W} \\
& \eta_{\%}=100 \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=100 \frac{30000}{30630.65}=97.94 \%
\end{aligned}
$$

Unit 4. SINGLE-PHASE TRANSFORMERS
 EXAMPLE 3

A 10kVA 220/380-V, single-phase transformer takes an input power of 150 W and a current of 2 A when feed at 220 V and with its secondary winding in open circuit. From the short circuit test it results 10V, 26.32A and 75W (HV side). a) Calculate $R_{1 s c}, X_{1 s c}$, $R_{1 m}$ and $X_{1 m}$.b) Being $V_{1}=220 \mathrm{~V}$ calculate V_{2} when the transformer operates at full load and $\mathrm{FP}_{\text {load }}=0.8(\mathrm{i})$.
From the statement it results: $\mathrm{I}_{1 \mathrm{n}}=45.45 \mathrm{~A} \quad \mathrm{I}_{2 \mathrm{n}}=26.32 \mathrm{~A} \quad \mathrm{r}_{\mathrm{t}}=0.57895$
a) No-load test: $150=220^{2} / \mathrm{R}_{1 \mathrm{~m}} \rightarrow \mathrm{R}_{1 \mathrm{~m}}=322.67 \Omega$

$$
150=220 \cdot 2 \cdot \cos \varphi_{0} \rightarrow \varphi_{0}=70.06^{\circ} \rightarrow \mathrm{Q}_{0}=\mathrm{P}_{0} \cdot \operatorname{tg} \varphi_{0}=413.64 \mathrm{Var}=220^{2} / \mathrm{X}_{1 \mathrm{~m}}
$$

$$
\text { It results } \quad \mathrm{X}_{1 \mathrm{~m}}=117.02 \Omega
$$

Short-circuit test: $\mathrm{V}_{2 \mathrm{sc}}=\mathrm{I}_{2 \mathrm{n}} \cdot \mathrm{Z}_{2 \mathrm{sc}} \rightarrow 10=26.32 \cdot \mathrm{Z}_{2 \mathrm{sc}} \rightarrow \mathrm{Z}_{2 \mathrm{sc}}=0.38 \Omega$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{sc}}=\mathrm{I}_{2 \mathrm{n}}{ }^{2} \cdot \mathrm{R}_{2 \mathrm{sc}} \rightarrow 75=26.32^{2} \cdot \mathrm{R}_{2 \mathrm{sc}} \rightarrow \mathrm{R}_{2 \mathrm{sc}}=0.108 \Omega \\
& \mathrm{X}_{2 \mathrm{sc}}=\left(\mathrm{Z}_{2 \mathrm{sc}}{ }^{2}-\mathrm{R}_{2 \mathrm{sc}}{ }^{2}\right)^{1 / 2}=0.364 \Omega \\
& \bar{Z}_{1 \mathrm{sc}}=\mathrm{r}_{\mathrm{t}}^{2}\left(\mathrm{R}_{2 \mathrm{sc}}+\mathrm{j} \mathrm{X}_{2 \mathrm{sc}}\right)=0.036+\mathrm{j} 0.122=0.127^{73.44^{\circ}} \Omega
\end{aligned}
$$

\square b) $\overline{\mathrm{V}}_{1}=\overline{\mathrm{V}}_{2}{ }^{\prime}+\overline{\mathrm{I}}_{2}{ }^{\prime} \overline{\mathrm{Z}}_{1 \mathrm{sc}} \rightarrow 220^{\varphi_{\mathrm{v} 1}}=\mathrm{V}_{2}{ }^{10^{\circ}}+45.45^{-36.87^{\circ}} 0.127^{73,44^{\circ}}$
It results: $\varphi_{\mathrm{V} 1}=0.895^{\circ} \quad \mathrm{V}_{2}^{\prime}=215.34 \mathrm{~V} \rightarrow \mathrm{~V}_{2}=\mathrm{V}_{2}{ }^{\prime} / \mathrm{r}_{\mathrm{t}}=371.9 \mathrm{~V}$

Unit 4. SINGLE-PHASE TRANSFORMERS
 EXAMPLE 4

Single-phase transformer with features: $10 \mathrm{kVA}, 3300 / 220-\mathrm{V}, 50 \mathrm{~Hz}, \mathrm{R}_{1}=5 \Omega, \mathrm{R}_{2}=0.02$ Ω. Short-circuit test: $\mathrm{V}_{1 \mathrm{sc}}=165 \mathrm{~V}, \mathrm{I}_{1 \mathrm{sc}}=3.03 \mathrm{~A}$. Determine: a$) \mathrm{Z}_{1 \mathrm{sc}}$ and $\mathrm{Z}_{2 \mathrm{sc}} \mathrm{b}$) Voltage applied in the HV side when the LV side feeds a pure resistive load which consumes 7 kW at 220 V .

From the statement it results: $\mathrm{I}_{1 \mathrm{n}}=3.03 \mathrm{~A} \quad \mathrm{I}_{2 \mathrm{n}}=45.45 \mathrm{~A} \quad \mathrm{r}_{\mathrm{t}}=15 \quad \mathrm{R}_{1 \mathrm{sc}}=\mathrm{R}_{1}+\mathrm{r}_{\mathrm{t}}{ }^{2} \cdot \mathrm{R}_{2}=9.5 \Omega$
a) Short-circuit test: $165=3.03 \cdot \mathrm{Z}_{\text {1sc }} \rightarrow \mathrm{Z}_{\text {1sc }}=54.45 \Omega$

$$
\begin{aligned}
& \mathrm{X}_{1 \mathrm{sc}}=\sqrt{\mathrm{Z}_{1 \mathrm{sc}}{ }^{2}-\mathrm{R}_{1 \mathrm{sc}}{ }^{2}}=53.61 \Omega \\
& \overline{\mathrm{Z}}_{1 \mathrm{sc}}=9.5+\mathrm{j} \cdot 53.61=54.45^{79.95^{\circ}} \Omega \quad \rightarrow \quad \overline{\mathrm{Z}}_{2 \mathrm{sc}}=\overline{\mathrm{Z}}_{\mathrm{lsc}} / \mathrm{r}_{\mathrm{t}}^{2}=0.242^{79.95^{\circ}} \Omega
\end{aligned}
$$

b) The transformer operates under a load rated: $7 \mathrm{~kW}, 220 \mathrm{~V}$ and $\mathrm{PF}=1$

$$
\begin{aligned}
& \mathrm{P}_{\text {load }}=\mathrm{V}_{2}{ }^{2} / \mathrm{R}_{\text {load }} \rightarrow 7000=220^{2} / \mathrm{R}_{\text {load }} \rightarrow \mathrm{R}_{\text {load }}=6.914 \Omega \\
& \mathrm{~V}_{2}=\mathrm{I}_{2} \cdot \mathrm{R}_{\text {load }} \rightarrow 220=\mathrm{I}_{2} \cdot 6.914 \rightarrow \mathrm{I}_{2}=31.82 \mathrm{~A} \\
& \overline{\mathrm{~V}}_{1}=\overline{\mathrm{V}}_{2}{ }^{\prime}+\overline{\mathrm{I}}_{2} \overline{\mathrm{Z}}_{\text {lsc }} \rightarrow \overline{\mathrm{V}}_{1}=(220 \cdot 15)^{0^{\circ}}+(31.82 / 15)^{0^{\circ}} \cdot 54.45^{79.95^{\circ}}=3322.12^{1.96^{\circ}} \mathrm{V}
\end{aligned}
$$

UNIT 4. THREE-PHASE TRANSFORMERS
THREE-PHASE BANK OF SINGLE-PHASE TRANSFORMERS

Three-phase bank of single-phase transformers

Drawbacks of 3-phase banks:

- Three units are needed
- Much space is required
- Much iron weight is required R2
S2
T2
N2

The most elemental three-phase transformer consists on an arrangement made of 3 single-phase transformers

$$
\Phi_{1}+\Phi_{2}+\Phi_{3}=0
$$

UNIT 4. THREE-PHASE TRANSFORMERS
 CORE DESIGNS

Core-type designs (de columnes)

- Predominate throughout most of the world
- The coil surrounds the core

Shell-type designs (acuirassat)

- The core surrounds the coil
- The flux-return paths of the core are external to and enclose the windings.
- This design provides better magnetic shielding \rightarrow suitable for supplying power at low voltage and heavy current, as, for example, in the case of arc furnace transformers.

Core-type

UNIT 4. THREE-PHASE TRANSFORMERS
 THREE-PHASE CONNECTIONS

Wye-wye connection: Yy

Delta-delta connection: Dd

UNIT 4. THREE-PHASE TRANSFORMERS
 THREE-PHASE CONNECTIONS

```
Wye-delta connection: Yd
```

Delta-wye connection: Dy

UNIT 4. THREE-PHASE TRANSFORMERS
 ZIGZAG OR INTERCONNECTED-STAR

- The interconnected-star (Zigzag) connection is obtained by subdividing the transformer windings into halves and then interconnecting these between phases.
- The interconnected-star arrangement is used to provide a neutral for connection to earth.
- The zigzag connection in power systems allows trapping multiples of third harmonics currents (3rd, 9th, 15th, etc.).
- Zigzag units are installed near loads that produce large third harmonic currents, preventing them from traveling upstream.
- The zigzag winding produces the same angular displacement as a delta winding, and at the same time provides a neutral for earthing purposes

Wye-zigzag connection: Yz
Delta-zigzag connection: Dz

Zigzag = star-interconnected

UNIT 4. THREE-PHASE TRANSFORMERS
VECTOR/PMASOR GROUP (angular displacement between primary and secondary)

UNIT 4. THREE-PHASE TRANSFORMERS
VECTOR/PHASOR GROUP (angular displacement between primary and secondary)
Connection Dz?

UNIT 4. THREE-PHASE TRANSFORMERS
THREE-PHASE TRANSFORMERS. COMMON CONNECTIONS

UNIT 4. THREE-PHASE TRANSFORMERS
 PREFERRED CONNECTIONS

- One way to keep 3rd harmonic currents from spreading over an entire system is to use Δ-connected windings in transformers. (motors generate 3rd harmonics)
- Line-to-neutral voltages are distorted due to third harmonics. Delta loops minimize third harmonic content because line-to-line voltages are obtained as the subtraction of two line-to neutral voltages (third-order harmonic components in each phase of a 3phase system are in phase).
- It is also desirable that a three-phase system have a delta to provide a path for third-harmonic currents in order to eliminate or reduce thirdharmonic voltages in the waveform.
- Step-down transmission ending transformers usually have the HV winding delta connected and the LV star connected with the neutral earthed.
- Step-up transformers in power stations usually have the LV winding star connected and the HV delta connected.

UNIT 4. THREE-PHASE TRANSFORMERS PREFERRED CONNECTIONS

Yy

- $\mathrm{V}_{\mathrm{pp}-\mathrm{Y}}=173 \% \mathrm{~V}_{\mathrm{pp}-\Delta} \rightarrow \mathrm{n}_{\mathrm{Y}}<\mathrm{n}_{\Delta} \rightarrow \mathrm{S}_{\mathrm{Y}, \mathrm{Cu}}>\mathrm{S}_{\Delta, \mathrm{Cu}}$
- Unbalanced load: poor performance
- Problems with 3rd harmonics
- Solution: Double secondary in Δ
- No phase shifting between 1 y and 2 y

Yd and Dy

- Unbalanced load: good performance
- No problems with 3rd harmonics
- Phase shifting between 1 y and 2 y
- Yd: Step-down transformer in HV lines
- Dy: Step-down transf. in distribution lines because allows a grounded neutral in LV side

Dd

- No phase shifting between 1 y and 2 y
- Needs > isolation space than Yy
- Used only in LV applications
- No problems with 3rd harmonics

Yz

- No problems with 3rd harmonics
- Unbalanced load: good performance
- Same phase shifting as Yd
- Allows grounded Neutral in 2 y side
- $\mathrm{V}_{\mathrm{pp}-\mathrm{Y}}=115 \% \mathrm{~V}_{\mathrm{pp}-\mathrm{z}} \rightarrow \mathrm{n}_{\mathrm{Y}}<\mathrm{n}_{\mathrm{Z}} \rightarrow \mathrm{S}_{\mathrm{y}, \mathrm{Cu}}>\mathrm{S}_{\mathrm{Z}, \mathrm{Cu}}$

UNIT 4. THREE-PHASE TRANSFORMERS
 PARALLEL CONNECTED TRANSFORMERS

- Economics is a major consideration in the design or modification of electrical systems
- One critical decision concerns between the choice between a single transformer unit or paralleling two units.

Operating conditions that suggest paralleling of transformers:

- The load has grown beyond the capacity of the existing transformer kVA rating.
- In new installations, parallel operation of two duplicate units will provide lower over-all system reactance. In addition, the 50 percent of the total transformer capacity will be available in the event of failure of one unit.
- Stiffen an existing bus. It can be accomplished through the parallel operation of transformers.

UNIT 4. THREE-PHASE TRANSFORMERS
 PARALLEL CONNECTED TRANSFORMERS

CONDITIONS FOR CONNECTING 2 TRANSFORMERS A AND B IN PARALLEL

1. Same turns-ratio: $r_{t A}=r_{t B}\left(V_{1 n, A}=V_{1 n, B}\right.$ and $\left.V_{2 n, A}=V_{2 n, B}\right)$
2. Similar $\varepsilon_{s c}: \varepsilon_{s C A} \approx \varepsilon_{s c B} \quad\left(C_{A} \varepsilon_{s C A}=C_{B} \varepsilon_{s C B}\right)$
3. Same angular displacement/clock number

UNIT 4. THREE-PHASE TRANSFORMERS
 TAPPED TRANSFORMERS

- Transformer tap: connection point along a transformer winding that allows a certain number of turns to be selected.
- It produces variable turns ratio and enables voltage regulation of the output.
- The tap selection is made via a tap changer mechanism
- In step-down distribution transformers, taps are usually found in HV windings

UNIT 4. THREE-PHASE TRANSFORMERS
TRANSFORMER NAMEPLATE

AUTOTRANSFORMERS AND VARIACs

ADVANTAGES

- Conductor length savings (less N_{2} turns are required)
- Smaller magnetic circuit
- Reduced leakage flux and no-load current
- Reduced $\varepsilon_{\mathrm{cc}}$
- Reduction of electrical and magnetic loss

LIMITATIONS

- Primary and secondary not insulated!
- An insulation failure can result in full input voltage applied to the output.
- Higher short circuit current (lower $\varepsilon_{\text {cc }}$)

VARIAC: adjustable autotransformer

UNIT 4. THREE-PHASE TRANSFORMERS
 INSTRUMENT TRANSFORMERS

- Instrument transformers are used for measuring voltage, current, power and energy in electrical systems, and for protection and control.
- Where a voltage or current is too large to be conveniently measured by an instrument, it can be scaled down to a standardized low value.
- Instrument transformers isolate measurement and control circuitry from the high currents or voltages present on the circuits being measured or controlled.

VOLTAGE TRANSFORMERS

- Voltage transformers (VTs) are used in high-voltage circuits
- VTs are designed to present a negligible load to the supply being measured
- VTs allow protective relay equipment to be operated at a lower voltages
- VTs have a precise winding ratio for accurate metering
- Secondary voltage standardized to 110 V

UNIT 4. THREE-PHASE TRANSFORMERS
 INSTRUMENT TRANSFORMERS

CURRENT TRANSFORMERS

- A current transformer is a transformer designed to provide a current in its secondary coil proportional to the current flowing in its primary coil.
- They work with low magnetic flux (linear zone).
- Standardized secondary currents: 5 A and 1 A.
- Current transformers are connected in series with the line, measuring $\mathrm{I}_{\text {line }}$.
- The secondary has connected an ammeter in series (nearly in short circuit)
- Normal operation: $I_{\text {line }}=I_{1}=I_{0}+I_{2}{ }^{\prime} \rightarrow I_{1} \approx I_{2}^{\prime}$
- Secondary open: $I_{\text {line }}=I_{1} \approx I_{0} \rightarrow I_{0} \uparrow \uparrow \rightarrow \Phi \uparrow \uparrow \rightarrow V_{2} \uparrow \uparrow \rightarrow P_{\text {iron }} \uparrow \uparrow \quad$ DANGER!

UNIT 4. THREE-PHASE TRANSFORMERS
 ISOLATION TRANSFORMERS

ISOLATION TRANSFORMERS (IT)

- An IT is a 1:1 power transformer which is used as a safety precaution.
- It is used to decouple two circuits. They are also used for the power supply of devices not on ground potential.
- The IT has a secondary which is non-grounded. Thus one can avoid being shocked by touching just one wire and earth ground.
- Since the neutral wire of an outlet is directly connected to ground, grounded objects near the device under test (lamp, concrete floor, oscilloscope ground lead, etc.) may be at a hazardous potential difference with respect to that device.
- By using an isolation transformer, the bonding is eliminated, and the shock hazard is entirely contained within the device.
- Industrial power applications have also used isolated power outputs to power devices that must not be stopped in case of single fault to ground. An isolated output can withstand one fault to either of wires to ground without disturbing the equipment operation (just makes safe floating to normal grounded power supply).
- The "floating" output ITs are used in medical applications, electronics testing,...

UNIT 4. THREE-PHASE TRANSFORMERS
THREE-PHASE DISTRIBUTION TRANSFORMERS FEATURES
TECHNICAL FEATURES OF 24 kV THREE-PHASE TRANSFORMERS

Power (kVA)	50	75	100	125	160	200	250	315	400	500	630	800	1000
Group	$Y y n$ 0	$Y y n$ 0	$Y y n$ 0	Dyn 11									
$\mathbf{P}_{\mathbf{0}}(\mathbf{k W})$	0.24	0.33	0.40	0.48	0.58	0.69	0.82	0.98	1.17	1.38	1.64	1.96	2.15
$\mathbf{P}_{\text {sc }}(\mathbf{k W})$	1.39	1.87	2.20	2.53	2.97	3.49	4.10	4.86	5.80	6.89	8.22	10.24	13.30
$\varepsilon_{\text {sc }}(\%)$	4	4	4	4	4	4	4	4	4	4	4	6	6
$\mathbf{I}_{\mathbf{0}}\left(\% \mathbf{I}_{\mathbf{n}}\right)$	4.7	4.1	3.3	3.0	2.7	2.4	2.2	2.1	2.0	2.0	1.9	1.8	1.6
Weight $(\mathbf{k g})$	385	481	570	655	731	834	976	1100	1422	1640	1930	2267	2645

ELECTRICAL CHARACTERISTICS											
Rated Power kV			250	400	630	800	1000	1250	1600	2000	2500
Rated		Primary	Maximum Voltage 24 kV								
Voltage		Secondary	420 V between phases - no load								
Tapping Range			$\pm 2,5 \pm 5 \%$ ó $+2,5+5+7,5+10 \%$ (other regulation voltages on demand)								
Vector Group*			0 Dyn 11								
No Load Losses (W)*			650	930	1300	1550	1700	2130	2600	3100	3800
Load Losses (W)*			3250	4600	6500	8100	10500	13500	17000	20200	26500
Short Circuit Impedance \% at $75^{\circ} \mathrm{C}$ *			4	4	4	6	6	6	6	6	6
No Load current at 100\% of Vn*			2	1,8	1,6	1,4	1,3	1,2	1,1	1	0,9
Max. Sound Power Level (dB)*			62	65	67	68	68	70	71	73	76
Voltage drop at full load \%		$\cos \varphi=1$	1,4	1,2	1,1	1,2	1,2	1,3	1,2	1,2	1,2
		$\cos \varphi=0,8$	3,3	3,2	3,1	4,4	4,4	4,4	4,4	4,4	4,4
Efficiency (\%)	Load	$\cos \varphi=1$	98,5	98,6	98,8	98,8	98,8	98,8	98,8	98,9	98,8
	100\%	$\cos \varphi=0,8$	98,1	98,3	98,5	98,5	98,5	98,5	98,5	98,6	98,5
	Load	$\cos \varphi=1$	98,7	98,8	99,0	99,0	99,0	99,0	99,0	99,1	99,0
	75\%	$\cos \varphi=0,8$	98,4	98,6	98,7	98,7	98,8	98,7	98,8	98,8	98,8

IEC76, UNE 20101

Ormazabal Datasheet

UNIT 4. THREE-PHASE TRANSFORMERS
 EXAMPLE 1

A $900 \mathrm{kVA}, 15000 / 3000-\mathrm{V}, \varepsilon_{\mathrm{sc}}=8 \%$ three-phase transformer, has the primary and the secondary windings connected as in the table. Determine the parameters of the table.

1: line p: phase	Yy	Yd	Dd	Dy
Voltages ratio: r_{V}	$15000 / 3000=5$	5	5	5
Turns ratio: r_{t}	$(15000 / \sqrt{ } 3) / 3000 / \sqrt{ } 3=5$	5/ $\sqrt{ } 3$	5	$5 \sqrt{3}$
V_{11}	15000 V	15000 V	15000 V	15000 V
V_{pl}	$15000 / \sqrt{3} \mathrm{~V}$	15000/ $\sqrt{3} \mathrm{~V}$	15000 V	15000 V
I_{11}	$900000 /(\sqrt{ } 3 \cdot 15000)=34.64 \mathrm{~A}$	34.64 A	34.64 A	34.64 A
I_{pl}	34.64 A	34.64 A	$34.64 / \sqrt{ } 3=20 \mathrm{~A}$	20 A
$\mathrm{V}_{\mathrm{p}, \mathrm{sc} 1}=\varepsilon_{\mathrm{sc}} \cdot \mathrm{V}_{\mathrm{pl} 1}$	$0.08 \cdot 15000 / \sqrt{ } 3=692.8 \mathrm{~V}$	692.8 V	$0.08 \cdot 15000=1200 \mathrm{~V}$	1200 V
$\mathrm{Z}_{\mathrm{scl}}=\mathrm{V}_{\mathrm{p}, \mathrm{scl}} / I_{\mathrm{pl} 1}$	$692.8 / 34.64=20 \Omega$	20Ω	$1200 / 20=60 \Omega$	60Ω
V_{12}	3000 V	3000 V	3000 V	3000 V
$\mathrm{V}_{\mathrm{p} 2}$	$3000 / \sqrt{ } 3 \mathrm{~V}$	3000 V	3000 V	$3000 / \sqrt{ } 3 \mathrm{~V}$
I_{12}	$900000 /(\sqrt{ } 3 \cdot 3000)=173.21 \mathrm{~A}$	173.21 A	173.21 A	173.21 A
$\mathrm{I}_{\mathrm{p} 2}$	173.21 A	$173.21 / \sqrt{ } 3=100 \mathrm{~A}$	100 A	173.21 A
$V_{p, s c 2}=\varepsilon_{s c} \cdot V_{p 2}$	$0.08 \cdot 3000 / \sqrt{ } 3=138.56 \mathrm{~V}$	$0.08 \cdot 3000=240 \mathrm{~V}$	240 V	138.56 V
$\mathrm{Z}_{\mathrm{sc} 2}=\mathrm{V}_{\mathrm{p}, \mathrm{sc} 2} / \mathrm{I}_{\mathrm{p} 2}$	$138.56 / 173.21=0.8 \Omega$	$240 / 100=2.4 \Omega$	2.4Ω	0.8Ω

UNIT 4. THREE-PHASE TRANSFORMERS
 EXAMPLE 2

A Dy, $320 \mathrm{kVA}, \varepsilon_{\mathrm{sc}}=4 \%, \mathrm{P}_{\mathrm{sc}}=3584 \mathrm{~W}, 10800 / 400-\mathrm{V}$ three-phase transformer feeds a balanced load which absorbs 300 A with $\mathrm{PF}=0.8(\mathrm{i})$. In this situation $\mathrm{V}_{1}=11100 \mathrm{~V}$. Calculate the voltage in the load

From the statement it results: $\mathrm{I}_{1 \mathrm{n}}=17.11 \mathrm{~A} \quad \mathrm{I}_{2 \mathrm{n}}=461.88 \mathrm{~A} \quad \mathrm{r}_{\mathrm{t}}=27$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{sc}}=3 \cdot \mathrm{R}_{1 \mathrm{scy}} \cdot \mathrm{I}_{1 \mathrm{nY}}^{2} \rightarrow \quad \mathrm{R}_{1 \mathrm{scy}}=\frac{\mathrm{P}_{\mathrm{sc}}}{3 \cdot \mathrm{I}_{\ln \mathrm{Y}}^{2}}=\frac{3584}{3 \cdot 17.11^{2}}=4.08 \Omega \\
& \mathrm{~V}_{\mathrm{scc}}=\varepsilon_{\mathrm{sc}} \cdot \mathrm{~V}_{\mathrm{ln}}=0.04 \cdot 10800=432 \mathrm{~V} \rightarrow \quad \mathrm{Z}_{\mathrm{lscY}}=\frac{\mathrm{V}_{\mathrm{lscY}}}{\mathrm{I}_{\mathrm{lnY}}}=\frac{432 / \sqrt{3}}{17.11}=14.58 \Omega \\
& \mathrm{X}_{\text {Iscy }}=\sqrt{\mathrm{Z}_{\text {IscY }}^{2}-\mathrm{R}_{\text {IscY }}^{2}}=\sqrt{14.58^{2}-4.08^{2}}=13.997 \Omega \\
& \varphi_{\mathrm{sc}}=\operatorname{arctg} \frac{\mathrm{X}_{\mathrm{ssc}}}{\mathrm{R}_{\mathrm{IscY}}}=73.74^{\circ} \\
& \overline{\mathrm{V}}_{1 \mathrm{Y}}=\overline{\mathrm{V}}_{2 \mathrm{Y}}+\overline{\mathrm{I}}_{2 \mathrm{Y}} \cdot \overline{\mathrm{Z}}_{\text {scy }} \rightarrow \frac{11100^{\varphi_{\mathrm{vy}}{ }^{\circ}}}{3}=\overline{\mathrm{V}}_{2}^{\prime 0^{\circ}}+\frac{300^{-36.87^{\circ}}}{27} \cdot 14.58^{73.74^{\circ}} \\
& \mathrm{V}^{\prime}{ }^{\mathrm{Y}}=6278.28 \mathrm{~V} \rightarrow \mathrm{~V}_{2}^{\prime}=\sqrt{3} \cdot 6278.28=10874.30 \mathrm{~V} \rightarrow \mathrm{~V}_{2}=\frac{\mathbf{1 0 8 7 4 . 3 0}}{\mathbf{2 7}}=\mathbf{4 0 2 . 7 5} \mathrm{V}
\end{aligned}
$$

UNIT 4. THREE-PHASE TRANSFORMERS

EXAMPLE 3

A Dy, $125 \mathrm{kVA} \varepsilon_{s c}=4 \%, \mathrm{P}_{\mathrm{o}}=480 \mathrm{~W}, \mathrm{P}_{\mathrm{sc}}=2530 \mathrm{~W}, 24000 / 380-\mathrm{V}$, three-phase transformer has a secondary winding with $R_{2}=0.01 \Omega$. The wattmeter readings are $\mathrm{W}_{1}=60186.56 \mathrm{~W}, \mathrm{~W}_{2}=23813.44 \mathrm{~W}$, while $\mathrm{V}_{2}=368.6 \mathrm{~V}$. Compute: a) $\mathrm{R}_{1} \mathrm{~b}$) V_{1} c) The transformer efficiency d) The angular displacement of secondary with respect to primary voltages.
From the statement it results:

$$
\mathrm{I}_{1 \mathrm{n}}=3.007 \mathrm{~A} \mathrm{I}_{2 \mathrm{n}}=189.92 \mathrm{~A} \mathrm{r}_{\mathrm{t}}=63.158
$$

a) $P_{s c}=3 \cdot R_{2 s c Y} \cdot I_{2 n Y}^{2}$

$$
\mathrm{Z}_{2 \mathrm{sc} \mathrm{Y}}=\frac{\mathrm{V}_{2 \mathrm{sc} \mathrm{Y}}}{\mathrm{I}_{2 \mathrm{n} \mathrm{Y}}}=\frac{\overline{100} \cdot \sqrt{3}}{189.9178}=0.0462 \Omega
$$

$$
\begin{aligned}
& \mathrm{R}_{2 \mathrm{scY}}=\frac{\mathrm{P}_{\mathrm{sc}}}{3 \cdot \mathrm{I}_{2 \mathrm{n}_{\mathrm{Y}}}^{2}}=\frac{2530}{3 \cdot 189.9178^{2}}=0.02338 \Omega \quad \mathrm{Z}_{2 \mathrm{scY}}=\frac{\mathrm{V}_{2 \mathrm{sc} \mathrm{Y}}}{\mathrm{I}_{2 \mathrm{nY}}}=\frac{\overline{100} \cdot \frac{\sqrt{3}}{189.9178}=0.0462 \Omega}{} \\
& \mathrm{X}_{2 \mathrm{scY}}=\sqrt{\mathrm{Z}_{2 \mathrm{scY}}^{2}-\mathrm{R}_{2 \mathrm{scY}}^{2}}=\sqrt{0.0462^{2}-0.02338^{2}}=0.03985 \Omega \quad \bar{Z}_{2 \mathrm{scY}}=(0.02338+\mathrm{j} 0.03985) \Omega \\
& 0.02338=\mathrm{R}_{2 \mathrm{Y}}+\frac{\mathrm{R}_{1 \mathrm{Y}}}{\mathrm{r}_{\mathrm{t}}^{2}} \quad \mathrm{R}_{1 \mathrm{Y}}=53.37 \Omega \quad \mathbf{R}_{1 \Delta}=\mathbf{3} \cdot \mathbf{R}_{1 \mathrm{Y}}=\mathbf{1 6 0 . 1 1} \mathbf{\Omega}
\end{aligned}
$$

b) $\mathrm{P}_{\mathrm{T}}=\mathrm{W}_{1}+\mathrm{W}_{2}=84000$

$$
\mathrm{Q}_{\mathrm{T}}=\sqrt{3} \cdot\left(\mathrm{~W}_{1}-\mathrm{W}_{2}\right)=63000
$$

$$
\varphi_{\mathrm{T}}=\operatorname{arctg}\left(\mathrm{Q}_{\mathrm{T}} / \mathrm{P}_{\mathrm{T}}\right)=36.87^{\circ} \quad \mathrm{I}_{2 \mathrm{Y}}=\frac{\mathrm{P}_{\mathrm{T}}=84000}{\sqrt{3} \cdot 368.6 \cdot 0.8}=164.465 \mathrm{~A}
$$

$$
\overline{\mathrm{V}}_{1 \mathrm{Y}}^{\prime}=\overline{\mathrm{V}}_{2 \mathrm{Y}}+\overline{\mathrm{I}}_{2 \mathrm{Y}} \cdot \overline{\mathrm{Z}}_{2, \text { sc Y }} \quad \overline{\mathrm{V}}_{1 \mathrm{Y}}^{\prime}=\frac{368.6}{\sqrt{3}} 0^{\circ}+164.465^{-36.87^{\circ}} \cdot(0.02338+\mathrm{j} 0.03985)=219.839{ }^{0.72^{\circ}} \mathrm{V}
$$

$$
V_{1}=24048.8 \mathrm{~V}
$$

UNIT 4. THREE-PHASE TRANSFORMERS
 EXAMPLE 3

c)

$$
\begin{gathered}
\eta=\frac{\mathrm{P}_{2}}{\mathrm{P}_{2}+\mathrm{P}_{\mathrm{Fe}}+\mathrm{P}_{\mathrm{Cu}}}=\frac{\mathrm{P}_{2}}{\mathrm{P}_{2}+\mathrm{P}_{\mathrm{o}} \cdot\left(\mathrm{~V}_{1} / \mathrm{V}_{1 \mathrm{n}}\right)^{2}+c^{2} \cdot \mathrm{P}_{\mathrm{sc}}} \quad \mathrm{c}=\mathrm{I}_{2} / \mathrm{I}_{2 \mathrm{n}}=164.465 / 189.92=0.866 \\
\eta=\frac{84000}{84000+480 \cdot\left(\frac{24048.8}{24000}\right)^{2}+0.866^{2} \cdot 2530}=\frac{84000}{86379.34}=0.972
\end{gathered}
$$

d) Clock number $=$ angular displacement between secondary and primary voltages

UNIT 4. THREE-PHASE TRANSFORMERS
 EXAMPLE 4

A 50 kVA Dy1 15000/380-V and three-phase transformer has relative voltage drops $\varepsilon_{\mathrm{sc}}=10 \%$ and $\varepsilon_{\mathrm{Xsc}}=8 \%$. The transformer feds a balanced wye-connected load which phase impedances are $5^{0^{\circ}} \Omega$. Determine: a) $R_{1 s c}, X_{1 s c}, Z_{1 s c}$ b) The voltage in the secondary, being the primary fed at $15000-\mathrm{V}$ and the secondary

Solved from the point of view of the electrical system: $Y y$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{In}, \mathrm{Y}}=15000 / \sqrt{3}-\mathrm{V} \quad \mathrm{~V}_{2 \mathrm{n}, \mathrm{Y}}=380 / \sqrt{3}-\mathrm{V} \quad \mathrm{r}_{\mathrm{t}}=\mathrm{V}_{\mathrm{In}, \mathrm{Y}} / \mathrm{V}_{2 \mathrm{n}, \mathrm{Y}}=39.47 \\
& \mathrm{~S}_{\mathrm{n}}=50000 \mathrm{VA}=3 \cdot \mathrm{~V}_{\mathrm{ln}, \mathrm{Y}} \cdot \mathrm{I}_{\mathrm{ln}, \mathrm{Y}}=3 \cdot \frac{15000}{\sqrt{3}} \cdot \mathrm{I}_{\mathrm{ln}, \mathrm{Y}} \rightarrow \mathrm{I}_{\mathrm{In}, \mathrm{Y}}=1.925 \mathrm{~A} \\
& \varepsilon_{\mathrm{sc}}=0.1=\frac{Z_{\mathrm{lsc}} \cdot 1.925}{15000 / \sqrt{3}} \rightarrow Z_{\mathrm{lscr}}=450 \Omega \quad \varepsilon_{\mathrm{Xcc}}=0.08=\frac{\mathrm{X}_{\mathrm{lcc}} \cdot 1.925}{15000 / \sqrt{3}} \rightarrow \mathrm{X}_{\mathrm{lsc}}=360 \Omega \\
& \bar{Z}_{\text {IscY }}=270+\mathrm{j} \cdot 360=450^{53.13^{\circ}} \Omega \\
& \overline{\mathrm{Z}}_{\text {LoadY }}{ }^{\prime}=\mathrm{r}_{\mathrm{t}}^{2} \cdot \overline{\mathrm{Z}}_{\text {LoadY }}=39.47^{2} \cdot 5^{0^{\circ}}=7789.4^{0^{\circ}} \Omega \\
& \overline{\mathrm{V}}_{1 \mathrm{Y}}=\overline{\mathrm{I}}_{2 \mathrm{Y}} \cdot\left(\overline{\mathrm{Z}}_{\text {IscY }}+\overline{\mathrm{Z}}_{\text {LoadY }}{ }^{\prime}\right) \rightarrow \quad 15000 / \sqrt{3}^{0^{\circ}}=\overline{\mathrm{I}}_{2 Y^{\prime}} \cdot\left(450^{5.13^{\circ}}+7789.4^{0^{\circ}}\right) \rightarrow \overline{\mathrm{I}}_{2 Y^{\prime}}=1.0735^{-2.58^{\circ}} \mathrm{A} \\
& \overline{\mathrm{~V}}_{2 \mathrm{Y}}{ }^{\prime}=\overline{\mathrm{I}}_{2 \mathrm{Y}}{ }^{\prime} \cdot \overline{\mathrm{Z}}_{\text {LoadY }}{ }^{\prime} \rightarrow \overline{\mathrm{V}}_{2 \mathrm{Y}^{\prime}}=1.0735^{-2.558^{\circ}} \cdot 7789.4^{0^{\circ}}=8361.92^{-2.558^{\circ}} \mathrm{V} \\
& \mathrm{~V}_{2 \mathrm{Y}}=\mathrm{V}_{2 \mathrm{Y}}{ }^{\prime} / \mathrm{r}_{\mathrm{t}}=8361.92 / 39.47=211.835 \mathrm{~V} \rightarrow \mathrm{~V}_{2}=\sqrt{3} \cdot \mathrm{~V}_{2 \mathrm{Y}}=366.91 \mathrm{~V}
\end{aligned}
$$

1/3 Eq. Circuit Yy

UNIT 4. THREE-PHASE TRANSFORMERS

EXAMPLE 5

A 50 kVA Dy1 15000/380-V and three-phase transformer has relative voltage drops $\varepsilon_{\mathrm{sc}}=10 \%$ and $\varepsilon_{\mathrm{Xsc}}=8 \%$. The transformer feds a balanced wye-connected load which phase impedances are $5^{0^{\circ}} \Omega$. Determine: a) $R_{1 s c}, X_{1 s c}, Z_{1 s c}$.b) The voltage in the secondary, being the primary fed at $15000-\mathrm{V}$ and the secondary

Solved from the point of view of the electrical machine: Dy

$$
\mathrm{V}_{1 \mathrm{n}, \Delta}=15000-\mathrm{V} \quad \mathrm{~V}_{2 \mathrm{n}, \mathrm{Y}}=380 / \sqrt{3}-\mathrm{V} \quad \mathrm{r}_{\mathrm{t}}=\mathrm{V}_{1 \mathrm{n}, \Delta} / \mathrm{V}_{2 \mathrm{n}, \mathrm{Y}}=68.37
$$

$$
\mathrm{S}_{\mathrm{n}}=50000 \mathrm{VA}=3 \cdot \mathrm{~V}_{\mathrm{In}, \Delta} \cdot \mathrm{I}_{\mathrm{In}, \Delta}=3 \cdot 15000 \cdot \mathrm{I}_{\mathrm{In}, \Delta} \rightarrow \mathrm{I}_{\mathrm{In}, \mathrm{~A}}=1.11 \mathrm{~A}
$$

1/3 Eq. Circuit Δy

$$
\varepsilon_{\mathrm{sc}}=0.1=\frac{\mathrm{Z}_{\mathrm{lscc}} \cdot 1.11}{15000} \rightarrow \mathrm{Z}_{\mathrm{lsc} \Delta}=1350 \Omega \quad \varepsilon_{\mathrm{Xsc}}=0.08=\frac{\mathrm{X}_{\mathrm{lcc} \Delta} \cdot 1.11}{15000} \rightarrow \mathrm{X}_{\mathrm{lsc} \Delta}=1080 \Omega
$$

$$
\bar{Z}_{1 \mathrm{sc} \Lambda}=810+\mathrm{j} \cdot 1080=1355^{53.13^{\circ}} \Omega
$$

$$
\bar{Z}_{\text {Load }}{ }^{\prime}=r_{t}^{2} \cdot \bar{Z}_{\text {LoadY }}=68.37^{2} \cdot 5^{0^{\circ}}=23372.6^{0^{\circ}} \Omega
$$

$$
\overline{\mathrm{V}}_{1 \Delta}=\overline{\mathrm{I}}_{2 \Delta}{ }^{\prime} \cdot\left(\overline{\mathrm{Z}}_{\text {sccs }}+\overline{\mathrm{Z}}_{\text {Load } \Lambda}\right) \rightarrow \quad 15000^{0^{\circ}}=\overline{\mathrm{I}}_{2 \Lambda^{\prime}} \cdot\left(1350^{53.13^{\circ}}+23372.6^{0^{\circ}}\right) \rightarrow \overline{\mathrm{I}}_{2 \Lambda^{\prime}}=0.6197^{-2.557^{\circ}} \mathrm{A}
$$

$$
\overline{\mathrm{V}}_{2 \Lambda^{\prime}{ }^{\prime}=\overline{\mathrm{I}}_{2 \Lambda^{\prime}} \cdot \overline{\mathrm{Z}}_{\text {Load } \Lambda^{\prime}} \rightarrow \overline{\mathrm{V}}_{2 \Lambda^{\prime}}=0.6197^{-2.557^{\circ}} \cdot 23372.6^{0^{\circ}}=14484.00^{-2.557^{\circ}} \mathrm{V},{ }^{2}}
$$

$$
\mathrm{V}_{2 \mathrm{Y}}=\mathrm{V}_{2 \Lambda}{ }^{\prime} / \mathrm{r}_{\mathrm{t}}=14484 / 68.37=211.85 \mathrm{~V} \rightarrow \mathrm{~V}_{2}=\sqrt{3} \cdot \mathrm{~V}_{2 \mathrm{Y}}=366.93 \mathrm{~V}
$$

Unit 5. THE INDUCTION MACHINE

THE
 INDUCTION MACHINE

Unit 5. THE INDUCTION MACHINE

CONTENTS LIST:

- Introduction
- Stator and rotor. Physical features
- The nameplate
- Star and delta connection
- Direction of rotation
- Rotating magnetic field. Synchronous speed
- How the induction motor works
- Equivalent circuit
- Operational modes
- Torque and efficiency
- Standard tests
- Start up torque and current
- Starting methods
- How to obtain variable speed
- Exercises

Unit 5. THE INDUCTION MACHINE INTRODUCTION

- It is estimated that as much as 60% of total power generation capacity is consumed by electric motors
- Of this total consumption, more than 80 percent is utilized by motors greater than 20 HP (horse power)
- The induction motor is the most commonly motor used in industrial applications
- It is very simple, rugged and presents relatively low manufacturing costs.
- Efficiency can reach > 95\%

SIMPLE AND RUGGED !!

Unit 5. THE INDUCTION MACHINE
 INTRODUCTION

Olav Vaag Thorsen and Magnus Dalva, "A Survey Of Faults On Induction Motors In Offshore Oil Industry, Petrochemical Industry, Gas Terminals, And Oil Refineries," IEEE Transactions On Industry Applications, Vol. 31, No. 5, (September/October 1995).

INTRODUCTION

- It can acts as motor, generator and brake.
- The IM has two main parts: the stator and the rotor

STATOR

LAMINATIONS

Stator and rotor

Squirrel cage

Unit 5. THE INDUCTION MACHINE IM STATOR WINDINGS

- The stator core of a motor is made up of several hundred thin laminations
- Stator laminations are stacked together forming a hollow cylinder.
- Coils of insulated wire are inserted into slots of the stator core

Unit 5. THE INDUCTION MACHINE IM SQUIRREL CAGE ROTOR

- The laminations are stacked together to form a rotor core.
- Aluminum is die-cast in the slots of the rotor core to form a series of conductors around the perimeter of the rotor.
- The conductor bars are mechanically and electrically connected with end rings. The rotor core mounts on a steel shaft to form a rotor assembly.

Unit 5. THE INDUCTION MACHINE IM WOUND-ROTOR

- More expensive than the squirrel cage motor
- Wound-rotor motors suitable for starting heavy loads and accelerating them gradually and smoothly.
- Typical applications include conveyer belts, hoists and elevators, wind-driven generators, paper mills, cement factory ovens, ...

Unit 5. THE INDUCTION MACHINE
 IM WOUND-ROTOR

- The rotor windings have the coils connected together to a set of rings that make contact with carbon-composite brushes.
- The brushes are connected to a set of impedances such as a resistor bank. This design allows for a varying resistance from almost short-circuit condition to an open-circuit condition
- By modifying the resistance, the speed-torque characteristics can be altered.
- This allows for the torque to remain high, the inrush low, and the speed varied.
- Wound-rotor motors suitable for starting heavy loads and accelerating them gradually and smoothly.

Unit 5. THE INDUCTION MACHINE ASSEMBLING AN IM. The stator

Concentric winding

Eccentric (wave coil: imbricat)

Eccentric winding (wave coil) the most applied because only one type of coil is required (easy of manufacture)

Concentric

Unit 5. THE INDUCTION MACHINE RATING PLATE or NAMEPLATE

Rated voltages, rated full-load current, rated power, power factor at rated load, frequency and speed at rated-load are specified on the rating plate or nameplate.

Unit 5. THE INDUCTION MACHINE
IMs Isolation Class

Isolation class (IEC 600 34-1)

Isolation class	Maximum Temperature ${ }^{\circ} \mathrm{C}$
Y	90
A	105
E	120
B	130
F	155
H	180
200	200
220	220
250	250

- The isolation class determines the maximum temperature for which the windings of the machine can safely operate without loss of their properties.

Unit 5. THE INDUCTION MACHINE
 IMs DEGREE OF PROTECTION: IP

IP Code (IEC 600 34-5 - UNE EN 50102)

- Protection of persons against getting in contact with (or approaching) live parts and against contact with moving parts inside the enclosure.
- Also protection of the machine against ingress of solid foreign objects and against the harmful effects due to water ingress.

Unit 5. THE INDUCTION MACHINE
 STAR AND DELTA CONNECTIONS

STAR

DELTA

Star connection

Delta connection

Unit 5. THE INDUCTION MACHINE
 STAR AND DELTA CONNECTIONS

- In case of a 400 V line-voltage, this motor must be connected in Δ
- In case of a 690 V line-voltage, this motor must be connected in Y
- In both cases, each winding is feed at 400 V .

$$
\begin{aligned}
\mathrm{P}_{\text {input, }} & =\sqrt{3} \cdot 400 \cdot 29 \cdot 0.85=\sqrt{3} \cdot 690 \cdot 17 \cdot 0.85=17.08 \mathrm{~kW} \\
\eta_{\%} & =100 \cdot \frac{\mathrm{P}_{\text {output }}}{\mathrm{P}_{\text {input }}}=100 \cdot \frac{15 \mathrm{~kW}}{17.08 \mathrm{~kW}}=87.8 \%
\end{aligned}
$$

Unit 5. THE INDUCTION MACHINE
 DIRECTION OF ROTATION

When the mains supply is connected to the stator terminals marked U_{1}, V_{1} and W_{1}, of a three phase motor, and the mains phase sequence is $L_{1}(R)$, $L_{2}(S), L_{3}(T)$, the motor will rotate clockwise, as viewed from the D-end.

Unit 5. THE INDUCTION MACHINE ROTATING MAGNETIC FIELD

Three-phase Y-connected stator

Unit 5. THE INDUCTION MACHINE ROTATING MAGNETIC FIELD

$$
\begin{aligned}
& \overrightarrow{\mathrm{B}}_{\mathrm{A}}=\mathrm{B} \cos \omega \mathrm{t}(0 \hat{x}+1 \hat{y}) \\
& \overrightarrow{\mathrm{B}}_{\mathrm{B}}=\mathrm{B} \cos \left(\omega \mathrm{t}-120^{\circ}\right)\left(\frac{3}{2} \hat{x}-\frac{1}{2} \hat{y}\right) \\
& \overrightarrow{\mathrm{B}}_{\mathrm{C}}=\mathrm{B} \cos \left(\omega \mathrm{t}+120^{\circ}\right)\left(-\frac{3}{2} \hat{x}-\frac{1}{2} \hat{y}\right)
\end{aligned}
$$

The resultant magnetic field is:

$$
\overrightarrow{\mathrm{B}}_{\mathrm{res}}=\overrightarrow{\mathrm{B}}_{\mathrm{A}}+\overrightarrow{\mathrm{B}}_{\mathrm{B}}+\overrightarrow{\mathrm{B}}_{\mathrm{C}}=\frac{3}{2} \mathrm{~B}(\sin \omega \mathrm{t} \cdot \hat{x}+\cos \omega t \cdot \hat{y})
$$

The former expression is a rotating magnetic with angular speed $\omega=2 \pi \mathrm{f}_{1}$ and a constant modulus given by: $\mathrm{B}_{\text {res }}=3 \mathrm{~B} / 2$

If $p \neq 1$, the angular displacement between stator windings is divided by p, and the synchronous speed is also divided by p.

Unit 5. THE INDUCTION MACHINE

NUMBER OF POLES PAIRS: SYNCHRONOUS SPEED

- Number of poles pairs = number of 3-phase windings
- n_{0} : synchronous speed or B-field speed

Boldea\&Nasar

$$
w_{0}=2 \cdot \pi \cdot \frac{f}{p} \quad(\mathrm{rad} / \mathrm{s})
$$

one 3-phase winding

$$
p=1
$$

$120^{\circ} \% 1$ mechanical degrees between phase axes

$$
n_{0}=60 \cdot \frac{f}{p} \quad \text { (r.p.m.) }
$$

two 3-phase winding

$$
p=2
$$

$120^{\circ} / 2$ mechanical degrees between phas

Unit 5. THE INDUCTION MACHINE SYNCHRONOUS SPEED

Unit 5. THE INDUCTION MACHINE
 TWO POLES PAIRS: SYNCHRONOUS SPEED

Three-phase winding shifted 120°

Rotating field at $60 \cdot f_{1} / p$

Induces voltage in the rotor bars

A current flows through the rotor bars

Force applied on the rotor bars $\vec{F}=I \bar{l} \wedge \vec{B}$

The rotor produces mechanical torque

The IM rotates

Unit 5. THE INDUCTION MACHINE SLIP: ROTOR SPEED

- Rotor speed always lags B-field
- Slip (s): speed difference between rotor and B-field
- n_{0} : synchronous speed or B-field speed

Slip:

$$
s=\frac{w_{0}-w}{w_{0}}=\frac{\mathrm{n}_{0}-\mathrm{n}}{\mathrm{n}_{0}}
$$

Rotor angular speed:

$$
w=w_{0} \cdot(1-s) \quad(\mathrm{rad} / \mathrm{s})
$$

Rotor speed:

Unit 5. THE INDUCTION MACHINE
 ROTOR CURRENTS FREQUENCY AND EMF

- Frequency of rotor currents: f_{2}

$$
f_{2}=s \cdot f_{1}
$$

EMF one phase of stator:

$$
E_{1}=2 \cdot \pi \cdot N_{1} \cdot f_{1} \cdot \Phi_{0} \cdot \xi_{1}
$$

EMF one phase of rotor when rotor at standstill $(s=1)$:

$$
E_{2}=2 \cdot \pi \cdot N_{2} \cdot f_{1} \cdot \Phi_{0} \cdot \xi_{2}
$$

EMF one phase of rotor when rotor rotates:

$$
E_{2 s}=2 . \pi \cdot N_{2} \cdot f_{2} \cdot \Phi_{0} \cdot \xi_{2}=s .2 \cdot \pi \cdot N_{2} \cdot f_{1} \cdot \Phi_{0} \cdot \xi_{2}=s E_{2}
$$

ξ_{i} : factor which groups: form, distribution and pass factors

Unit 5. THE INDUCTION MACHINE
 EXAMPLE 1a

Example. A 3-phase, 200-hp, $50-\mathrm{Hz}$, 4 -pole, induction motor runs with a slip s $=0.02$. Determine: a) The angular speed of the magnetic field (synchronous speed) b) The frequency of the rotor currents c) The speed of the motor
a) Synchronous speed:

$$
4 \text { poles } \rightarrow p=2 \rightarrow n_{0}=60 \cdot f_{1} / p=60 \cdot 50 / 2=1500 \mathrm{rpm}
$$

b) Frequency of the rotor currents:

$$
f_{2}=s \cdot f_{1}=0.02 \cdot 50=1 \mathrm{~Hz}
$$

c) Motor speed = rotor speed:

$$
n=n_{0} \cdot(1-s)=1500 \cdot(1-0.02)=1470 \mathrm{rpm}
$$

Unit 5. THE INDUCTION MACHINE
 EXAMPLE 1b

A 3-phase induction motor runs at 465 rpm at rated load. The same motor rotates at a speed of 490 rpm under no load conditions. Supposing a line-frequency of 50 Hz , determine: a) The angular speed of the magnetic field (synchronous speed) b) The slip under no-load conditions c) The slip at rated load. d) The frequency of the rotor currents under no-load, under rated-load conditions and at starting
a) Synchronous speed:

$$
\mathrm{n}_{0}=60 \cdot \mathrm{f}_{1} / \mathrm{p}=60 \cdot 50 / \mathrm{p}=3000 / \mathrm{prpm} \rightarrow \mathrm{p}=6 \text { poles-pairs } \rightarrow \mathrm{n}_{0}=500 \mathrm{rpm}
$$

b) Slip under no-load conditions:

$$
\mathrm{s}=\left(\mathrm{n}_{0}-\mathrm{n}\right) / \mathrm{n}_{0}=(500-490) / 500=0.02(2 \%)
$$

c) Slip at rated load:

$$
s=\left(n_{0}-n\right) / n_{0}=(500-465) / 500=0.07(7 \%)
$$

d) Frequency of the rotor currents:

$$
\text { no-load: } \quad f_{2}=s \cdot f_{1}=0.02 \cdot 50=1 \mathrm{~Hz}
$$

rated load: $f_{2}=s \cdot f_{1}=0.07 \cdot 50=3.5 \mathrm{~Hz}$
at starting: $f_{2}=s \cdot f_{1}=1 \cdot 50=50 \mathrm{~Hz}$

Unit 5. THE INDUCTION MACHINE
 THE PRACTICAL IM. EQUIVALENT CIRCUIT

Exact equivalent circuit (1/3)

- Electrical resistance winding losses: $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{X}_{1}, \mathrm{X}_{2}$
- Iron losses: $\mathrm{R}_{\mathrm{m}}, \mathrm{X}_{\mathrm{m}}$
- Mechanical load and torque: $R_{2}^{\prime}(1 / s-1)$

$$
\overline{\mathrm{I}}_{2}=\frac{\mathrm{s} \overline{\mathrm{E}}_{2}}{\mathrm{R}_{2}+\mathrm{js} \mathrm{X}_{2}} \quad \Rightarrow \quad \overline{\mathrm{I}}_{2}=\frac{\overline{\mathrm{E}}_{2}}{\mathrm{R}_{2} / s+\mathrm{jX}}
$$

Unit 5. THE INDUCTION MACHINE

THE PRACTICAL IM. EQUIVALENT CIRCUIT

Exact equivalent circuit (1/3)

Static rotor $f_{2}=f_{1}, N_{1} \neq N_{2}$
Static rotor $f_{2}=f_{1}, N_{1}=N_{2}$

Unit 5. THE INDUCTION MACHINE

THE PRACTICAL IM. EQUIVALENT CIRCUIT

Exact equivalent circuit (1/3)

$1 / 3$ Simplified equivalent circuit $\left(R_{m} \gg R_{1}, R_{2}{ }^{\prime} \quad X_{m} \gg X_{1}, X_{2}\right)$
$P_{\text {motor }}>\left.\right|_{1} ^{10 \mathrm{~kW}}$

Unit 5. THE INDUCTION MACHINE

NO LOAD TEST (Low current, rated voltage)

1.- Measure R_{1}

No load $s \approx 0 \Longrightarrow R_{L}{ }^{\prime}=R_{2}{ }^{\prime}(1 / s-1) \rightarrow \infty$
2.- Feed the IM at different $\mathrm{V}_{1}\left(\mathrm{~V}_{1 n}-0.4 \mathrm{~V}_{1 n}\right)$

V $\quad \mathrm{W}_{1}+\mathrm{W}_{2}=\mathrm{P}_{\text {iron }}+\mathrm{P}_{\mathrm{Cul}}+\mathrm{P}_{\text {mec }}$
3.- Linear regression $\rightarrow P_{\text {mec }}=c t$ and $P_{\text {iron }} \sim V W_{2}$
4.- $\cos \varphi_{0}=\frac{\mathrm{P}_{\text {iron }, \mathrm{Vln}}}{3 \mathrm{~V}_{1 \mathrm{p}, \mathrm{n}} \mathrm{I}_{0 \mathrm{p}}}$

Prirer
5.- $\mathrm{I}_{\mathrm{m}}=\mathrm{I}_{0, \mathrm{p}} \cos \varphi_{0} \quad \mathrm{I}_{\mu}=\mathrm{I}_{0, \mathrm{p}} \operatorname{sen} \varphi_{0}$
6.- $R_{m}=\frac{V_{1 p, n}}{I_{m}} \quad X_{m}=\frac{V_{1 p, n}}{I_{\mu}}$

Unit 5. THE INDUCTION MACHINE

BLOCKED ROTOR TEST (Low voltage, rated current)

Test realized at very low voltage starting from $\mathrm{V}_{1}=0$

1.- Measure R_{1}

A
2.- $\left.\mathrm{P}_{\mathrm{sc}}=\mathrm{W}_{1}+\mathrm{W}_{2}=3 \mathrm{I}_{\mathrm{ln}}{ }^{2}\left(\mathrm{R}_{1}+\mathrm{R}_{2}{ }^{\prime}\right) \rightarrow \mathrm{R}_{2}{ }^{\prime}\right)$
3.- $\mathrm{Q}_{\mathrm{sc}}=\sqrt{3}\left(\mathrm{~W}_{1}-\mathrm{W}_{2}\right)=3 \mathrm{I}_{1 \mathrm{n}}{ }^{2}\left(\mathrm{X}_{1}+\mathrm{X}_{2}{ }^{\prime}\right)$

NEMA A: $\mathrm{X}_{1}=\mathrm{X}_{2}{ }^{\prime}$
NEMA B: $X_{1}=0.4\left(X_{1}+X_{2}{ }^{3}\right)$
NEMA C: $X_{1}=0.3\left(X_{1}+X_{2}{ }^{\prime}\right)$
NEMA D: $\mathrm{X}_{1}=\mathrm{X}_{2}{ }^{\prime}$

Unit 5. THE INDUCTION MACHINE POWER LOSSES AND EFFICIENCY

Input electrical power: $\mathrm{P}_{1}=3 \mathrm{~V}_{1, \text { phase }} \mathrm{I}_{1 \text {,phase }} \cos \varphi$
Iron losses : $\mathrm{P}_{\text {iron }}=3 \mathrm{~V}_{1, \text { phase }}^{2} / \mathrm{R}_{m}$
Copper losses : $\mathrm{P}_{\mathrm{Cu}}=3 \mathrm{I}_{2 \text {, phase }}^{2} \mathrm{R}_{1 \mathrm{sc}}$

$$
\begin{equation*}
\eta=\frac{P_{\text {useful }}}{P_{1}}=\frac{P_{1}-P_{\text {iron }}-P_{\mathrm{Cu}}-P_{\mathrm{mec}}}{P_{1}} \tag{2}
\end{equation*}
$$

Internal power: $\mathrm{P}_{\mathrm{i}}=\mathrm{T}_{\mathrm{i}} \cdot \omega=3 \mathrm{I}_{2}^{\prime 2} \mathrm{R}_{2}^{\prime}\left(\underset{\mathrm{S}}{\left(\frac{1}{2}-1\right)}\right.$
Mechanical losses (friction and forced ventilation) : $\mathrm{P}_{\mathrm{mec}}$

Unit 5. THE INDUCTION MACHINE

POWER LOSSES AND EFFICIENCY

Unit 5. THE INDUCTION MACHINE
 OPERATIONAL MODES OF AN IM

The IM can operate as a:

1) Motor
2) Generator
3) Brake

MOTOR

R ${ }^{\text {GENERATOR }}$

BRAKE

R S

$$
\begin{array}{ll}
0 \leq n<n_{0} & n>n_{0} \\
s \in(0,1) & s<0
\end{array}
$$

elec
n and n_{0} opposite sign

Unit 5. THE INDUCTION MACHINE

TORQUE

Unit 5. THE INDUCTION MACHINE

TORQUE: OPERATING AS A MOTOR

Unit 5. THE INDUCTION MACHINE
 START UP TORQUE

$$
\mathrm{T}_{\mathrm{i}, \text { start }}=\frac{3 \cdot \mathrm{R}_{2} \cdot \frac{\mathrm{~V}_{1, \text { phase }}^{2}}{1}}{\frac{2 \pi}{60} \mathrm{n}_{0}\left[\left(\mathrm{R}_{1}+\mathrm{R}_{2}^{\prime} / 1\right)^{2}+\left(\mathrm{X}_{1}+\mathrm{X}_{2}\right)^{2}\right]}
$$

$$
\mathrm{T}_{\mathrm{i}, \text { start }}=\frac{3 \cdot \mathrm{R}_{2}^{\prime} \cdot \mathrm{V}_{1, \text { phase }}^{2}}{\frac{2 \pi}{60} \mathrm{n}_{0}\left[\left(\mathrm{R}_{1}+\mathrm{R}_{2}^{\prime}\right)^{2}+\left(\mathrm{X}_{1}+\mathrm{X}_{2}^{\prime}\right)^{2}\right]}
$$

$$
I_{2, \text { start }}^{\prime}=\frac{V_{1, \text { phase }}}{\sqrt{\left[\left(\mathrm{R}_{1}+\mathrm{R}_{2}^{\prime}\right)^{2}+\left(\mathrm{X}_{1}+\mathrm{X}_{2} '^{2}\right)^{2}\right]}}
$$

$$
1
$$

$$
\underset{\mathbf{R}_{2}^{\prime} \uparrow \rightarrow \mathbf{T}_{\mathrm{i}, \text { sart }} \uparrow}{\underset{\mathrm{I}_{0}}{ } \uparrow \mathbf{R}_{1}} \longleftarrow \mathrm{R}_{\mathrm{I}_{\mathrm{i}, \text { tatrt }}^{\prime}}^{\prime}=\frac{\mathbf{X}_{1}}{\frac{2 \pi}{60} \mathrm{n}_{0}} \cdot \mathrm{R}_{2}{ }^{\prime} \mathrm{I}_{2, \text { start }}^{2} \mathbf{X}_{2}^{\prime}
$$

I_{2}
$\mathrm{X}_{\mu} \quad \mathrm{R}_{\mathrm{m}}$

Unit 5. THE INDUCTION MACHINE

TORQUE: MAXIMUM TORQUE

Unit 5. THE INDUCTION MACHINE
 IMs EFFICIENCY

Efficiency limit values according to IEC 60034-30 (2008)

Unit 5. THE INDUCTION MACHINE
 IMs CHARACTERISTICS

IP 55 - IC 411 - Insulation class F, temperature rise class B IE2 efficiency class according to IEC 60034-30, 2008

Output kW	Motor t	ype	Speed $\mathrm{r} / \mathrm{min}$	Efficiency IEC 60034- $2-1 ; 2007$ Full load 100%	Efficiency IEC 60034- $2 ; 1996$ Full load 100%	Power factor $\cos \varphi$ 100\%	Curren $\stackrel{I_{N}}{A}$	Speed r/min		Efficiency IEC 60034- $2 ; 1996$ Full load 100%	Power factor $\cos \varphi$ 100\%	Current $\stackrel{I_{N}}{A}$	Moment of inertia $\mathrm{J}=$ $1 / 4 \mathrm{GD}^{2}$ kgm^{2}	Weight kg	Sound pressure level L_{p} $\mathrm{dB}(\mathrm{A})$
$3000 \mathrm{r} / \mathrm{min}=2-\mathrm{poles}$				380 V 50 Hz		415 V 50 Hz					CENELEC design				
0.18	M3AA	63 A	2815	74.6	75.1	0.69	0.53	2830	72.5	72.9	0.60	0.58	0.00013	3.9	54
0.25	M3AA	63 B	2800	78.5	79.0	0.75	0.64	2830	76.2	76.6	0.67	0.69	0.00016	4.4	54
0.37	M3AA	71 A	2740	74.1	74.4	0.84	0.9	2815	73.9	74.2	0.74	0.95	0.00035	4.9	58
0.55	M3AA	71 B	2765	75.5	75.9	0.85	1.3	2820	75.7	76.1	0.75	1.35	0.00045	5.9	58
0.75	M3AA	80 A	2795	76.5	76.8	0.85	1.85	2835	76.5	76.8	0.77	1.75	0.00069	8.5	60
1.1	M3AA	80 C	2875	82.0	83.1	0.83	2.4	2905	82.3	83.2	0.76	2.4	0.0011	11	60
1.5	M3AA	90 L	2885	84.0	84.4	0.90	3.05	2905	84.2	85.2	0.87	2.8	0.0024	16	63
2.2	M3AA	90 LB	2865	84.0	85.6	0.90	4.65	2890	84.8	86.2	0.85	4.25	0.0027	18	63
3	M3AA	100 LB	2920	87.0	87.3	0.89	6.2	2935	87.0	87.5	0.85	5.9	0.005	25	62
4	M3AA	112 MB	2860	86.4	87.5	0.92	7.6	2895	87.3	88.1	0.92	6.95	0.0062	30	68
5.5	M3AA	132 SB	2905	87.6	88.3	0.89	11.2	2925	88.0	89.0	0.86	10.4	0.016	42	73
7.5	M3AA	132 SC	2890	88.5	88.5	0.92	14.4	2920	88.8	90.2	0.93	12.14	0.022	56	73
11	M3AA	160 MLA	2920	89.3	90.4	0.91	20.5	2935	90.1	91.2	0.90	18.6	0.045	91	69
15	M3AA	160 MLB	2925	90.3	91.3	0.92	27.5	2938	90.9	91.9	0.90	25.5	0.049	98	69
18.5	M3AA	160 MLC	2928	91.0	92.1	0.91	33.5	2941	91.4	92.5	0.88	32	0.054	106	69
22	M3AA	180 MLA	2944	91.3	92.3	0.90	40.5	2953	91.7	92.7	0.86	38.5	0.078	132	69
30	M3AA	200 MLA	2946	92.0	93.1	0.90	55	2956	92.5	93.6	0.89	50	0.163	198	72
37	M3AA	200 MLB	2942	92.4	93.5	0.90	67	2953	92.9	94.0	0.89	62	0.181	211	72
45	M3AA	225 SMA	2960	93.4	94.2	0.88	83	2968	93.7	94.5	0.87	77	0.25	264	74
55	M3AA	250 SMA	2964	93.7	94.4	0.88	101	2971	94.0	94.7	0.87	93	0.517	305	75
75	M3AA	280 SMA	2965	94.3	95.0	0.89	136	2972	94.6	95.3	0.88	125	0.593	390	75
90	M3AA	280 SMB	2967	94.4	95.3	0.89	162	2973	94.7	95.6	0.88	150	0.654		5

Unit 5. THE INDUCTION MACHINE
 IMs CHARACTERISTICS

IP 55 - IC 411 - Insulation class \mathbf{F}, temperature rise class B
IE2 efficiency class according to IEC 60034-30, 2008

a

Unit 5. THE INDUCTION MACHINE START UP CURRENT

- The instruction ITC-BT-47 of the REBT (Low-voltage Spanish Regulation) limits the AC motor's maximum start up current as:

Motor rated power	$\mathbf{I}_{\text {màx,start up }} / I_{\text {rated }}$
$0.75 \mathrm{~kW}-1.5 \mathrm{~kW}$	4.5
$(1.5 \mathrm{~kW}, 5.0 \mathrm{~kW}]$	3.0
$(5.0 \mathrm{~kW}, 15.0 \mathrm{~kW}]$	2.0
$>15.0 \mathrm{~kW}$	1.5

It is necessary to limit the start up current

Unit 5. THE INDUCTION MACHINE
 HOW TO OBTAIN VARIABLE SPEED

- \mathbf{n} depends on three variables: \mathbf{f}, \mathbf{p} and \mathbf{s}
- s is no practical to change
- \mathbf{p} (number of poles pairs) has an integer value: $1,2,3,4, \ldots$

For example: if $\mathrm{f}=50 \mathrm{~Hz} \mathrm{n} \mathrm{=} \mathrm{3000}, \mathrm{1500}, \mathrm{1000}, \mathrm{750}$,600 rpm

- The most effective way to change motor speed is changing frequency f (POWER ELECTRONICS, 80s decade)

Unit 5. THE INDUCTION MACHINE STARTING METHODS

Direct starting	Low power motors	
Wye-delta starting	The cheaper and widely used reduced voltage starting system	
Autotransformer starting	Voltage reduction during starting	
Static soft-starting	An electronic equipment governs the motor during starting	
Variable R in the rotor circuit	Only for wound-rotor induction motors	
- Wye-delta and solid-state method are the simplest methods to apply. - Over the years the dominant voltage reduction method world wide has been the wye-delia starting technique.		

Unit 5. THE INDUCTION MACHINE
 DIRECT-ON-LINE STARTING (DOL)

- Short-circuit protection
- Overload protection

The disadvantage with this method is that it gives the highest possible starting current.

D.O.L. starter with contactor and O / L relay

KM 1 Main contactor FR 1 Overload relay

Unit 5. THE INDUCTION MACHINE WYE-DELTA STARTING

- Short-circuit protection

- Overload protection
- Starting method that reduces the starting current and starting torque.
- Consists of three contactors, an overload relay and a timer for setting the time in the star-position (starting position).
- The motor must be delta connected during a normal run.

Unit 5. THE INDUCTION MACHINE
 WYE-DELTA STARTING

- Lowest cost electromechanical reduced voltage starter that can be applied
- Disadvantage: it requires more panel space and, more components (3 contactors and a timer relay)
- Only works when the application is light loaded during the start. If the motor is too heavily loaded, there will not be enough torque to accelerate the motor up to speed before switching over to the delta position.
- Useful for starting up pumps and fans (low load torque during starting, T~n²).

$$
V_{\text {phase }, Y}=\frac{V_{\text {phase }, \Delta}}{\sqrt{3}} \rightarrow I_{\text {phase }, Y}=\frac{I_{\text {phase }, \Delta}}{\sqrt{3}} \quad \rightarrow \quad I_{\text {line }, Y}=\frac{I_{\text {phasese, } \Delta}}{\sqrt{3}}=\frac{I_{\text {line }, \Delta} / \sqrt{3}}{\sqrt{3}}=\frac{I_{\text {line }, \Delta}}{3}
$$

$$
V_{\text {phase }, Y}=\frac{V_{\text {phase }, \Delta}}{\sqrt{3}} \rightarrow \frac{T_{Y}}{T_{\Delta}}=\left(\frac{V_{\text {phase }, Y}}{V_{\text {phase, } \Delta}}\right)^{2}=\left(\frac{V_{\text {phase }, \Delta} / \sqrt{3}}{V_{\text {phase }, \Delta}}\right)^{2}=\frac{1}{3} \begin{aligned}
& \text { Starting Torque } \\
& \text { Reduction }
\end{aligned}
$$

Unit 5. THE INDUCTION MACHINE

AUTOTRANSFORMER STARTING

- Autotransformer voltage reduction is adequate only with light starting loads (fan, ventilator, pumps).
- Process can be performed in 2 or 3 steps: the motor is fed through the autotransformer, at the voltage: $0.5,0.65,0.8 \mathrm{~V}_{\text {line }}$.
- Autotransformers are preferred due to their smaller size

One-stage autotransformer starting

Unit 5. THE INDUCTION MACHINE SOFT-STARTING

- Solid-state starters offer another technique of reduced voltage starting
- Soft-starters use thyristors and enjoy natural commutation (from the power grid).
- In numerous applications such as fans, pumps, or conveyors, soft-starters are now common practice when speed control is not required.
- Their cost is reasonably low to be competitive.
- During starting, either the stator current or the torque may be controlled.
- The soft starter incorporates a bypass. After the start ends, the bypass is switched on and the soft-starter is isolated.
- Dynamic braking can also be performed by soft-starters

Unit 5. THE INDUCTION MACHINE SOFTSTARTING

- Soft-starting eliminates unnecessary jerks during the start.
- Gradually, the voltage and the torque increase so that the machinery starts to accelerate.
- Possibility to adjust the torque to the exact need, whether the application is loaded or not.
- It allows soft-stop, which is very useful when stopping pumps where the problem is water hammering in the pipe system at direct stop as for stardelta starter and direct-on-line starter.

Unit 5. THE INDUCTION MACHINE
 VARIABLE R IN THE ROTOR

- Method applied only in wound rotor with slip-ring motors.
- It is possible to adjust the starting torque up to the maximum torque ($\mathrm{Y}-\Delta$ starting presents reduced starting torque).
- The motor is started by changing the rotor resistance.
- When speeding up, the resistance is gradually removed until the rated speed is achieved.
- The advantage of a slip-ring motor is that the starting current will be lower and it is possible to adjust the starting torque up to the maximum torque.

Unit 5. THE INDUCTION MACHINE
 VARIABLE SPEED DRIVES (Drives)

- In developed countries, 10\% of all induction motor power is converted in variable speed drives applications. The forecast is that, in the next decade, up to 50% of all electric motors will be fed through power electronics
- By controlling the frequency, the rated motor torque is available at a low speed and the starting current is low, between 0.5 and 1.0 times the rated motor current, maximum 1.5 In.
- Drives allow soft-stop.
- It is very common to install a filter together with the drive in order to reduce the levels of emission and harmonics generated.

Unit 5. THE INDUCTION MACHINE
 VARIABLE SPEED APPLICATIONS

- The speed of the IM can be controlled by adjusting the frequency and magnitude of the stator voltage.
- Motor speed is proportional to frequency, but the voltage must be simultaneously adjusted to avoid over-fluxing the motor.
- The AC motor is able to develop its full torque over the normal speed range, provided that the flux is held constant, (V/f ratio kept constant).
- The speed of an AC induction motor can be increased above its nominal 50 Hz rating, but the V/f ratio will fall because the stator voltage cannot be increased any further. This results in a fall of the air-gap flux and a reduction in output torque. As with the DC motor, this is known as the field weakening range. The performance of the AC motor in the field weakening range is characterized by constant power, thus reduced torque.

Unit 5. THE INDUCTION MACHINE FREQUENCY INVERTER

- Frequency inverters convert constant sinusoidal mains voltage and frequency into a DC voltage.
- From the DC voltage they generate a new three-phase supply with variable voltage and frequency for the three-phase motor.
- The frequency inverter draws almost only active power (p.f. ~1) from the supplying mains.
- The reactive power needed for motor operation is supplied by the DC link. This eliminates the need for p.f. correction on the mains side.

Unit 5. THE INDUCTION MACHINE FREQUENCY INVERTER

- IGBT's switching is made by means of PWM (Pulse Width Modulation) technique.
- PWM consists of comparing a triangular carrier signal with a sin-wave modulator signal.
- A three-phase stepped sinusoidal-like signal is obtained.
- By changing module and frequency of carrier and modulator signals, waves of variable voltage and frequency are obtained at the inverter's output.

Unit 5. THE INDUCTION MACHINE
 STARTING METHODS COMPARATIVE

	Direct-on-line	Star-delta start	Drives	Softstarter
Slipping belts and heavy wear on bearings	Yes	Medium	No	No
High inrush current	Yes	No	No	No
Heavy wear and tear on gear boxes	Yes	Yes (loaded start)	No	No
Damaged goods / products during stop	Yes	Yes	No	No
Water hammering in pipe system when stopping	Yes	Yes	Best solution	Reduced
Transmission peaks	Yes	Yes	No	No

Drives $=$ variable speed drive
Auto transformer start has similar problems to the star-delta start

Unit 5. THE INDUCTION MACHINE BRAKING OF IM

- In some applications motors must be braked in order to stop them fast.
- The properties of the machine can be used to stop it.
- Applications examples: elevators, conveyor belts, electrical traction, etc.
- Three types of braking:

Regenerative braking (dynamic braking)
Reverse-current braking
DC injection braking

Unit 5. THE INDUCTION MACHINE

BRAKING OF IM: REGENERATIVE OR DYNAMIC BRAKING

- It requires a motor with $P>1$ (pairs of poles)
- Breaking is performed by transforming $P(n)$ to $2 P(n / 2)$.
- The motor passes to behave as a generator.
- The energy generated can be dissipated in resistances or returned to the net. In this last case a four-quadrant inverter is required.

Unit 5. THE INDUCTION MACHINE
 BRAKING OF IM: REVERSE-CURRENT BRAKING

- The motor acts in the brake region by permuting two phases
- Then, the magnetic field rotates in opposite to the rotation direction
- The braking torque is low
- High braking current and high braking power losses in stator windings and rotor bars
- Special motors are required

Unit 5. THE INDUCTION MACHINE
 BRAKING OF IM: DC INJECTION BRAKING

- The motor is disconnected from the voltage source and a DC current is injected into the stator windings.
- This can be achieved by connecting two phases of the induction motor to a DC supply.
- The injected current should be roughly equal to the excitation current or no-load current of the motor.
- The stator generates a static magnetic field.
- The rotor bars cut through this field. A current will be developed in the rotor with a magnitude and frequency proportional to speed.
- This results in a braking torque that is proportional to speed.
- The braking energy is dissipated as losses in the rotor windings, which in turn, generate heat.
- The braking energy is limited by the temperature rise permitted in the motor.

Unit 5. THE INDUCTION MACHINE
 EXAMPLE 2

A 3-phase, $200-\mathrm{hp}, 3300-\mathrm{V}, 50-\mathrm{Hz}, 4-\mathrm{pole}$, star-connected induction motor has the following equivalent circuit parameters (per phase): $\mathrm{R}_{1}=\mathrm{R}_{2}^{\prime}=0.8 \Omega, \mathrm{X}_{1}=\mathrm{X}_{2}^{\prime}=3.5 \Omega$. a) Calculate the slip and the torque at full load if the friction loss is 3 kW . b) Calculate the current absorbed by the motor during starting.
a) $P_{\text {useful }}=200 \cdot 746=149200$ watt

$$
P_{i}=P_{\text {useful }}+P_{\text {mec }}=152200 \text { watt }=3 \cdot \cdot_{2}^{\prime}{ }^{2} \cdot R_{2}^{\prime} \cdot(1 / \mathrm{s}-1)
$$

Being

$$
\left.\mathrm{I}_{2}^{\prime}=\frac{\mathrm{V}_{1 \text { star }}}{\sqrt{\left(\mathrm{R}_{1}+\mathrm{R}_{2}^{\prime} / \mathrm{s}\right)^{2}+\mathrm{X}_{\mathrm{Isc}}^{2}}}=\frac{3300 / \sqrt{3}}{\sqrt{(0.8+0.8 / \mathrm{s})^{2}+7^{2}}}\right\}
$$

It results a quadratic equation in $\mathrm{s}: ~ \mathrm{~s}^{2}-0.52359 \mathrm{~s}+0.005988=0$
The results are: $\mathrm{s}_{1}=0.5119$ (not possible) $\mathrm{s}_{2}=0.0118$
Thus, from $\mathrm{s}=0.0118$ it results: $\mathrm{l}_{2}=27.63 \mathrm{~A}$
$\mathrm{P}_{\mathrm{i}}=\frac{2 \pi}{60} \mathrm{nT}_{i}=3 \mathrm{I}_{2}{ }^{{ }^{2}} \mathrm{R}_{2}{ }^{\prime}(1 / \mathrm{s}-1) \rightarrow \frac{2 \pi}{60} \cdot 1500 \cdot(1-0.0118) \cdot \mathrm{T}_{i}=3 \cdot 27.63^{2} \cdot 0.8 \cdot(1 / 0.0118-1)$
Resulting in, $\quad T_{i}=988.5 \mathrm{Nm}$
b) $\mathrm{I}_{\text {starting }} \approx \mathrm{I}_{2 \text { statring }}^{\prime}=\frac{\mathrm{V}_{1 \mathrm{Y}}}{\sqrt{\left(\mathrm{R}_{1}+\mathrm{R}_{2}^{\prime} / 1\right)^{2}+\mathrm{X}_{1 \mathrm{sc}}^{2}}}=\frac{3300 / \sqrt{3}}{\sqrt{(0.8+0.8 / 1)^{2}+7^{2}}}=265.34 \mathrm{~A}$

Unit 5. THE INDUCTION MACHINE
 EXAMPLE 3

A 3-phase, 6-pole, 50 Hz induction motor has the following equivalent circuit parameters per phase: $R_{1} \approx 0 \Omega, R_{2}^{\prime}=R, X_{1}=X_{2}^{\prime}=5 R \Omega, I_{\text {starting }} / I_{n}=4.10264$. Calculate a) the nominal speed, b) the PF during starting and under rated load as well as c) $\mathrm{T}_{\text {starting }} / \mathrm{T}_{\mathrm{n}}$. Neglect the parallel branch of the equivalent circuit

$$
\bar{Z}_{\mathrm{eq}}=\left(\mathrm{R}_{1}+\mathrm{R}_{2}^{\prime} / \mathrm{s}\right)+\mathrm{j}\left(\mathrm{X}_{1}+\mathrm{X}_{2}^{\prime}\right)=\mathrm{R} / \mathrm{s}+\mathrm{j} 10 \mathrm{R}
$$

$$
I_{1, \text { phase }}=\frac{V_{1, \text { phase }}}{\sqrt{(R / s)^{2}+(10 R)^{2}}}
$$

a) $\frac{I_{1, \text { starting }}}{I_{1, n}}=\frac{\frac{V_{1, \text { phase }}}{\sqrt{(R / 1)^{2}+(10 R)^{2}}}}{\frac{V_{1, \text { phase }}}{\sqrt{\left(R / s_{n}\right)^{2}+(10 R)^{2}}}}=4.10264 \rightarrow s_{n}=0.025 \rightarrow n_{n}=60 \cdot \frac{f_{1}}{p} \cdot\left(1-s_{n}\right)=975 \mathrm{rpm}$
b) $\overline{\mathrm{Z}}_{\text {eq, starting }}=\mathrm{R} / 1+\mathrm{j} \cdot 10 \cdot \mathrm{R}=\left.\right|_{0} ^{0.0499 \cdot R^{84.29^{\circ}} \Omega \rightarrow \mathrm{PF}_{\text {starting }}=\cos \left(84.29^{\circ}\right)=0.1(\mathrm{i}), ~(\mathrm{R}}$

$$
\overline{\mathrm{Z}}_{\mathrm{eq}, \mathrm{n}}=\mathrm{R} / 0.025+\mathrm{j} 10 \mathrm{R}=41.231 \mathrm{R}^{14.04^{\circ}} \Omega \mathrm{H}_{2} \mathrm{PF}_{\mathrm{n}}=\cos \left(14.04^{\circ}\right)=0.97(\mathrm{i})
$$

$$
3 \cdot \mathrm{R}_{2}^{\prime} \mathrm{V}_{1, \text { phase }}^{2} \quad \mathrm{R}_{\mathrm{m}}
$$

$$
R_{2}^{\prime}(1 / s-1)
$$

c) $\frac{T_{\mathrm{i}, \text { starting }}}{\mathrm{T}_{\mathrm{i}, \mathrm{n}}}=\frac{\frac{\frac{2 \pi}{60} \mathrm{n}_{0}\left[\left(\mathrm{R}_{1}+\mathrm{R}_{2}{ }^{\prime} / 1\right)^{2}+\left(\mathrm{X}_{1}+\mathrm{X}_{2}{ }^{\prime}\right)^{2}\right]}{3 \cdot \mathrm{R}_{2} \cdot \frac{\mathrm{~V}_{1, \text { phase }}^{2}}{\mathrm{~s}_{\mathrm{n}}}}}{}=\mathrm{s}_{\mathrm{n}} \frac{\left(\mathrm{R}_{1}+\mathrm{R}_{2}{ }^{\prime} / \mathrm{s}_{\mathrm{n}}\right)^{2}+\left(\mathrm{X}_{1}+\mathrm{X}_{2}{ }^{\prime}\right)^{2}}{\left(\mathrm{R}_{1}+\mathrm{R}_{2}{ }^{\prime}\right)^{2}+\left(\mathrm{X}_{1}+\mathrm{X}_{2}{ }^{\prime}\right)^{2}}=0.025 \frac{\mathrm{R}^{2} / 0.025^{2}+100 \mathrm{R}^{2}}{\mathrm{R}^{2}+100 \mathrm{R}^{2}}=0.4208$

Unit 5. THE INDUCTION MACHINE
 EXAMPLE 4a

A 3-phase, $440-\mathrm{V} 50-\mathrm{Hz}, \Delta$-connected, 4 -pole induction motor runs at a speed of 1447 rpm when operating at its rated load. Equivalent circuit per-phase parameters: $R_{1}=0.2$ $\Omega, R_{2}^{\prime}=0.4 \Omega, X_{1}=X_{2}^{\prime}=2 \Omega, R_{m}=200 \Omega, X_{m}=40 \Omega$. Determine, for rated load, the values of a) line current, b) power factor, c) torque, d) output power and e) efficiency. The mechanical loss are estimated in 1000 watts.

$$
\begin{aligned}
& \longrightarrow \quad \mathrm{s}=(1500-1447) / 1500=0.0353 \quad \mathrm{~V}_{1 \mathrm{~s}}=440^{\circ} \mathrm{V}
\end{aligned}
$$

a) Δ - connection : $\mathrm{I}_{1, \text { line }}=\sqrt{3} \mathrm{I}_{1, \Delta}=\sqrt{3} 42.85=74.2 \mathrm{~A}$
b) $\mathrm{PF}=\cos \left(32.147^{\circ}\right)=0.847$ (i)

e) $\mathrm{P}_{\text {input }}=\sqrt{3} \mathrm{~V}_{1, \text { line }} \mathrm{I}_{1, \text { line }} \cos \mathcal{X}_{\mu}=\sqrt{3} \cdot 44 \mathrm{R} \cdot 74.2 \cdot 0.847=47.90 \mathrm{~kW} \rightarrow \eta_{\%}=100 \frac{\mathrm{P}_{\text {usful }}}{\mathrm{P}_{\text {input }}}(796.95 \%$

Unit 5. THE INDUCTION MACHINE
 EXAMPLE 4b

Determine the same quantities as in example 4a, if the same machine runs as a generator (for example a wind-driven generator) with the same numerical value of slip, when connected at the same three-phase line.

$$
\text { Generator: } \mathrm{s}<0 \rightarrow \mathrm{~s}=-0.0353 \rightarrow \mathrm{n}=1553 \mathrm{rpm} \quad \mathrm{~V}_{1 \Delta}=440^{\circ} \mathrm{V}
$$

$$
R_{2}{ }^{\prime}<0
$$

$$
\overline{\mathrm{I}}_{0}=2.2-\mathrm{j} 11=11.218^{-78.69^{\circ}} \mathrm{A}(\text { same as Example } 4 \mathrm{a})
$$

$$
P_{i} \quad \overline{\mathrm{I}}^{\prime}=\frac{440^{0^{\circ}}}{0.6+0.4(1 /-0.0353-1)+\mathrm{j} 4}=-35-\mathrm{j} 12.6=37.23^{-160.22^{\circ}} \mathrm{A}
$$

$$
\overline{\mathrm{I}}_{1, \Delta}=\overline{\mathrm{I}}_{0}+\overline{\mathrm{I}}_{2}^{\prime}=-32.8-\mathrm{j} 23.6=40.41^{-144.26^{\circ}} \mathrm{A}
$$

a) Δ - connection $: \mathrm{I}_{1, \text { line }}=\sqrt{3}_{\mathrm{I}_{1}, \Delta}=\sqrt{3} 40.41=70 \mathrm{~A}_{\mathrm{R}_{1 \text { sc }}} \quad \mathrm{X}_{1 \text { sc }}$
b) $\mathrm{PF}=\left|\cos \left(144.26^{\circ}\right)\right|=0.81$ (i)
c) $\begin{aligned} \mathrm{P}_{\mathrm{i}}=\frac{2 \pi}{60} \mathrm{nT}_{i}=3 \mathrm{I}_{1}{ }^{\prime 2} \mathrm{R}_{2}{ }^{\prime}\left(1 / \mathrm{l}^{\circ}-1\right) & \rightarrow \mathrm{T}_{\mathrm{i}}=\frac{-299.7 \mathrm{Nm}}{\mathrm{l}_{2}^{\prime}} \text { (it is a braking torque) } \quad 3 . \mathrm{R}_{2}{ }^{\prime} \cdot \frac{\mathrm{V}_{1, \Delta}^{2}}{\mathrm{~s}} \\ \mathrm{X}_{\mu} & \mathrm{R}_{\mathrm{m}}\end{aligned}$
d) $\mathrm{P}_{\text {mechanical, input }}=\left|\mathrm{P}_{\mathrm{i}}\right|+\mathrm{P}_{\text {mec }}=\left|3 \cdot 37.23^{2} \cdot 0.4(1 /-0.0353-1)\right|+1000=49.7 \mathrm{~kW}$
e) $P_{\text {electrical, output }}=\sqrt{3} V_{1, \text { line }} I_{1, \text { line }} \cos \varphi=\sqrt{3} .440 \cdot 70 \cdot 0.81=43.2 \mathrm{~kW} \rightarrow \eta_{\%}=100 \frac{P_{\text {electrical, output }}}{P_{\text {mechanical, input }}}=87 \%$

Unit 5. THE INDUCTION MACHINE
 EXAMPLE 4C

The same machine as in example 4a, which is connected at the same generator, runs at 1447 rpm when, suddenly and instantaneously, phases R and S are permuted (the machine runs as a brake). In this instant determine the values of a) line current b) power factor c) the braking torque d) the electrical input power e) Joule losses

$$
\mathrm{n}=1447 \mathrm{rpm} \text { and } \mathrm{n}_{\mathrm{o}}=-1500 \mathrm{rpm}
$$

a) Δ - connection : $\mathrm{I}_{1, \text { line }}=\sqrt{3} I_{1, \Delta}=\sqrt{3} 120.61=208.9 \mathrm{~A}$
b) $\mathrm{PF}=\cos \left(+83.72^{\circ}\right)=0.109$ (i)
$\mathrm{R}_{1 \mathrm{sc}} \quad \mathrm{X}_{1 \text { sc }}$
c) $\mathrm{P}_{\mathrm{i}}=\frac{2 \pi}{60} \mathrm{nT} \mathrm{T}_{i}=3 \mathrm{I}_{2}{ }^{\prime 2} \mathrm{R}_{2}{ }^{\prime}(1 / \mathrm{s}-1)=-7.06 \mathrm{~kW}$ (input power) $\rightarrow \mathrm{T}_{\mathrm{O}}=-46.57 \mathrm{Nm}$ (braking torque) I_{1}
e) $P_{\text {electrical, input }}=\sqrt{3} V_{1, \text { line }} \mathrm{I}_{1, \mathrm{i}} \mathrm{X}_{\mu} \cos \varphi=\sqrt{3} \cdot \mathrm{R}_{\mathrm{m}}^{0} \cdot 208.9 \cdot 0.109=17.35 \mathrm{~kW}$

$$
\left.T_{i}=\frac{3 \cdot R_{2}^{\prime} \cdot \frac{V_{1, s}^{2}}{\mathrm{~s}}}{\frac{2 \pi}{60} \mathrm{n}_{0}\left[\left(\mathrm{R}_{1}+\mathrm{R}^{2}{ }^{\prime} / \mathrm{s}\right)^{2}+\left(\mathrm{X}_{1}+\mathrm{X}_{2}\right)^{2}\right]} \mathrm{R}_{2}^{\prime}(1 / \mathrm{S}-1)\right)
$$

f) $\mathrm{P}_{\mathrm{Cu}}=3 I_{2}{ }^{12} R_{\mathrm{lsc}}=3 \cdot 109.44^{2} \cdot 0.6=21.56 \mathrm{~kW} \quad \mathrm{P}_{\text {iron }}=3 \mathrm{~V}_{1}{ }^{2} / \mathrm{R}_{\mathrm{m}}=3 \cdot 440^{2} / 200=2.90 \mathrm{~kW}$

Note that $\mathrm{P}_{\mathrm{Cu}}+\mathrm{P}_{\text {iron }}=24.4 \mathrm{~kW}=\mathrm{P}_{\mathrm{i}, \text { input }}+\mathrm{P}_{\text {electical, input }}$

Unit 5. THE INDUCTION MACHINE
 EXAMPLE 5

A 3-phase, 400V-50 Hz wound-rotor IM (stator and rotor windings are wye-connected) has a full-load speed of 1440 rpm . The following parameters are known: $R_{1}=1 \Omega$, $R_{2}{ }^{\prime}=0.8 \Omega, X_{1 s c}=5 \Omega$. Neglecting the mechanical losses and the parallel branch of the equivalent circuit, determine: a) The full-load current and the internal torque. b) The current and the internal torque during starting being the rings in short-circuit. c) The current and the torque during starting when a resistance $R_{\text {add }}{ }^{\prime}=4.3 \Omega$ has been added in series with the rotor through the rings.

a) Full load: $s=\frac{n_{o}-n}{n_{0}}=\frac{1500-1440}{1500}=0,04 \quad$ (4\%)
$I_{1, \text { Full-Load }}=I_{1, Y}=\frac{V_{1, Y}}{Z_{1, Y}}=\frac{V_{1, Y}}{\sqrt{\left(R_{1}+R_{2}{ }^{\prime} / \mathrm{s}\right)^{2}+\mathrm{X}_{\mathrm{lcc}}^{2}}}=\frac{400 / \sqrt{3}}{\sqrt{(1+0.8 / 0.04)^{2}+5^{2}}}=10,70 \mathrm{~A}$

$$
\mathrm{M}_{\mathrm{i}, \mathrm{Full}-\text { Load }}=\frac{3 \cdot \mathrm{~V}_{1, \mathrm{Y}}{ }^{2} \cdot \frac{\mathrm{R}_{2}^{\prime}}{\mathrm{s}}}{\frac{2 \pi}{60} \cdot \mathrm{n}_{\mathrm{o}}\left[\left(\mathrm{R}_{1}+\frac{\mathrm{R}_{2}^{\prime}}{\mathrm{s}}\right)^{2}+\left(\mathrm{X}_{1, \text { sc }}\right)^{2}\right]}=43.73 \mathrm{Nm}
$$

b) $\mathrm{I}_{1, \text { Start }}=\frac{\mathrm{V}_{1, \mathrm{Y}}}{\mathrm{Z}_{1, \mathrm{Y}}}=\frac{\mathrm{V}_{1, \mathrm{Y}}}{\sqrt{\left(\mathrm{R}_{1}+\mathrm{R}_{2} / / \mathrm{s}\right)^{2}+\mathrm{X}_{\text {lcc }}^{2}}}=\frac{400 / \sqrt{3}}{\sqrt{(1+0.8 / 1)^{2}+5^{2}}}=43.46 \mathrm{~A} \quad \mathrm{M}_{\mathrm{i}, \text { satart }}=\frac{3 \cdot \mathrm{~V}_{1, \mathrm{Y}}{ }^{2} \cdot \frac{\mathrm{R}_{2}{ }^{\prime}}{1}}{\frac{2 \pi}{60} \cdot \mathrm{n}_{0}\left[\left(\mathrm{R}_{1}+\frac{\mathrm{R}_{2}{ }^{\prime}}{1}\right)^{2}+\left(\mathrm{X}_{1, s c}\right)^{2}\right]}=28.86 \mathrm{Nm}$
c) $R_{2 \text { new }}{ }^{\prime}=R_{2}{ }^{\prime}+R_{\text {add }}=5.1 \Omega$

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES

Other Types of Electrical Machines

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES

CONTENTS LIST:

- Brushed DC machines (DC)
- Brushless DC machines (BLDC)
- Permanent Magnet Synchronous machines (PMSM)
- Switched reluctance machines (SRM)

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES BRUSHED DC MACHINES

Brushed DC machines consists of :

- An electromagnetic or permanent magnetic structure called field or stator which is static
- An armature or rotor which rotates
- The Field produces a magnetic field
- The Armature produces voltage and torque under the action of the magnetic field

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES BRUSHED DC MACHINES

The stator or field

Two types of stators:

1) Permanent magnet stator
2) Wound stator

- The field winding takes the form of a concentric coil wound around the main poles.
- Field windings carry the excitation current and produce the main field in the machine.
- Poles are created electromagnetically.

4-poles wound stator (field)

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES BRUSHED DC MACHINES

The stator or field

迬

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES BRUSHED DC MACHINES

Armature reaction

- The current flowing in the armature conductors also creates a magnetic field that distorts and weakens the flux coming from the stator poles.
- Under no-load conditions, the small current flowing in the armature does not appreciably affect the flux coming from the stator poles (Fig. 1).
- When the armature carries its normal current, it produces a strong magnetic field which, if it acted alone, would create a flux as in Fig. 2.
- Fig. 3 shows the resulting flux.

Fig. 1 Motor running at no-load.

Fig. 2 Flux due to the armature current when running at full load

Fig. 3 Resulting flux when running at full load

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES BRUSHED DC MACHINES

Commuting stators poles

- Narrow poles placed between the main poles
- Counter the effect of armature reaction by developing a magnetic field opposite to the B field of the armature.
- Applied in medium- and large-power dc motors
- Commutation is greatly improved

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES BRUSHED DC MACHINES

The armature winding

Section of the motor

Rotor or armature winding

- Armature winding is made of coils which are wound into open slots lowered on the armature.
- They generate a magnetic field that interacts with the B field of the stator, generating a pull.
- The coils are prevented from flying out due to the centrifugal forces by means of bands of steel wire on the surface of the rotor in small groves cut into it.
- The end portion of the windings are taped at the free end and bound to the winding carrier ring of the armature at the commutator end.

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES BRUSHED DC MACHINES

The commutator

- It is a key element of the DC machines
- Consists of copper segments tightly fastened together with mica insulating separators on an insulated base.
- Each commutator segment is provided with a 'riser' where the ends of the armature coils get connected.
- The surface of the commutator is machined and surface is made concentric with the shaft and the current collecting brushes rest on the same.

The commutator 268

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES BRUSHED DC MACHINES

Brushes

- Brushes rest on the surface of the commutator.
- Electro-graphite is used as brush material.
- The hardness of the graphite brush is selected to be lower than that of the commutator.
- More number of relatively smaller width brushes are preferred in place of large broad brushes.

- The brush holders provide slots for the brushes to be placed.
- Brushes cause wear, thus reducing the expected life of the machine!!

Brush holders

- Brush holders provide slots for the brushes to be placed.
- Brush holders ensure that the carbon brush is retained in a defined position to establish the electrical contact with the rotating part of the machine.
- It is decisively important to ensure optimum, uniform brush pressure over the entire wear path of the carbon brush.

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES BRUSHED DC MACHINES

Magnetic flux Φ

1) $\Phi=\Phi_{0}$
2) $\Phi=\Phi_{0} \cdot \sin 45^{\circ}$
3) $\Phi=0$
4) $\Phi=-\Phi_{0} \cdot \sin 45^{\circ}$
5) $\Phi=-\Phi_{0}$

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES BRUSHED DC MACHINES

Operation of the commutator

- The commutator acts as a mechanical rectifier.
- The e.m.f. induced in each coil is a sinwave.
- The voltage between the brushes is a rectified sinwave.

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES BRUSHED DC MACHINES

Operation as motor and generator

©2007 YesPelletier (http://web.ncf.ca/ch865)

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES BRUSHED DC MACHINES

http://en.wikipedia.org/wiki/Brushed_DC_electric_motor

When the coil is powered, a magnetic field is generated around the armature. The left side of the armature is pushed away from the left magnet and drawn toward the right, causing rotation.

The armature continues to rotate.

When the armature becomes horizontally aligned, the commutator reverses the direction of current through the coil, reversing the magnetic field. The process then repeats.

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES BRUSHED DC MACHINES

Armature and field connection

Shunt connection

Series connection

Compound connection
$\mathrm{f}=$ field coil M : armature

Basic equations

$$
\left\{\begin{array}{l}
E=K \cdot \omega \cdot \Phi \\
T_{i}=K \cdot I \cdot \Phi \\
P_{i(e)}=P_{i(m)}
\end{array} \Rightarrow E \cdot I_{i}=T_{i} \cdot \omega\right.
$$

K: constructive machine constant
ω : angular speed in rad/s
Ф: magnetic flux
I: armature current
T_{i} : torque
E: e.m.f.

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES BRUSHLESS DC MACHINES (BLDC motors)

- Brushless DC motors (BLDC motors) are synchronous electric motors powered by direct-current (DC).
- BLDC motors do not use brushes for commutation; instead, they are electronically commutated.
- The current-to-torque and voltage-to-speed relationships of BLDC motors are linear.
- BLDC motors have fixed permanent magnets on the rotor and possibly more poles on the stator than the rotor.
- Without the use of an electronic converter they can not rotate.

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES BRUSHLESS DC MACHINES (BLDC motors)

BLDC motors have many advantages over brushed DC motors and IM:

- Better speed versus torque characteristics
- High dynamic response
- High efficiency
- Long operating life (brushes and commutator limit life)
- Noiseless operation
- Higher speed ranges (brushes limit speed)
- High torque to size ratio and power to size ratios, making it useful in applications where space and weight are critical factors.

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES BRUSHLESS DC MACHINES (BLDC motors)

Additional advantages compared to brushed DC motors and IM:

- BLDC motors require less maintenance, so they have a longer life
- BLDC motors produce more output power per frame size
- Because the rotor is made of permanent magnets, the rotor inertia is less, compared with other types of motors. This improves acceleration and deceleration characteristics, shortening operating cycles.
- Speed regulation is easier because of their linear speed/torque characteristics.
- With brushless motors, brush inspection is eliminated, making them ideal for limited access areas and applications where servicing is difficult.
- BLDC motors operate much more quietly than brushed DC motors, reducing Electromagnetic Interference (EMI).
- Low-voltage models are ideal for battery operation, portable equipment or medical applications.

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES
 BRUSHLESS DC MACHINES (BLDC motors)

BLDC motors are used in industries such as

- Appliances
- Automotive
- Aerospace
- Consumer
- Medical
- Industrial Automation
- Equipment and Instrumentation
- Forty-eight volts, or less voltage rated motors are used in automotive, robotics, small arm movements and so on. Motors with 100 volts, or higher ratings, are used in appliances, automation and in industrial applications.

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES BRUSHLESS DC MACHINES (BLDC motors)

Stator of a BLDC

- Consists of stacked steel laminations with windings placed in the slots that are axially cut along the inner periphery
- Traditionally, the stator resembles that of an IM; however, the windings are distributed in a different manner.
- Most BLDC motors have three stator windings connected in star fashion. Each of these windings are distributed over the stator periphery to form an even numbers of poles.
- There are two types of stator windings variants: trapezoidal and sinusoidal motors.
- Stator windings are single-phase, 2phase and 3 -phase. Out of these, 3phase motors are the most popular and widely used.

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES BRUSHLESS DC MACHINES (BLDC motors)

Stator of a BLDC

TRAPEZOIDAL BACK EMF

- The trapezoidal motor gives a back EMF an phase currents in trapezoidal fashion and the sinusoidal motor's back EMF and currents are sinusoidal.
- The torque output of a sinusoidal motor is smoother than that of a trapezoidal motor.
- However, sinusoidal motors have an extra cost, as they take extra winding interconnections because of the coils distribution on the stator periphery, thereby increasing the copper intake by the stator windings.

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES BRUSHLESS DC MACHINES (BLDC motors)

Rotor of a BLDC

- The rotor is made of permanent magnet and can vary from 2 to 8 pole pairs with alternate North and South poles.
- Traditional magnets are made of ferrita (low cost and low flux density for a given volume)
- Rare earth alloy magnets (Nd, SmCo, NdFeB) are gaining popularity because of their high magnetic density per volume and enables the rotor to compress further for the same torque. Also, these alloy magnets improve the size-to-weight ratio and give higher torque for the same size motor using ferrite magnets.

Circular core with magnets on the periphery

Circular core with rectangular magnets embedded in the rotor

Circular core with rectangular magnets inserted into the rotor core

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES BRUSHLESS DC MACHINES (BLDC motors)

Hall sensors

- Unlike a brushed DC motor, the commutation of a BLDC motor is controlled electronically. To rotate the BLDC motor, the stator windings should be energized in a sequence.
- It is important to know the rotor position in order to decide which winding will be energized following the energizing sequence.
- Rotor position is sensed using three Hall effect sensors embedded into the stator on the non-driving end of the motor.
- Whenever the rotor magnetic poles pass near the Hall sensors, they give a high or low signal, indicating the N or S pole is passing near the sensors. Based on the combination of these signals, the exact sequence of commutation can be determined.

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES BRUSHLESS DC MACHINES (BLDC motors)

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES PERMANENT MAGNET SYNCHRONOUS MACHINES (PMSM)

PMSM main features

PMSMs are very accepted in high-performance applications due to:

- High power density
- Precise torque control
- High torque to current ratio
- Maximum power and torque density: COMPACTNESS
- High efficiency
- Low noise emissions
- Robustness
- High reliability

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES
 PERMANENT MAGNET SYNCHRONOUS MACHINES (PMSM)

PMSM main features

- PMSMs are synchronous machines. It means that both, stator and rotor magnetic fields rotates exactly at the same speed (slip =0).
- While the excitation current waveform was rectangular with a BLDC, sinusoidal excitation is used with PMSMs, which eliminates the torque ripple caused by the commutation.
- The construction of a PMSM does not differ from that of the BLDC, although distributed windings are more often used.
- PMSMs are typically fed by voltage source inverters, which allow controlling both speed and output torque.
- PMSM can be realized with either embedded or surface magnets on the rotor. The location of the magnets has a significant effect on the motor's characteristics.
- As in the case of BLDC motors, a position sensor is also required.

PMSM

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES PERMANENT MAGNET SYNCHRONOUS MACHINES (PMSM)

The stator

- The stator is made usually of distributed three-phase windings. Small motors have concentrated windings.
- Three-phase sinusoidal excitation is applied by means of a voltage source inverter.

Stator of a PMSM

Stator of a SPMSM with 3-poles pairs 286

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES

PERMANENT MAGNET SYNCHRONOUS MACHINES (PMSM)

The rotor

- As in the BLDC motors, the rotor is made of electrical steel laminations and permanent magnets (Nd, SmCo, NdFeB).
- PMSM can be realized with either embedded or surface magnets on the rotor. The location of the magnets has a significant effect on the motor's characteristics.

Non-salient surface magnet rotor Salient pole surface magnet rotor
Embedded magnets in the rotor

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES SWITCHED RELUCTANCE MACHINES (SRM)

- Magnetic reluctance is analogous to resistance in an electrical circuit.
- An electric field causes an electric current to follow the path of least resistance.
- A magnetic field causes magnetic flux to follow the path of least magnetic reluctance.

3-phase SRM with topology $12 / 8$
w.fleadh.co.uk/srm.htm

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES SWITCHED RELUCTANCE MACHINES (SRM)

- Magnetic reluctance is analogous to resistance in an electrical circuit.
- An electric field causes an electric current to follow the path of least resistance.
- A magnetic field causes magnetic flux to follow the path of least magnetic reluctance.
- The force that attracts iron or steel to permanent magnets follows the minimum reluctance path. Reluctance is minimized when the magnet and metal come into physical contact.

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES
 SWITCHED RELUCTANCE MACHINES (SRM)

Electrical machines can be classified into two categories on the basis of how they produce torque:

Electromagnetic torque

- Motion is produced by the interaction of two magnetic fields, one generated by the stator and the other by the rotor.
- Two magnetic fields, mutually coupled, produce an electromagnetic torque tending to bring the fields into alignment.
- Some of the familiar ways of generating these fields are through energized windings, with permanent magnets, and through induced electrical currents.

Variable reluctance torque

- Motion is produced as a result of the variable reluctance in the air gap between the rotor and the stator.
- When a stator winding is energized, producing a single magnetic field, reluctance torque is produced by the tendency of the rotor to move to its minimum reluctance position.

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES SWITCHED RELUCTANCE MACHINES (SRM)

The stator

- The stator is made usually of DC windings conforming three-phase or four-phase arrangements.
- DC excitation is applied and an electronic bridge is applied to properly feed the adequate phase.

The rotor

- The rotor contains no conductors or permanent magnets.
- It consists simply of steel laminations stacked onto a shaft.

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES
 SWITCHED RELUCTANCE MACHINES (SRM)

Principle of operation

- As current is passed through one of the stator windings, torque is generated by the tendency of the rotor to align with the excited stator pole.
- The direction of torque generated is function of the rotor position with respect

2-phase,
4 rotor poles $/ 2$ stator poles to the energized phase, and is independent of the direction of current flow through the phase winding.

- Continuous torque can be produced by intelligently synchronizing each phase's excitation with the rotor position.
- Many different SRM geometries can be realized by varying the number of phases, the number of stator poles, and the number of rotor poles,

4-phase,
8 rotor poles/ 6 stator poles
(b)

5-phase,
10 rotor poles/8 stator poles

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES SWITCHED RELUCTANCE MACHINES (SRM)

3-phase SRM with topology 6/4

3-phase SRM with topology 12/8

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES SWITCHED RELUCTANCE MACHINES (SRM)

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES SWITCHED RELUCTANCE MACHINES (SRM)

Advantages

- In construction, the SRM is the simplest of all electrical machines.
- Only the stator has windings.
- Because of the lack of conductors or magnets on the rotor, very high speeds can be achieved.
- Low cost
- Mechanical simplicity!! -> Rugged

Limitations

- Like the BLDC and PMSM motors, SRMs can not run directly from a DC bus or an $A C$ line. It must always be electronically commutated.
- The saliency of the stator and rotor, necessary for the machine to produce reluctance torque, causes strong non-linear magnetic characteristics, complicating the analysis and control of the SRM.
- SRMs are difficult to control and require a shaft position sensor to operate.
- They tend to be noisy.
- SRMs have more torque ripple than other types of motors.

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES SWITCHED RELUCTANCE MACHINES (SRM)

Torque ripple

- Generally, increasing the number of SRM phases reduces the torque ripple
- More phases require more electronics. Cost increase.
- At least two phases are required to guarantee starting.
- At least three phases are required to ensure the starting direction.

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES SWITCHED RELUCTANCE MACHINES (SRM)

Torque-Speed Characteristics

- The torque-speed operating point of an SRM is determined almost entirely by the control.
- This is one of the features that makes the SRM an attractive solution.
- The envelope of operating possibilities, is limited by physical constraints such as the supply voltage and the allowable temperature rise of the motor under increasing load.
- Like other motors, torque is limited by maximum allowed current, and speed by the available bus voltage.

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES SWITCHED RELUCTANCE MACHINES (SRM)

Position sensor

Shaft position information is provided using a slotted disk connected to the rotor shaft and three opto-couplers mounted to the stator housing.

Switched Reluctance Motor Control - Basic Operation and Example Using

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES SWITCHED RELUCTANCE MACHINES (SRM)

Position sensor

Optointerruptores

Disco ranurado cilíndrico
SRM Shaft Position Sensor

Disco ranurado plano

Unit 6. OTHER TYPES OF ELECTRICAL MACHINES SWITCHED RELUCTANCE MACHINES (SRM)

Electronic converter

[^0]: For usual values of $\varepsilon_{s c}(5-10 \%)$ it results $I_{\text {1acc sc }}=10-20 I_{1 n}$

