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Abstract

The mechanical response in service of a component is mainly determined by its elastic behaviour.
Traditionally, metallic materials have been characterized by means of tensile tests, even in the case
of sintered ones. In this condition, the elasticity of sintered parts has been always supposed to be
linear, with a Young modulus dependent on the density. However, no attention has received the
elastic behaviour under compressive stresses.

In this work, the authors present the results obtained from cyclic uniaxial compression tests applied
on sintered metallic samples with different densities. The elastic behaviour under compression is no
longer linear and different mechanisms occur during the deformation process. Assuming a power
law relating compressive stress and strain, an elastic modulus dependent on the density and the
loading path has been obtained.

Introduction

Elastic properties determine the mechanical behaviour of structural components, in spite of that the
elastic behaviour of porous sintered materials are worst known and understood than when they are
fully dense. However, it is well known that porosity markedly reduces the elastic modulus, and that
the decrease is roughly proportional to porosity content up to values between 15 and 20%. The
Young's modulus has been measured in tension for a wide range of materials made from metal and
ceramic powders [1,2,3]. Nevertheless, very few data are available for the elastic modulus in
compression probably because it is assumed that its behaviour should be similar to that of tension.
However, the mechanical response of porous materials to tensile or compressive loading can be
very different. Tensile loads are supported by the welded necks among particles, but under
compressive loads pore closing can take place increasing the practical load bearing area. Therefore,
the tensile and compressive elastic behaviour of porous materials can be appreciably different.

The object of the present work has been to study the elastic behaviour of porous steels under
compressive stresses, taken also into account the effect of the amount of porosity present in the
specimens.



Experimental technique

The metal powder used in this work was the DISTALOY AE; an alloyed iron-based atomised
powder manufactured by Hoganas with the chemical composition shown in Table 1.

Table 1.- Chemical composition of the DISTALOY AE.
Nickel Copper Molybdenum Iron
4% 1.5% 0.5% 94%

The compacted material contained a 98.5% of the type of powder above defined, 1% of Acrawax as
a lubricant and 0.5% of graphite in order to obtain the adequate strength after sintering.

Samples were of cylindrical shape with a diameter of 10 mm and a height of 15 mm; they were die
compacted to five different densities: 5.42, 5.96, 6.69, 6.92 and 7.08 Mg/m® and sintered at 1050°C
during 30 minutes.

Cyclic uniaxial compression tests were done using an Instron 5585 universal tests equipment. Axial
strain, &,x, was measured by monitoring the displacement of the movable crosshead of the testing
machine, whereas for the radial strain, &, a diametrical extensometer was used. The volumetric
strain, &, has been calculated by means of using the following expression:

caxt 26 =& 1)
During the cycling the axial load is increased by a fixed amount in each cycle; in this way the
unloading part of a cycle can be considered as elastic; however in the following reloading the
sample will behave elastically only up to the load level reached in the previous cycle.

Experimental results and discussion

The type of curves obtained when the applied axial true stress, o, is represented as a function of &xx

and &, are shown in Figs.1 and 2 for the case of a sample compacted to a density of 6.69 Mg/m?®.
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These plots show the existence of an initial short foot (region I) in which plastic densification takes
place, followed by a stage of mainly elastic deformation (region II), and a final part of intense
plastic strain (region Il1) of the specimen which leads to its failure by plastic instability. Similar
curves were obtained for the other densities under study.

An important feature of the elastic loading-unloading cycles that can be observed in the above
figures is the non-linear dependence between the applied true stress and the axial and volumetric
true strains. This is even more clearly shown in Figs. 3 to 6 where the elastic part of the loading
cycles in Figs. 1 and 2 and their subsequent unloadings are all represented after having been shifted
to the origin of coordinates.
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The elastic behaviour under compression differs from that observed during the unloading part of the
test. Figures 3 to 6 reflect this feature, which can be better analysed when a double logarithmic
representation of both axial, &4, and volumetric, &', elastic deformations is used. The following
graphs present the results corresponding to the elastic part of the loadings (Figs. 7 and 8) and to the
unloadings (Figs. 9 and 10).
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Most of the real sintered metallic compacts can be considered to be interpenetrating networks of
metal and void. As the amount of porosity increases the void network increases at the expense of
the metal network [2]. According to [4], at low porosity levels the pores are all closed, the first open
pores being measured at about 6% of total porosity. At porosity levels greater than 13-14% the
pores are almost completely interconnected. The specimens tested for the present work have
porosities in the range of 8 to 30%; therefore, their pore structure will be mainly constituted by
irregularly distributed, irregularly shaped, interconnected voids; all these features affect the
mechanical response of sintered parts.

Schematic curves in Figs 11 and 12 show clear differences in the values of their slopes; this is due
to the fact that different mechanisms are governing each stage of the deformation.

During the first stages of the compression test, pore closing dominates the deformation of the
material; the contact between the original particles, the necks, increase, and a model of the type of
that defined by Hertz [5] would be adequate to describe the elastic behaviour of this material; a
power law (o= K {£'}") with an exponent, n, of about 1.5 is fulfilled by all the experimental results
(Figs. 3, 4 and scheme 11). In the stage of the highest compressive stresses the pores are closed and
the linear elasticity of the metallic material is the main mechanism governing the mechanical
behaviour; therefore, the part of the curve in Fig. 11, which corresponds to high stresses, has a slope
of 1.

The unloading part (Fig. 5, 6 and scheme 12) of the test is characterized by, first of all, a pore
opening process. Again, the slope of the logarithmic stress-strain curve is about 1.5, as in the elastic
contact between particles occur; after being the pores open, the elastic strain of the metallic skeleton
is the phenomenon controlling the deformation of sintered metallic pieces. The slope of the stress-
strain relationship in the logarithmic space is in this case equal to 1.

According to the already presented experimental data (Figs. 3 to 10), a power law of the type of:

ax = K(ss'xjn @)

describe rather well the elasticity of the sintered material during its unloading after compression. In
this equation, o= is the applied compressive true stress; &', the axial elastic true strain, and K and
n are two parameters of the material.

In this case, an elastic modulus, E, can be derived from (2):

n-1
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In order to determine the value of E, a yield stress dependent on the density has been defined as the
stress with an axial plastic strain of 0.03 (see Fig. 1); the values of K and n have been those
measured in this yield state. The results obtained are represented in Fig. 13 as the evolution of the
elastic modulus, E, against the applied stress corresponding to different densities.
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Fia. 13.- Evolution of the elastic modulus in compressive states.

Conclusions

1. The elastic behaviour in compressive states of sintered metallic parts is, in general, non-
linear and characterised by different mechanisms of deformation.

2. The amount of porosity and the shape and interconnectivity of pores are responsible for the
complex elasticity showed by these materials.

3. Assuming a power law to model the elastic strain of sintered metallic compacts, an elastic
modulus dependent on the density and the loading path can be obtained.

4. Further research is needed to reach a better understanding of the mechanical behaviour
under compressive stresses of powder sintered materials.
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