
Nonlinear Control Design and Averaging Analysis of Full-Bridge Boost Rectifier

Vol. 2, No. 1, January-June 2010 1

I J I E S
© International Science Press

NONLINEAR CONTROL DESIGN AND AVERAGING
ANALYSIS OF FULL-BRIDGE BOOST RECTIFIER

A. Abouloifa, F. Giri*, I. Lachkar, F.Z. Chaoui**, and Robert Griñó***
* GREYC, Université De Caen, France, E-mail: abouloifa@yahoo.fr, giri@greyc.ensicaen.fr

** LA2I, EMI, Rabat, Morocco, E-mail: ibtissamlachk74@yahoo.fr, chaouifatima@yahoo.fr

*** IOC, UPC, Barcelona, Spain, E-mail: grino@ioc.upc.es

Abstract: We are considering the problem of controlling AC/DC full bridge converters. The control objectives are twofold:
(i) guaranteeing a regulated voltage for the supplied load, (ii) enforcing power factor correction (PFC) with respect to the main
supply network. The considered problem is dealt with using a nonlinear controller that involves two loops in cascade. The inner-loop
is designed, using sliding mode approach, to cope with the PFC issue. The outer-loop is designed to regulate the converter output
voltage. While several double-loop regulators (designed for different converters) can be found in the relevant literature, it is the first
time that a so formal average analysis is developed that rigorously describes the controller performances. The development of such
theoretical analysis framework is a major motivation of this paper.

1. INTRODUCTION

In order to meet the requirements of the electrical quality
standards (for example IEC 1000-3-2) concerning the
input current entering low-power equipments, it is
necessary to perform the AC-DC electrical power
conversion using switch-mode power converters [9].
Among these circuits, the most popular for average and
high power applications is the boost power converter
operating in continuous conduction mode [1, 14]. From
a control viewpoint, such AC/DC converter is viewed
as a nonlinear, nonminimum phase and hybrid system.
Then, undesirable current harmonics may be generated
when the converter is connected to an AC power source.
These harmonics may be harmful for both the converter
and the main supply network necessitating additional
protection and over-dimensioning of both the converter
components and the network elements (transformers,
condensers …). These precautions are costly (higher
component prices, higher power consumption).

To avoid the above drawback, the converter should
be controlled bearing in mind not only output voltage
regulation but also rejection of undesirable current
harmonics. The last objective is referred to power factor
correction (PFC). A comprehensive overview on circuits
that are able (if well controlled) to achieve the PFC
requirement can be found in, e.g. [10], [2], [3]. The
question of how to achieve simultaneously the PFC

requirement and the output regulation objective has been
discussed in many early works. The proposed solutions
involved the same control strategy:

(i) a current loop is used to achieve the PFC by acting
on the switch position;

(ii) a voltage loop is resorted to achieve output voltage
regulation through the tuning of the reference of
the current loop.

However, no formal analysis was developed in the
above works to show that the proposed double-loop
regulators actually achieve the performances they were
designed for. As a matter of fact, this is not surprising as
the proposed regulators are linear (typically PID
regulators) while the controlled power converters are
highly nonlinear and time-varying. It is only recently that
a serious attempt has been made to build up a formal
framework for the above double-loop control strategy
[6]. There, the backstepping control technique was used
to design the involved regulation loops. However, the
developed analysis was not complete and not fully
rigorous e.g. the PFC requirement has not really been
guaranteed (this is detailed later in theorem 1).

In the present paper, we aim at designing a double-
loop regulator for which we can develop a complete and
rigorous analysis of the closed-loop performances. To this
end, the sliding-mode control technique will be resorted
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to design a double-loop control system. The resulting
closed-loop system turns out to be a time-varying and
highly nonlinear. In particular, the time-varying feature
results in output voltage ripples and the question is: how
small the ripples amplitude is? It is worth noting that
the averaging theory is the natural framework to
analysing such an issue, due to the periodic nature of
the closed-loop system. Making a judicious use of
averaging results (e.g. [7, 8]), it will be established that
the PFC requirement is effectively achieved and the
output ripples are actually insignificant. More precisely,
the output tracking error will be shown to be, in steady-
state, a harmonic signal whose amplitude depends on
the frequency supply-net voltage: the larger is the net
frequency, the smaller the tracking error. It is the first
time that the insignificance of the output ripples is so
formally described.

The paper is organized as follows: Section 2 presents
the model of the bidirectional boost rectifier and the
control objectives. Section 3 is devoted to designing and
analyzing the regulator. The closed-loop performances
are illustrated in Section 4. A conclusion and reference
list end the paper.

2. CONTROL PROBLEM FORMULATION

2.1 Physical Model of the Boost Converter

The boost converter (Fig. 1) is described by the following
average model [4]:

Fig. 1: Bidirectional Boost Active Rectifier
Converter
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where x1 and x2 denote the average values, over cutting
periods, of  the input inductor current and the output

capacitor voltage variables, respectively; ( )tVv ss ω= sinˆ

is the ideal sinusoidal source that represents the AC-line
source; Ro is the DC-side resistive load and L and Co are
the converter inductance and capacity. The control
variable µ takes its value in the closed real interval [0, 1]
and represents the average value of the PWM (pulse-
width-modulated) control signal { }1,0∈u  injected into
the real system.

2.2 Control Objectives

The control objectives are:

1. The AC-DC converter must operate with a power
factor close to one. This amounts to ensuring that,
in steady-state, the inductor current x1 follows a
sinusoidal signal xd

1 with the same frequency and
phase as the AC-line voltage source vs,  i.e.

( )tvx s
d β=1  where β is a time real function that

should converge to a constant.

2. The DC component of the output capacitor voltage
x2 should be driven to the constant reference value
xd

2, where Vx d ˆ
2 >   in order to meet the boost feature.

3. CONTROLLER DESIGN

The controller synthesis is carried out in two major steps.
First, a current inner loop is designed to cope with the
PFC issue. In the second step, an outer loop is built-up
to achieve voltage regulation.

3.1 Current Loop Design

The PFC objective means that the current entering the
converter should be sinusoidal and in phase with the AC
supply voltage. We therefore seek a regulator that
enforces the current x1 to track a reference signal xd

1 of
the form:

dx1 = svβ ... (2)

At this point the parameter β is any function of time
that converges to a constant and positive limit. The
(inner) control loop will now be designed using the
sliding mode approach (e.g. [7]). The first step is the
choice of a sliding mode surface. Bearing in mind the
control objective (for the inner loop), the choice ( ) 0, =txh
is convenient, with:

( )txh , = ( )tVx sωβ− sinˆ
1 ... (3)

The second step in the sliding-mode approach
consists in determining the so-called equivalent control
µeq. This is the control signal that keeps the state vector
x in the sliding-surface (whenever the state gets to that
surface). Therefore, µeq is obtained solving the following
equation ( ) 0, =txh   with:
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( )txh , =
( ) ( ) ( ) ( )( ) ( )
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... (4)

Then, ( ) 0, =txh  can be rewritten as:

( ) ( ) ( )
0

,
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∂
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t
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txhLtxhL gf ... (5)

Solving this with respect to µ yields the equivalent
control:

eqµ =
( ) ( )

( )txhL
t
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∂
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− ... (6a)

From (1b) it follows that:

( )txhL f , =
( )

L
tvx s+2

( )txhLg , =
L
x22−

( )
t

txh
∂

∂ ,
= ( ) ( )tVtV sssss ωβ−ωωβ− sinˆcosˆ  ... (6b)

Substituting (6b) in (6a), one gets the following
explicit version of the equivalent control signal:

eqµ = ( ) ( ) ( )[ ]tLtL
x
V

sss ωωβ−ωβ−+ cossin1
2

ˆ

2
1

2



... (7)

The third step in the sliding-mode technique consists
in determining a transient control action, denoted µT, that
is necessary to add to the continuous component µeq
(equivalent control), so that the obtained total action,
namely:

µ = Teq µ+µ ... (8)

is able to steer the state from any initial position to the
sliding surface. To obtain µT, let us consider the following
Lyapunov function

( )tx,ϑ = ( )txh ,5.0 2 ... (9)

Time-derivation of ϑ gives ( ) ( ) Tg txhLtxh µ=ϑ ,, ,
where we have used (1a), (3), (7) and (8). This shows
that it would be convenient letting µT be of the form:

Tµ = ( )
Tg txhL ,~µ− ... (10)

Doing so, one gets:

ϑ = ( ) Ttxh µ− ~, ... (11)

This suggests the following choice of Tµ~ :

Tµ~ = ( )( )txhSVk ,ˆ ... (12)

where k is any positive constant real and S (⋅) is any real
function such that:

0)( >ξξ S  (for all 0≠ξ ) and S (0) = 0

Actually, the substitution of (12) to Tµ~  in (11) yields:

ϑ = ( ) ( )( )txhStxhVk ,,ˆ−

which clearly implies that ϑ  is a negative-definite
function of h. As ϑ is a positive-definite function of h, it
follows that the surface ( ) 0, =txh  is globally attractive.
In the latter, the following choice will be made for the
function S (⋅):

( )( )txhS , = ( ) ( )( )ηπ txh ,arctan2

where η is any small positive constant real. But, note that
any other choice can also be made provided that the
above mentioned conditions are fulfilled.

Now, substituting  (7), (10) and (12) in (8) gives the
following control law:
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2
1

2
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... (13)

Finally, substituting (13) to µ in (4) gives:

h = ( )hSVk ˆ− ... (14)

The results thus established is summarized in the
following proposition.

Proposition 1: Consider the control system, next
called inner closed-loop, consisting of the system (1a-b)
and the control law (13). If the ratio β and its first
derivatives are available then:

1. The inner closed-loop system undergoes, in the
h (t)-coordinate, Eq. (14) and this is globally
asymptotically stable with respect to the Lyapunov
function ( ) ( )txhtx ,5.0, 2=ϑ . Consequently, the
function h (x, t) vanishes asymptotically, whatever
the initial conditions are.

2. If in addition β is constant, or is varying but
converges to a positive limit value, then the PFC
requirement is fulfilled � .

3.2 Voltage Loop Design

The aim of the outer loop is to generate the function β in
such a way that the output voltage x2 be regulated to a
given reference value xd

2. To first step is to establish the
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relation between β (the outer loop control signal) and
the squared-voltage y = x2

2.

3.2.1 Relation between b and y = x2
2

This is established in the following proposition.
Proposition 2: Consider the power converter

described by (1a-b) in closed-loop with the inner control
law defined by (13). Under the same assumptions as in
Proposition 1, one has following relation between y = x2

2
and β:

( ) ( )tay
dt

tdy
+

= ( ) ( ) ( )( )βϕ−ωββ−β−β tfkLk soo 2cos1   +
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C
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o
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C
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with ( )hSVk
dt
dh ˆ−=  (due to (14)) and:
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Proof: Multiplying both sides of the second equation
in (1a) by 2x2 yields:

( ) ( )tay
dt

tdy
+

= ( ) ( )txtx
Co

12
12

2
−µ

... (16)

On the other hand, one gets from (3) ( ) += txhx ,1

( )tV sωβ sinˆ . Now, replacing in Eq. (16) x1 by ( ) Vtxh ˆ, β+
( )tsωsin  and µ by (13) one gets (15).

3.2.2 Squared Output Voltage Regulation

The function β stands for the control signal in the system
described by (14)-(15). The problem at hand is to generate
β so that the squared voltage 2

2xy =  tracks the reference

signal ( )22ˆ dd xy = . Bearing in mind the fact that β and its
first derivatives should be available (Proposition 1), a
filtered PI type control law is proposed, namely:

β = ( )21 ekek
sb

b
ip +





+

... (17a)

∫=−=
td dteeyye

0
121 , , 2

2xy = ,

( )22
dd xy = ... (17b)

where s may denote as well the Laplace variable or the
derivative operator (s = d/dt), depending on the context.
At this point, the regulator parameters (b, kp, ki) are any
positive real constants. The next analysis will make it
clear how these should be chosen for the control
objectives to be achieved.

3.3 Control System Analysis

In the following Theorem, it is shown that, for a class of
reference signals, the control objectives are achieved (in
the mean) with an accuracy that depends on the network
frequency ωs. The following notations are needed to
formulate the results:

ε = ,
ˆ2

,1
πη

=ω
Vbkkk

a io
os

1a = ( ) ( )( ) ioop
r

p kbkkkabyLbka
Vk
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3a = ( ),1
ˆ2 r

pyLbkab
Vk

−++
πη

... (18)

Theorem 1 (main result). Consider the AC/DC Boost
power converter shown by Fig.1, represented by its
average model (1a-b), together with the controller
consisting of the inner-loop regulator (13) and the outer-
loop regulator (17). Then, the closed-loop system has the
following properties:

1. The error dxxh 11 −=  vanishes asymptotically,,
where s

d vx1 β= .

2. Let the reference signal Vxd ˆ
2 >  be periodic with

period sN ωπ , where N is any positive integer. Let
the regulator parameters ( )ip kkb ,,  be any positive
real numbers that satisfy the following inequalities:

03 >a ... (19a)

03132 >−− aaaa ... (19b)

0321
2
30

2
1321 >−+−− aaaaaaaaa ... (19c)

Then, there exists a positive real ε* such that if *ε≤ε ,
one has:
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(a) The tracking error e1 and β are harmonic signals
that continuously depend on ε, i.e.

( )ε= ,11 tee  and ( )εβ=β ,11 t

(b) Furthermore, the above signals satisfy:

(i) ( ) 0,lim 1
0

=ε
→ε

te ; (ii) ( )
o

d

k
ya

t =εβ
→ε

,lim
0

where dy  denotes the mean value of the periodic
reference signal yd.
Proof: Proof of Part 1: Equation (17) guarantees that

β and its derivatives are available. Then, Part 1 of the
Theorem follows directly from Proposition 1. This also
guarantees that Eq. (15), in Proposition 2, holds.

Proof of Part 2: In order to prove the second part of
Theorem l, let us introduce the following state variables:

1,0x = ( ),,, 213,022,01 ekek
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b
xexe ip +

+
==

hx =4,0 ... (20)

It follows from (15), (17) and (20) that the state vector
undergoes the following state equation:
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Stability of the above system will now be dealt with
using averaging theory. As yd is periodic with period

sN ωπ , it will prove to be useful introducing the following
auxiliary reference function:

( )tyr = ( )s
d Nty ω ... (23)

This readily implies that ( ) ( )Ntyty s
rd ω=  and

that yr is periodic, with period 2π. Let us now introduce
the time-scale change tsω=τ . Then, the term containing
yd in ψ becomes:

( ) ( )
dt
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= ( ) ( )
τ
τ

ω+τ
d

Ndy
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r

s
r ... (24)

It also follows from (21)-(22) that ( ) ( )soo XZ ωτ≡τ 2ˆ
undergoes the differential equation:

τd
dZo = ( )ετε ,, oZg ... (25)

where (i = 1, 2, 3, 4) denote the components of the vector
Zo and:
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Now, let us introduce the average function G (⋅)
defined by:

( )WG = ( )∫
π

→ε
τετ

π

N
dWg

2

00
,,

N2
1

lim ... (27)

It follows from (26) that:



A. Abouloifa, F. Giri, I. Lachkar, F.Z. Chaoui, and Robert Griñó

6 International Journal of Integrated Energy Systems

( )WG = ( )
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where (i = 1, 2, 3, 4) denote the components of the vector
W and

ry  denotes the mean value of yr (which is the same
as that of yd). Note that the mean value over [ ]πN2,0 , of
the derivative in the first line of (26b) is zero because yr

is periodic with period 2π.

In order to get stability results regarding the system
of interest (25)-(26), it is sufficient (thanks to averaging
theory) to analyze the following averaged system:

dt
dW

= ( )WGε ... (29)

To this end, notice that (29) has a unique equili-
brium at:
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The stability properties of this equilibrium can be
checked through the analysis of the linearized version
of (29). The stability of the latter is fully determined by
its state-matrix:
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More specifically, the equilibrium W* is stable
provided that the matrix A is Hurwitz. It readily follows

from (31) that the eigenvalues of the matrix A are the
zeros of the following polynomial:

( )1det AI −λ  = oaaaa +λ+λ+λ+λ 1
1

2
2

3
3

4 ... (32)

where the ai’s are defined by (18). Applying for instance
the well known Routh’s algebraic criteria, it follows that
all zeros of the polynomial (32) have negative real parts
if the coefficients ( )30  – aa  satisfy (19). Now, invoking
averaging theory (e.g. Theorem 4.1 in [8]), one concludes
that there exists a 0* >ε  such that for *ε<ε , the
differential Eqs (25)-(26) has a harmonic solution

( )ε= ,tXX oo , that continuously depends on ε, and that:

( ) *

0
,lim WtXo =ε

→ε
... (33)

Then, it readily follows fact that ( ) ( )ε=ε ,, 1,01 txte
and ( ) ( )ε=ε ,, 2,02 txte  are in turn harmonic and depend
continuously on ε. Then it follows from (17) that β is
in turn harmonic and depends continuously on ε.
Theorem 1 is thus established.

4. NUMERICAL SIMULATIONS

4.1 Experimental Setup

The performances of the proposed controller are now
numerically evaluated using a PWM rectifier with the
following characteristics:

Table 1
System Parameters

Parameters Values

Network vs 220 V, 50 Hz

Converter L 1 mH

r 40 mΩ

Co 4.7 mF

Ro 100 Ω

Current K 100

Regulator η 0.1

Voltage kp 1.5 10 – 6

Regulator ki 1.5 10 – 5

b 1000

4.2 Experimental Protocol

The simulations aim at illustrating the behavior of the
controller in response to step changes on both the voltage
reference xd

2 and the load resistance Ro. More specifically,
the voltage reference goes from 400 V to 500 V. The
load resistance steps from its nominal value (100 Ω)
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up to infinity (load less) and then down to its nominal
value.

4.3 Simulation Result

The controller performances are illustrated by Figs 2 to
7. As expected by Theorem 1, the output voltage x2
converges in the mean to its reference value with a good
accuracy (Fig. 2). Furthermore, it is observed that the
voltage ripples oscillates at the frequency 2ωs, but their
amplitude is too small compared to the average value of
the signals, confirming thus Theorem 1 (Part 2-b-i). The
corresponding input current x1 is shown in Fig. 3. Finally,
Fig. 4 shows that the input current x1 and the network
voltage vs are actually in phase. Hence, the converter

connection to the supply network is done with a unitary
power factor. This is further demonstrated by Fig. 5 which
shows that the ratio β always takes a constant value, after
the transient periods that results from the reference
voltage steps

Figures 6 to 7 illustrate the behavior of the control
system in presence to load changes that are not accounted
for in the controller design. The rest of the converter
characteristics are kept unchanged. It is seen from Fig. 6
that the disturbing effect due to load changes is well
compensated by the controller. Furthermore, Fig. 7 shows
the correlation of the current amplitude with the output
voltage. Robustness of the proposed controller with
respect to load changes is thus established.

Fig. 5: Signal Fig. 4: Unity Power Factor Checking

Fig. 3: Input Current x1Fig. 2: Output Voltage
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Fig. 6: Output Voltage

Fig. 7: Input Current x1

5. CONCLUSION

In this paper we have considered the problem of
controlling a full-bridge rectifier of the boost type. The
converter dynamics have been described by the average
2th order nonlinear state-space model (1). Based on such
model, a cascade nonlinear controller has been designed
using the sliding mode technique. It has been formally
established, using Lyapunov stability and averaging
theory, that the obtained controller meets its objectives.
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