Bol. Soc. Esp. Mat. Apl.
n°51(2010), 55-63

PLANAR BIMODAL PIECEWISE LINEAR SYSTEMS.
BIFURCATION DIAGRAMS

J. FERRER, M. D. MAGRET, J. R. PACHA AND M. PENA

Dept. de Matematica Aplicada I, UPC
Av. Diagonal, 647 08028, Barcelona

{josep.ferrer,m.dolors.magret, juan.ramon.pacha,marta.penya}Qupc.edu

Abstract

The set of planar bimodal linear control systems is partitioned into
a finite number of differentiable strata, each of them consisting of
those systems having canonical forms (for the equivalence relation which
corresponds to admissible changes of basis) differing only in the values
of the continuous invariants. Bifurcation diagrams with regard to this
stratification are derived.
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1 Introduction

Piecewise linear systems have attracted the interest of researchers because of
their interesting dynamical properties and the wide range of applications. The
most common piecewise linear systems found in practice are in two or three
dimensions. See for example [3], [4], [5].

In this paper, we tackle bifurcation diagrams for planar bimodal piecewise
control systems. We consider 2D control linear systems acting on comple-
mentary half-planes and the equivalence relation defined by basis changes,
preserving continuity along a given line (“admissible basis changes”). As
the set of equivalence classes is not locally finite, we consider the union of
equivalence classes differing only in the continuous invariants in the canonical
form under this equivalence relation found in [6]. There are a finite number of
sets in this partition, each of them is proved to be a differentiable manifold,
therefore constitutes a finite stratification of the space of systems. This is the
starting point to obtain bifurcation diagrams, with regard to this classification.
Moreover, canonical forms can be applied to study controllability and other
dynamical properties in each stratum.

In section 2, we state the definitions of bimodal piecewise linear systems and
admissible basis changes. In section 3, we recall the canonical forms for order
two bimodal systems. In section 4, we stratify the set of triples of matrices
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defining order two bimodal systems. Finally, in section 5, we show a bifurcation
diagram.

Throughout the paper, R will denote the set of real numbers, M, xm (R)
the set of matrices with m rows and n columns (in the particular case where
m = n we will denote the set simply by M,,(R)), Gi,,(R) the set of all invertible
matrices in M, (R) and by(eq,...,e,) the natural basis of the Euclidian space
R™.

2 Bimodal Piecewise Linear Systems

Bimodal piecewise linear systems consist of two linear dynamics acting on
each side of a given hyperplane. Most of elementary non-linear circuits found
in practice may be modeled with two linear regions separated by parallel
boundaries hyperplanes, with two or three state variables. See [3], [4], [7],
[8], where different topics about these systems are studied.

Bimodal (piecewise) linear systems can be defined by two control linear
systems:

&(t) = Aiz(t) + B, i y(t) <0, &(t) = Asx(t) + Ba,

y(t) = Ca(t), y(t) = Ca(t),
where Al,AQ S MR(R), Bi,By; € Mnxl(R)a C € Man(R), being the
dynamics continuous along a separating hyperplane Cx = 0 for some matrix
C € Mixn(R). For simplicity, we will consider C' = (1 0...0) € M;x,(R) and
that the dynamics is continuous along the hyperplane H = {& € R" : Cx = 0},
and hence: H = {x € R" : 21 = 0}.

Then continuity along H is equivalent to:

BQ :Bl, Azei :Alei, 2§Z§Tl

if y(t)=0

We will simply write B = B; = By. Thus any bimodal piecewise linear
system can be defined by a triple of matrices (A7, A2, B), where Ay, A differ
only in the first column.

Notation Throughout the paper, X will denote the set of triples of matrices
defining bimodal piecewise linear systems,

X = {(Al,AQ,B) S Mn(R) X Mn(R) X Mnxl(R) | Agei = Alei, 2<i< TL}
which is obviously a differentiable manifold (of dimension n* + 2n).

As in [6], we consider basis changes preserving the hiperplanes x;(t) = k in
order to allow the results below to be also applied in the cases where a separating
hyperplane z1(t) = J, § # 0, are considered (see, for example, [3]).

Definition 1 Basis changes in the state variables space preserving the
hyperplanes x1(t) = k will be called admissible basis changes. Thus, they are
basis changes given by a matriz S € Gl,,(R),

10
sz(U T), T € Gl_1(R).
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Let us denote by S the Lie subgroup of Gl,,(R)

S = {SG GZR(R)‘S: ( [1] ;) TeGln_l(]R)}

We consider the equivalence relation in the set of matrices X which corresponds
to admissible basis changes.

Definition 2 Two triples of matrices (A1, As, B), (A1, A9, B’) € X are said
to be equivalent if there exists a matriz S € S (representing an admissible basis
change) such that (A'1, A’5, B') = (S71A1S,5 1455, S 1B).

This equivalence relation partitions X into finer equivalence classes than the
similarity equivalence relation.

3 Canonical forms for n =2

A canonical form is a representative in each equivalence class which is easier to
deal with, and therefore calculations become simpler using it. In [3], canonical
forms were obtained, assuming observability. In [6] canonical forms in the non-
observable case are obtained, in the case where the observability matrix of the
system rank equal to n — 1. In particular, in the case n = 2 these canonical
forms and the matrices S which correspond to admissible basis changes are
listed below. We will use (CFN), N =1,2,... to label them.
Let us consider a triple of matrices defining an order two bimodal system

(C ) 2) ()
az as )7\ 72 as )7\ b2 '
Let us assume that the system is observable (a3 # 0). Then (see [3]),

the corresponding canonical forms A{, A5, B¢ for the matrices A;, Az and B
respectively, are:

e Case 0: ag # 0,

A — a1+ aq 1 _ tr Ay 1
L= asa3 — 104 0 o det A1 0 ’
AS — Y1+ ag 1 _ tr AQ 1
g azye —asyr 0 det A, 0 )7’

c _ by o 1 0
B_(a3bz—a4b1)’s_(g_§ aLg) (CF1)

From now on, we will assume that the system is unobservable: az = 0. We
distinguish several cases.

e Case 1: a3 =0, a1 # a4,71 # a4.
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aa—=1 a2b1

— 2
G as —ay

c_ (a1 0 c_ [N 0 c __ bl .
= a) = 0) = (0),

*If’yg:ag :0,

1
Sz(_ as ?),foranyt;éo. (CF2)
aq—ai
— If 7y = ap P22 by + 20 £ 0,
e (a1 O e _(m O c _ by .
Al—(o CL4),A2_<O CL4),B —<1 )
1 0
S:< " u ) (CF3)
_a4—2a1 b2 + bl a4—2a1
- If Y2 7& a2 31:317
by
0 Y1 0 a
Ai:(al >’ 52( )’BCZ b2+bla43a1 )
0 a4 Loa raaa ik
1 0
S = a au— . CF4
<_ a4—2a1 72 - a2 ai—Zi) ( )
e Case 2: a3 =0, a; = aq, 71 # a4.
— Tfay = 0,by + 2% =0,
e (a4 0 c__ [N 0 c __ by .
oy 2) (3 2)or- )
1
S = (_ Y ?) for any t # 0. (CF5)
as—"1
7Ifa2:0,b2+%7b;1#07
e fas O c_(m O c_ (b1,
(i )3 2)- ()
1 0
S = . CF6
(_ a4’Y—2’Yl b2 + bl a4’Y—2’Y1 ) ( )
—IfCLQ?éO,
ay 0 c 7 0 c b
AS = 5 — 7B = )
= (0 =00 = (i
1 0
s;( ) (CF7)
_a4’y—2'y1 a2
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e Case 3: a3 =0, a1 # a4,71 = aq.

- If’yg ZO,bg 20,
c_ [O1 0 c __ [04 0 c b1 .
(0 a) (0 = (6):
1 0
S = (_ as t) , for any t # 0. (CF8)
aqg—aq
— Ifag =0,b2 7&0,
c__ [ 0 c__ [Q4 0 c _ bl
ai= (3 a) = (8 0) e = (1),
1 0
= a . F
° (— py— b2> (CE9)
- If a 75 0,
AC — aq 0 AC a4 0 B¢ — bl
P70 ag)” 72 1 ag)’ B ,Y%{bg-i-blaf_zal} '
S = ( 1a2 O) . (CF10)
T aa—a 12

e Case 4: a3 =0, a1 = a4 = 1.

fIfaQ:O,A/g:O,bl#O,
0 c __ [04 0 c b1 .
o) = (5 0) - (6)
(t)) for any ¢ # 0. (CF11)
—IfCLQ:O,’YQ:O,bl:O,bQ:O,
e fas O e fas O A
A= n) = (6 0) =)
1 0
S:(u t>’ for any t#0,u. (CF12)

- IfCLQZO,'YQ:O,bl:O,bQ?éO,

c_ [Q4 0 c_ (a4 0 c _ 0 .
= )= 0) o =)

1 0
S = (u b2> for any w. (CF13)



60 J. Ferrer, M. D. Magret, J. R. Pacha, M. Pefia

- Ifa2:05727é07b17é07

e fas O . ag O c b1

ai= (5 w)o = (3 0) = (5):
1 0

S = . CF14
(2—? 72) ()

S = <1 0) for any w. (CF15)
72

1 0
S = . CF16
(& =) .
— Ifay #0,b =0,
c _ a4 0 c a4 0 c 0 .
() =3 ) =)
1 0
S = < w as ) , for any u. (CF17)

4 Stratification

A finite partition of the differentiable manifold X may be deduced from that in
equivalence classes: consider the sets consisting of all equivalence classes with
canonical forms of the “same type”, but with different values for the parameters.
The sets thus obtained are disjoint sets and, as we will show, differentiable
manifolds. Therefore, they constitute a stratification of X

In order to use Arnold’s techniques (see [1]), the starting point is that
equivalence classes are the orbits of the Lie group action of § on X defined
by a(S, (Al,Ag, B)) = (SilAlS, SilAQS, SilB).

Given (A4, Az, B) € X, we will denote by O(A1, Az, B) its orbit and consider
the partition of X into sets, each of them corresponding to the union of orbits or
equivalence classes having associated a canonical form of the same type; namely,
F is the set of all triples of matrices having canonical form of type CF1, E,
the set of all those having canonical form of type CF2, and so on. Note that
these orbits are differentiable manifolds (see [9]).

Theorem 1 The sets E;, i =1,...,17 are differentiable manifolds.
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Proof. E;, i # 2,5,8 are open sets of linear varieties. Fs, F5 and Eg are
defined by quadratic equations, giving rise to implicit manifolds with no singular
points. Thus they all are differentiable manifolds. O

17
Corollary 2 X = <U E1> is a finite stratification of X.
i=1

Proof. Clearly, these sets are disjoint sets and constitute a partition of X.
From Theorem 1 they are differentiable manifolds, thus a stratification of X.
O

Next Table shows the dimensions of the strata above.

Stratum | Dimension | Stratum | Dimension | Stratum | Dimension
FEq 8 FEs 5 FE3 6
Ey 7 Esx 5 FEg 5
E; 6 Ex 5 Ey 4
E1o 6 L 3 Eia 1
E3 3 By 4 Eis 3
Eng 5 By 4

5 Bifurcation diagrams
A bifurcation diagram of a family of bimodal systems,
AR — M, (R) x M, (R) x M,x1(R)

is a partition of the parameter space R? according to the canonical form of the
triple of matrices, and induced by the stratification which was given in Section 4.
In particular, this stratification provides the information about which canonical
forms are near each other in the sense of local perturbations.

Let us show as an example about how a bifurcation diagram may be
obtained.

Example 1 Consider the triple of matrices ((? g) , <_12 g) , (_11)> and

the effect of a perturbation on it:

2 &1 1 &1 1
<( l4+ey 3+es ),< —9 34ey ),< 1 )), for small e1,e2,¢3.

If 1 = €9 = €3 = 0, we obtain the initial triple, which belongs to Eo. If
g1 =0, e3 # 0, we obtain a triple in Ey. If e1 = e3 =0, 5 # 0, we obtain a
triple in Fs. Finally, in the case where €1 # 0, we obtain a triple in F;.
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