
ALOE-based flexible LDPC decoder

Ismael Gomez, Massimo Camatel, Jordi Bracke,
Vuk Marojevic, Antoni Gelonch

Dept. of Signal Theory and Communications
Universitat Politecnica de Catalunya

Av. Canal Olímpic s/n 08860 Castelldefels, Spain
{ismael.gomez, massimo.camatel, jordi.bracke,

marojevic, antoni.gelonch}@tsc.upc.edu

Fabrizio Vacca, Guido Masera
Departamento di Elettronica

Politecnico di Torino
Corso Duca degli Abruzzi 24, Torino

{fabricio.vacca, guido.masera}@polito.it

Abstract—Radio communications terminals and infrastructure
tend to support an increasing range of algorithms and radio
access technologies. Flexible processing platforms are therefore
needed for supporting multi-standard or heterogeneous radios.
Channel decoding is one of the most computing demanding
digital signal processing blocks of a radio transceiver. At the
same time, it provides a high degree of implementation
flexibility as well as facilitates dynamic parameter
adjustments. This paper presents a flexible LDPC decoder
implemented on an FPGA device following the ALOE
middleware design paradigm. We analyse the middleware
efficiency in terms of flexibility versus resource requirements.
The results show a relative middleware area overhead of 32 %.

ALOE middleware, flexible LDPC, reconfigurable logic,
SDR

I. INTRODUCTION
The continuous improvements in the micro-electronic
technology have made conceivable the integration on the
same Integrated Circuit (IC) millions of MOS transistors
and logic gates. This makes possible the design of novel
integrated architecture with enhanced capabilities. These
augmented possibilities require novel design paradigms in
order to catch all of them, particularly the resorting to
flexible architectures able to easily adapt to different
applications and algorithms [1]. This evolution of digital
processing architectures in the direction of an increasing
level of flexibility is particularly evident in the field of
wireless communication systems. Since the number of radio
standards is growing very fast and the diversity among the
standards is also increasing, there is a need for a processing
solution capable of handling as many standards as possible.
In particular, the idea of software-defined radio (SDR)
implies the implementation, in the future, of flexible multi-
standard radios, supporting all these different standards,
with no degradation in terms of achievable data rate or
transmission reliability. Flexible platforms are necessary to
this purpose.
In this context, Multi-Processor System-on-Chip (MP-SoC)
architectures are being widely investigated these last years
in order to accommodate the increasing throughput and

flexibility requirements of emerging wireless
communication standards.
Among the several functionalities specified in wireless
communication standards, one of the most demanding
operations is channel decoding, which contributes at least 40
% to the total computational complexity of the physical
layer of a wireless system. Each new wireless standard
typically increases the data rate, while keeping low the
occurrence of errors in the transmissions. Moreover,
depending on some external conditions, each standard
provides different profiles. Thus, an integrated circuit
designed for telecommunication purposes has to exploit a
certain degree of flexibility in order to tackle all these
profiles. More flexible architectures can have also support
for future out-coming standards.
In this context, the present work proposes and evaluates a
new fully flexible solution for the implementation of multi-
standard and multi-mode channel iterative decoder
supporting generic Low-Density-Parity-Check (LDPC)
codes [2]. These codes are able to achieve high
performances in terms of bit error rate (BER) although they
have very high computing requirements at the receiver side.
At present, several applications, such as the digital satellite
broadcasting system (DVB-S2), Wireless Local Area
Network (IEEE 802.11n) and Metropolitan Area Network
(802.16e) incorporated them.
In MP-SoC architectures for iterative decoders, several
independent data blocks can be simultaneously decoded on
different processors. In addition to node computational
capabilities, an interconnect structure is necessary to support
the iterative message exchange among variable and check
nodes. In this context, Network-on-Chip (NoC) has recently
emerged as a new paradigm [3] allowing coping with these
major design issues, and more particularly with the on-chip
interconnection needs. Efficient MP-SoC architectures
assume heterogeneous processing elements (PE). Therefore
it is necessary to define an optimum mapping of tasks to the
set of PE maximizing computation efficiency [4]. Moreover,
decoder throughput can be adapted in time balancing the
total amount of resources assigned to it. Due to the ability of
the decoder algorithm to be parallelized, the more PEs
assigned to it, the higher performance.

mailto:antoni.gelonch%7D@tsc.upc.edu

In addition, future flexible radios based on large MP-SoC
architectures must embrace platform-independent
component-based designs in order to maintain profitable
production costs. Operating Environments and Middleware
for SDR applications envisages as an efficient solution to
achieve the aforementioned run-time and design-time
flexibility.
The Abstraction Layer and Operating Environment (ALOE)
is an open source SDR framework with real-time computing
resource management capabilities [5]. The middleware
supports GPPs and DSPs through a lightweight static
memory implementation in C. A reduced version of ALOE
is also available in VHDL, supporting some of the
middleware services, and currently targeted for Virtex-5
FPGA devices. Therefore, ALOE provides a single interface
to manage processors and reconfigurable logic. The
middleware is capable to map waveform components to
processing devices on-line, as a function of real-time
deadlines [4].
This paper presents a flexible LDPC decoder architecture
based on the ALOE middleware for FPGAs. The decoder
exploits flexibility at all levels: design-time, as the
processing devices are designed without any target platform
knowledge; and run-time, because the decoder is able to
change the code without need to redesign the processing
devices or the interconnection network. The aim of the
project was never the performance or energy efficiency.
Conversely, it tries to prove the suitability of middleware to
increase global efficiency as well as to analyse its impact in
the performance, energy and area consumption. The
organization of the paper is as follows: next section presents
related work in flexible LDPC decoders; Section III presents
our decoder architecture based on the ALOE middleware;
Section IV explains how the system has been validated at
behavioural simulation level whereas Section V presents
area occupation and performance results. The paper ends
with some conclusions on the costs and benefits of
introducing ALOE in hardware devices.

II. RELATED WORK ON LDPC DECODERS
An LDPC code is a linear block code characterized by a
very sparse parity check matrix, H. From the behavioural
point of view, the decoding process can be divided in two
sets of tasks, associated to the N Variable Nodes (VNs)
related with the rows, which handle the codewords, and
M=N-K Check Nodes (CNs) (where K is the information
word size) , which implement the parity-check constraints,
that are related to the columns of the H matrix. Multiple
processing elements are normally allocated to execute these
node tasks.
LDPC codes can be represented in term of a bipartite graph,
called Tanner Graph. Such representation of error correcting
codes is very useful since their decoding algorithms can be
explained by the exchange of information along the edges of
these graphs. The VNs receive the intrinsic information λi
from the channel and update them depending on the results

of the parity check equations computed at the CNs; this
process is iterated several times until a converge criterion is
met. This algorithm is known as "Two Phase Message
Passing" (TPMP) or Belief Propagation Algorithm (BPA).

Usually, the more architecture flexibility the less
performance it can achieve, as internal structures are not
optimized to any specific application. A straightforward
approach to the implementation of a decoder for a single
LDPC code is to instantiate all nodes of the Tanner graph: a
fully parallel architecture is obtained, with the potential for
very high throughput [7], however routing congestions and
the lack of flexibility make this approach impractical. In
partially parallel architectures [8], the nodes of the Tanner’s
graph are processed in time multiplexed way by means of a
number of processing elements lower than the check or
variable nodes. The original two phase decoding has now
given way to the so called layered or shuffled decoding [9]
[10], which results in approximately two times faster
convergence of the algorithm. As partially parallel
architectures introduce a problem of conflicting accesses to
the memories containing the exchanged messages, a proper
network is required to connect processing elements and
memories. The complexity of this network basically
depends on the structure of the H matrix. Different
approaches have been investigated in [11], [12], [13] among
others.

 The requirements of very low error rate, very high
throughput and increased flexibility of the implementation,
can be better achieved by means of multiprocessor
architectures, or Multi-Processor System-on-Chip (MP-SoC)
architectures, the inherent parallelism of the iterative LDPC
decoding algorithms is exploited to efficiently partition the
decoding task. Application Specific Instruction set
Processors (ASIP) recently emerged as a promising solution
for the implementation of flexible decoders, capable to
greatly improve programmability, while still allowing high
throughput and efficiency, thanks to specialised processing
units. A recent example is given by the multi-mode decoder
architecture for convolutional and structured LDPC codes
presented in [14]. Another ASIP designed to decode
convolutional, turbo and LDPC codes is presented in [15].

Also for the MP-SoC implementation approach, a
network has to support the communication demands of the
different processors without degrading the throughput of the
overall system. Conventional on-chip buses become
inefficient in large systems and the nanotechnology
integration issues (propagation delay, crosstalk, etc.) make
their use impractical. In this context, Network-on-Chip
(NoC) has emerged as a new paradigm allowing coping with
these design issues. A NoC solves the problem of scalability,
facilitating the on-chip integration of several hundreds of
processing components.

A first attempt to design a NoC based LDPC decoder is
described in [16], which presents an architecture that
supports LDPC codes up to the size of 1024 variable nodes
at the cost of a high area occupation and power consumption.

Two NoCs for the decoding of generic LDPC codes are
discussed in [17], where a binary de Bruijn NoC with on-
line dynamic routing is presented and compared to a
communication structure called Zero-Overhead NoC with
offline static routing. This approach allows full flexibility,
optimises the FIFO sizes, and minimizes the network
latency.

III. DECODER ARCHITECTURE
The middleware based decoder proposed in this paper

accesses middleware services through an ALOE controller.
This controller corresponds to an Application Programming
Interface (API) of common operating systems: a standard
interface hides device-specific peculiarities. Therefore,
components can be ported from one device to another (or
from one memory section to another) without redesigning
them. The computing resource manager, the time reference
and the execution control management is centralized by the
ALOE managers. These elements, however, are executed
more efficiently on general-purpose processors; ALOE
permits to run managers in a Linux-PC.

For simplicity reasons current decoding processing
elements (PEs) incorporated, both, CNs and VNs processing
nodes building a homogeneous array of PEs. Nevertheless,
next step can potentially improve efficiency by
differentiating the PEs carrying out CN and VNs nodes,
setting up then a heterogeneous MP-SoC. Additionally, in
current version, control and management tasks are assigned
to the GPP (Linux) what in some sense assume the
emulation of a heterogeneous MP-SoC environment mixing
ASIPs, GPP and logic. The middleware offers the designer a
single interface to manage all kinds of PE.

PC + Linux

ALOE MANAGERS

ALOE
CTRL

ASIP 1

ALOE
CTRL

ASIP 2

ALOE
CTRL

ASIP 3

ALOE
CTRL

ASIP 4

Data

Control

Fig. 1. LDPC ALOE based Decoder

Since the aim of the work is not achieving certain
throughput, it is not necessary to compute the number of
required PE or the degree of parallelism attaining that
threshold. One ALOE controller is needed for each PE;
therefore, the degree of concurrency is irrelevant to the
relative overhead analysis. However, it is interesting to
prove the validity of the middleware in a relatively complex
scenario, hence we chose four concurrent PE. Fig. 1 depicts

the architecture of the decoder. It consists of four processing
elements (PEs), four ALOE controllers and one Linux-PC
running the software-based ALOE managers. Although the
network topology in the figure uses one interface for each
remote processor, ALOE abstracts the network topology and,
thus, supports any kind of network topology, for example,
shared channels.

A. Node Processor
A general distributed LDPC decoder assigns CN and VN

nodes to a set of processors. The throughput scales with the
number of processors (parallelism), in general. Our
architecture uses an Application-Specific Instruction-Set
Processor (ASIP) for the node processing. Typically, ASIPs
combine a general-purpose with an application-specific
instruction set. Therefore, although tailored for LDPC
decoding, other processing tasks can be accomplished. If the
ASIP is underutilized, the resource manager can map tasks
to it making a better use of the resource. Our
implementation, however, provides only a specific
instruction-set for LDPC decoding.
Several logic nodes (CNs and VNs) are assigned to each
physical processor. They receive messages from other
nodes, perform computations and send messages back. As
the decoder is not designed for a specific H matrix, each
message must carry the destination node index within the
data. The node’s physical location is not known to the
sender node; ALOE manages the routing of messages
through physical channels.
Besides the program memory, the processor accesses a set
of other data memory banks dedicated to several purposes.
The data in the memory defines the interconnection of CN
and VN nodes and hence specifies the LDPC code. During
the initialization phase, the ASIP retrieves from the ALOE
manager the contents of these memories determining the
operating code. The following memory banks are defined:
• VNi_mem contains the connections between each VN

node and the CN nodes and the data processed by the
VN. Each memory position, 32-bit wide, indicates the
pair of nodes (VN and CN, 12-bit each), the
information data (6-bit width) and the interface towards
the destination node PE (2-bit).

• CNi_mem is basically organized like VNi_mem, except
for the field order. (It contains the connections between
each CN node and the VN nodes with the R messages.)
The data field is filled with the R message produced by
CN to the VN.

• VN_to_CN_mem has the same format of VNi_mem. It
contains the Q messages received by the VNs from
other PEs to the CNs in the local PE.

• CN_to_VN_mem has the same format as CNi_mem but
containing the R messages.

• Input memory contains the input LLR data of VN nodes
(b-bits).

• Output memory contains the output LLR representing
the decoded data.

The purpose of having different memory banks instead of a
single one is because of the algorithm’s concurrent memory
accesses. Instead of accessing multiple offsets in sequential
cycles, the node computation is performed in a single cycle
and the data is concurrently read from multiple buses.
Regarding the processing logic, four specific instructions
are available:
• Create_VN performs the VN node computations. It

reads R messages from the CN_to_VN_mem and stores
Q messages in the VNi_mem;

• Send_VN delivers Q messages stored in the VNi_mem
to the network or, in case that the remote CN is in the
same PE, to the VN_to_CN_mem;

• Create_CN performs the CN node computations. It
reads Q messages from the VN_to_CN_mem and stores
R messages in the CNi_mem;

• Send_CN delivers R messages stored at the CNi_mem
to the network or, in the case where the remote VN is in
the same PE, to the CN_to_VN_mem.

B. ALOE Controller
Each ALOE controller can manage one or more waveform
components. A controller is necessary when an interface or
service needs to be abstracted. For example, one controller
suffices if the device has only one external interface.
Nevertheless, components can exploit NoC efficient routing,
placing an ALOE controller before each network node. Fig.
depicts the latter concept: several types of processing
devices coexist in the same environment─in this case, the
environment is a single silicon die. Processors with an
operating system run ALOE services as background tasks.
Conversely, single-threaded devices e.g. ASIPs without an
operating system or Dynamically Reconfigurable Areas
(DRA) interface ALOE through a parallel logic block. Note
how platform services─the NoC, converters, RF front-ends
and external interfaces─are abstracted by the middleware
and therefore accessible by the waveform components.

ASIP DAC, ADC,
RF, etc.

ASIP

DRA

ALOE ALOE

ALOE

ALOE

GPPGPP

GPP
ALOE

ALOE
B
M

DRA B
M

DRA B
M

Fig. 2. ALOE Abstraction Architecture

The integrated ALOE computing resource manager enables
to automatically map application tasks to a set of PEs using
the tw-mapping algorithm [4]. The algorithm does not
address loops and is, thus, inappropriate for Tanner Graphs.
The code selection is performed offline, whereas the node
mapping and routing is computed with the algorithm
presented in [17]. ALOE controls the synchronization and
scheduling of components following a specific execution
pattern: computing resource time is split in discrete slots
where each component (ASIP) is executed once; a message
produced by one component at slot n cannot be read by
destination component until slot n+1 (pipeline). Besides
synchronizing components, the pipeline exploits
concurrency at the cost of additional delay. The component
designer is not aware of the network latency between
processors and, therefore, does not need to define any
scheduling or synchronization mechanisms. These issues are
automatically controlled by ALOE pipelined execution
pattern.

The ALOE controller has been designed to be modular,
scalable and portable. Device-specific services or functions
are implemented in the platform-dependant part, the HW
API. For instance: FIFO internal interfaces, external signals,
timers, memories and so forth. The rest of the part is
organized in components, each with a different set of
functions (Fig. 3):

- FRONT-END: routes control packets. Accesses the
external control interfaces through the HWAPI. At
boot registers to the ALOE managers obtaining a
unique Id.

- EXEC: Controls the execution status of the
components and monitors real-time operation.

- STATS: Requests initialization configuration to the
manager.

- SWLOAD: Allocates component resources and
configures internal and external interfaces.

- SYNC: Synchronizes local time with master
reference

- BRIDGE: Route data packets. Accesses external data
signals through the HWAPI. At boot, sends own
identification to neighbours to automatically discover
network topology.

- SWAPI: The fixed interface to the components.
The last part, the SWAPI, is the only part the application

component designer has to take into account. The interface
provides the following signals:

- A set of input/output data FIFO-like interfaces.
- A unique time reference for all application

components in all processors (synchronized by
SYNC).

- Two status signals to control component execution.
One to set the status to INIT, RUN, PAUSE or STOP
and another to check a successful status change.

H
W

A
PI

Ex
te

rn
al

I/O
(c

on
tr

ol
,

da
ta

, t
im

e)

SW
A

PI

C
om

po
ne

nt

Data

FRONT-END
Control Routing

BRIDGE
Data Routing

(external)

SWLOAD
Data Routing

(internal)

EXEC
Execution Control

SYNC
Synchronization

SW
IT

C
H

Exec Status

Time

Timer

M
E

M
Status Ok

STATS
Parameter Initialization

SW
A

PI

C
om

po
ne

nt

Data

Exec Status

Time

Status Ok

Fig. 2. LDPC ALOE based Decoder

C. Network Abstraction
In order to increase the communications efficiency, the

signals between components are shared in common channels.
Typically, the NoC is dimensioned as a function of the
expected link loads for a certain application (e.g. LDPC
code). Conversely, a platform-independent design cannot
make such a consideration, achieving higher flexibility at
the cost of lower efficiency. Given certain network topology
and link bandwidths, efficiency is obtained through the
process of task mapping. For reconfigurable devices the
NoC is assumed to be static as it, generally, exhibits the
maximum contribution to the energy consumption. A static
interface from the reconfigurable component to the NoC is,
therefore, necessary. Interfacing only with the ALOE
SWAPI enables to increase the design reutilization as the
NoC router improvements will not force a component
redesign.

The ALOE framework is not limited to any specific NoC
topology or architecture. ALOE enables the application to
take benefit of the NoC, if any, hiding its internal
mechanisms.

IV. SIMULATIONS
The correct behaviour of the system has been tested

through behavioural simulation. Timing simulations and

implementation verifications have not been realized. The
simulation scenario presents some challenges. It is
impossible to verify the functionality of the ALOE
controller without the interface to the Linux ALOE host. A
dynamic testbench needs to write to the model signals the
bits of the received packet. In addition, ASIPs are simulated
with the CoWare Processor Designer Debugger [18], which
is incompatible with other VHDL simulation tools.

Therefore, a C-VHDL interface is required (VPI
interface). The GHDL simulator [19] is a GNU behavioural
simulator with VPI support. This interface communicates C
programs with the signals of the VHDL models. We
developed two components for integrating the whole
scenario: one from the model signals to the TCP/IP ALOE
interfaces and one towards the CoWare debugger. The
model generates a periodic wait event which, when
simulated with GHDL, calls our bridging custom function.
The function receives TCP/IP packets and writes the data to
the model input ports. The data generated at the output ports
of the ASIP is written to the model input ports it is
connected to. Then a model cycle is simulated. When it
finishes, model output ports data is written either to the
ASIP input ports or to the TCP/IP sockets.

Due to licensing limitations, each CoWare simulator must
run in a separate PC. Fig. 4 depicts the complete scenario
where, for simplicity, only two PC are shown. The
simulation is performed as follows:
1. we start ALOE managers in one computer;
2. we start the GHDL-CoWare simulators on four other

computers;
3. the ALOE FRONT-END in each controller registers to

the ALOE Linux manager;
4. the ALOE BRIDGE in each controller identifies data

interfaces towards its neighbours;
5. the ALOE Linux manager generates the processor

interconnection matrix [4] with the data collected from
the BRIDGE in each PE. Note that this step proves that
in a reconfigurable logic scenario the system is able to
dynamically detect changes in the number and
interconnection topology of PEs;

6. we use tool in [17] to compute CN and VN routing and
node assignation for PE network architecture and save
result in a configuration file;

7. we use the ALOE Linux interface to set the application
status to INIT. Components request configuration to the
ALOE STATS who requests to the Linux manager who
reads the previously produced file. Now CN and VN
node assignation and routing is performed, thus code is
selected;

8. we use the ALOE Linux interface to set the application
status to RUN;

9. we use the ALOE Linux interface to set the application
to STOP. We repeat step 7 and 8 with another code.
Thus we are able to dynamically change the LDPC
code at run-time.

PC #1

GHDL

ALOE for
PC-Linux

ALOE
CTRL

MODEL

ASIP 1

CoWare

bridge

TCP/IP

bridge

TC
P

/IP

C program CoWare PDebugger VHDL Model

VPI

VPI

r/w ports

PC #2

GHDL
ALOE
CTRL

MODEL

ASIP 1

CoWare

bridge

TCP/IP

bridge

VPI

VPI

r/w ports

TCP/IP

Fig. 4. Simulation Scenario

V. RESULTS
The decoder has been synthetised for a Xilinx Virtex-5

FX70 FPGA. Table I shows the resource occupation for the
ASIP component, optimized for speed.

TABLE I. ASIP RESOURCE OCCUPATION

Slice Registers 1892
Slice LUTs 3360
Memory (Kbits) 1120

The ASIP’s VHDL code was automatically generated by the
CoWare Processor Generator from the SystemC model. The
processor uses 7 memories in total:
• the ROM containing the program code uses 4 Kbytes of

memory;
• 2 RAMs of 4 Kbytes for the input and output memories

(input_mem and output_mem);
• 4 RAMs of 32 Kbytes the VNi_mem, CNi_mem,

VN_to_CN_mem and CN_to_VN_mem memories.
Clearly, the amount of memory used by the ASIP is
significant. However, and as stated previously, optimization
was not the aim of the project. Table II shows the resource
occupation for a single ALOE controller, which was
optimized for area in this case. The controller and the PE
can operate synchronously since the maximum achievable
frequency of the former is greater than the frequency of the
latter.

TABLE II. ALOE CONTROLLER RESOURCE OCCUPATION

Slice Registers 756
Slice LUTs 1748
Memory (Kbits) 768

Considering the entire decoder contribution without the
NoC, four ASIPs and four 4 ALOE controllers, the total
decoder resource utilization can be computed as in Table III.
Table IV depicts the relative overhead of ALOE.

TABLE III. DECODER RESOURCE OCCUPATION (4 ASIP AND 4 ALOE)

Slice Registers 10592
Slice LUTs 20432
Memory (Kbits) 7552

TABLE IV. ALOE RELATIVE OVERHEAD

Slice Registers 28 %
Slice LUTs 34 %

The relative overhead for this implementation is
considerable. Before optimizing the design, we should
mention that the flexibility obtained by the management
elements increases if the PE size increases. Then, the
relative overhead of ALOE would be lower, since additional
tasks can be assigned to the same PE. In these situations the
resources spent for implementing the resource managers
have even more sense, because the coordination of the
available computing resources is more complex. Relative
overhead can also be reduced if the same ALOE controller
manages several PE. In this case, however, the NoC
efficiency can not be exploited since ALOE has to route
signals between PE.

VI. CONCLUSIONS
Future user terminals or base stations will require higher
levels of flexibility. Consider an MP-SoC dimensioned for
wideband channel decoding that is sporadically used to
decode multiple narrowband channels. Since throughput
requirements will be lower, all CN and VN nodes can be
assigned to a single PE being able to operate other channels
simultaneously on the remaining PEs. Furthermore if the
supporting hardware is also flexible, e.g. dynamically
reconfigurable circuits, the range of possibilities increases
the management complexity. The system thus needs
computing resource awareness and management support
while providing tools to dynamically synchronize and
schedule the execution of components. In this paper we
have proven that ALOE is capable to automatically detect
the number and network topology of PEs in a reconfigurable
logic device.
It is important to recognize that the increasing flexibility of
channel decoders increases the area and energy
consumption, as shown in this paper. A flexible decoder
compromises modifications of code or coding schemes.
Some allow only offline modifications (at design time),
whereas others also facilitate runtime modifications. The
ALOE provides a set of tools for centralizing the
management of runtime decoder parameterization. This
flexibility comes at the price of resource overhead.
Although our design has not been optimized, the
incorporation of the ALOE middleware will always incur in
more area occupation. Nevertheless, future flexible
terminals can overcome these additional resource overheads
using reconfigurable logic and shared resource
infrastructure.

ACKNOWLEDGMENT
This work was supported by the European Commission in

the framework of the FP7 Network of Excellence in
Wireless COMmunications NEWCOM++ (contract n.
216715).

REFERENCES
[1] A. Polydoros. “Algorithmic aspects of radio flexibility”. Personal,

Indoor and Mobile Radio Communications, 2008. PIMRC 2008.
IEEE 19th International Symposium on, pages 1-5, Sept. 2008.

[2] R. G. Gallager, “Low-density parity-check codes”, IEEE Transactions
on Information Theory, pages 21-28, Jan. 1962

[3] F. Vacca, H. Moussa, A. Baghdadi, and G. Masera. “Flexible
architectures for ldpc decoders based on network on chip paradigm”,
in Euromicro Conference on Digital System Design, 2009.

[4] V. Marojevic, X. Reves, A. Gelonch, "A Computing Resource Man
agement Framework for Software-Defined Radios," IEEE
Transactions on Computers, pp. 1399-1412, October, 2008

[5] Ismael Gomez, Vuk Marojevic, Jose Salazar, Antoni Gelonch, "A
Lightweight Operating Environment for Next Generation Cognitive
Radios," Digital Systems Design, Euromicro Symposium on, pp. 47-
52, 2008 11th EUROMICRO Conference on Digital System Design
Architectures, Methods and Tools, 2008

[6] G. Masera, F. Quaglio, F. Vacca, "Finite precision implementation of
LDPC decoders", IEE Proceedings - Communications, Volume 152,
Issue 6, December 2005, Pages 1098 – 1102

[7] A. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s, Rate-1/2 Low-
Density Parity-Check Code Decoder,” IEEE Journal of Solid-State
Circuits, vol. 37, no. 3, pp. 404–412, Mar. 2002.

[8] T. Brack, F. Kienle, and N.Wehn, “Disclosing the LDPC code
decoder design space,” Proc. DATE 2006, vol. 1, pp. 200–205, Mar.
2007.

[9] M. Mansour and N. Shanbhag. Low-power VLSI decoder
architectures for LDPC codes. Low Power Electronics and Design,
2002. ISLPED02. Proceedings of the 2002 International Symposium
on, (Monterey,USA), pages 284.289, Aug. 2002.

[10] D. Hocevar. A reduced complexity decoder architecture via layered
decoding of LDPC codes. Signal Processing Systems, SIPS 2004.
IEEE Workshop on, (Austin, USA), pages 107-112, Oct. 2004.

[11] E. Boutillon, J. Castura, and F. Kschischang, “Decoder-first code
design,” in Proc. 2nd International Symposium on Turbo Codes &
Related Topics, Brest, France, Sept. 2000, pp. 459–462.

[12] J. Tang, T. Bhatt, and V. Sundaramurthy, “Reconfigurable Shuffle
Network Design in LDPC Decoders,” in Proceedings of the IEEE
17th International Conference on Application-specific Systems,
Architectures and Processors (ASAP’06), Sept. 2006, pp. 81–86.

[13] A. Tarable, S. Benedetto, and G. Montorsi. Mapping interleaver laws
to parallel turbo and ldpc decoders architectures. IEEE Trans.
Inform.Theory,, 50(9):2002-2009, Sept. 2004.

[14] Steffen Kunze, Emil Matus and Gerhard P. Fettweis, “ASIP Decoder
Architecture for Convolutional and LDPC Codes”, in Proceedings of
IEEE International Symposium on Circuits and Systems (ISCAS'09),
Taipei, Taiwan, 24.-27. May 2009

[15] M. Alles, T. Vogt, N. Wehn. “FlexiChaP: A Reconfigurable ASIP for
Convolutional, Turbo, and LDPC Code Decoding”, In Proc. IEEE 5th
International Symposium on Turbo Codes & Related Topics, pages
84 - 89 , September, 2008, Lausanne, Schweiz.

[16] T. Theocharides, G. Link, N. Vijaykrisham, and M. J. Irwin,
“Implementing LDPC Decoding on Network–On–Chip,” in Proc.
18th Int. Conf. on VLSI Design (VLSID’05), 2005, pp. 134–137

[17] F. Vacca, H. Moussa, A. Baghdadi, G. Masera, "Flexible
Architectures for LDPC Decoders based on Network On Chip
Paradigm", DSD 2009, Digital System Design, Patras, Greece, Aug.
2009

[18] CoWare Processor Designer Web Site http://www.coware.com/
[19] GHDL Simulator Web Site http://ghdl.free.fr/

http://ghdl.free.fr/

