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Abstract—Cognitive radio is a new paradigm for wireless 
communications offering a solution to conciliate the current 
spectrum demand growth and underutilization without 
changes to the existing legacy wireless systems. Secondary 
users should be able to identify spatial and temporal spectrum 
holes not occupied by primary users and use them 
opportunistically, without generating interference to primary 
receivers. For that purpose, having knowledge of the primary 
network is required to ensure an appropriate secondary user 
operation. In this context, and assuming there is no 
cooperation between primary and secondary networks, this 
paper proposes a new framework, based on image processing 
techniques, aimed at combining a number of sensed samples at 
different geographical positions collected by secondary sensors, 
in order to estimate the positions of the different primary 
transmitters. The results can be used to discover frequencies 
that can be used by a secondary network without disturbing 
primary receivers. Our results, performed in a realistic 
scenario, show the efficacy of the proposed framework in 
estimating transmitter positions. 

Keywords: Sensing, Secondary Spectrum Use, Radio 
Environment Map, Image Processing. 

I.  INTRODUCTION  
Wireless technologies are rapidly evolving to allow 

operators to deliver more advanced multimedia services. For 
that, the need of spectrum is growing every day. However, 
some recent spectrum measurements have demonstrated that 
the licensed part of the radio spectrum is poorly utilized [1-
2]. In this context, Cognitive Radio (CR) and dynamic 
spectrum access paradigms have emerged as a promising 
solution to conciliate the current spectrum demand growth 
and its underutilization without changes to the existing 
legacy wireless systems [3]. CR enables much higher 
spectrum efficiency through opportunistic spectrum access. 
Therefore, it is an attractive technology for future wireless 
communications. 

The basic idea of CR is to allow secondary/unlicensed 
users (SUs) to access in an opportunistic and non-interfering 
manner some licensed bands temporarily unoccupied by 
primary/licensed users (PUs). The operating principle is to 
identify spatial and temporal spectrum gaps not occupied by 
PUs, place SU transmissions within such spaces and vacate 
the channel as soon as PUs return. 

The term “spectrum holes” stands for those licensed 
subbands of the radio spectrum that are not actually utilized 
at a particular instant of time and specific geographic 

location [4]. These spectrum holes could be used 
opportunistically by (SUs) provided that they are able to 
sense the spectrum to detect the presence of either PU or SU 
transmissions and to adapt to the varying spectrum 
conditions, ensuring that the primary rights are preserved [5]. 

The primary-secondary spectrum sharing can take the 
form of cooperation or coexistence. Cooperation means there 
is explicit communication and coordination between primary 
and secondary systems, and coexistence means there is none 
[6]. When sharing is based on coexistence, secondary 
devices are essentially invisible to the primary. Thus, all of 
the complexity of sharing is borne by the secondary and no 
changes to the primary system are needed. 

Under the above consideration, assuming the coexistence 
case, a key enabler of the cognitive radio technology is the 
detection of the spectrum holes through spectrum sensing. 
As SUs may not have accurate knowledge about the whole 
spectrum at all times, in order to avoid generating 
interference, techniques for detecting PUs need to be 
employed before spectrum access. Several techniques for 
detecting primary transmitters through matched filter 
detection, energy detection, and cyclostationary feature 
detection have been investigated by related work [7-12]. 

Multipath fading and shadowing, the fundamental 
characteristics of wireless channels, present a major 
challenge of spectrum sensing. In [13], it has been shown 
that the detection capability of the CR network can be 
improved through cooperation, by letting multiple CR users 
sense the channel instead of designating a fixed CR user for 
spectrum sensing. Then, cooperative spectrum sensing [13-
16] refers to sensing methods where local sensors sense and 
then send information to the centre where the final decision 
on PU presence is made. 

Knowing that cooperative strategies can make good use 
of network resources, obtain higher gain and make the 
network steadier, we assume the cooperation principle as a 
technique to improve the performance of cognitive 
secondary networks. In this respect, this paper proposes a 
new methodology, based on image processing techniques, 
aimed at combining a number of sensed samples at different 
geographical positions collected by secondary sensors, in 
order to estimate the positions of the different primary 
transmitters and to have an insight about their coverage area. 
The proposed methodology could be used to build databases 
containing the relevant aspects of radio environment 
characterization, such as the so-called Radio Environment 
Map (REM) in [17]. REM can also be viewed as the 
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generalization of the available resource map proposed by 
Krenik for cognitive radio applications in unlicensed wide 
area networks [18-19]. Similarly, in [20], the sensorial radio 
bubble concept is presented using a spectrum map to 
represent the context in a cognitive radio network.  Our 
previous work in [21] also introduced the image processing 
to identify primary transmitters positions, in a theoretical 
scenario. This paper extends the previous work by 
considering a realistic scenario and comparing two different 
proposed methods to estimate the primary transmitters’ 
positions. 

The rest of the paper is organized as follows. Section II 
presents in more detail the system model and problem that is 
considered in this paper, while Section III describes the 
proposed methodologies. Section IV presents performance 
results under different conditions. Finally, conclusions are 
presented in Section V. 

II. SYSTEM MODEL AND PROBLEM DESCRIPTION 
Let assume a generic scenario such as the one depicted in 

Fig. 1. It is characterized by a number of transmitters 
corresponding to different Radio Access Technologies 
(RATs) which operate at different frequencies and having 
very different coverage areas (e.g. the central transmitter 
operating in a broadcast-like RAT with an extensive 
coverage area at frequency f5, or the transmitters operating at 
RATs 1 and 2 with frequencies f1, f2, f3 and f4 that could 
correspond to some cellular-like RATs). 

The secondary network can rely on the information 
measured by a number of sensors randomly scattered in the 
scenario and that could be built-in e.g. mobile terminals, and 
the appropriate post-processing of this information, which is 
the focus of this paper. We assume that the sensors cooperate 
with each other in a centralized manner, where a central 
entity plays the role to gather all sensing information from 
the sensors and to detect the positions and coverage areas of 
the primary transmitters.  

A sensor measures the received power in a number of N 
specific frequencies in its geographical position. It is 
assumed that frequency fi (i=1, 2,…N) is detected by the 
sensor at position (x,y) when the received power is above a 
given threshold Pth(fi). We present two different methods, 
denoted here as binary and multi-level methods. In the binary 

method, each sensor sends just one bit, for each frequency fi, 
to a central entity, in charge of combining the measurements 
of every sensor. Instead, in the multi-level method, the value 
detected by a given sensor for each frequency is quantified to 
a set of 2k values. Then, the sensor will send to the central 
entity this value encoded as a word of k bits. 

The problem considered here consists in defining a 
methodology to smartly combine the different measurements 
at random positions, which represent a partial vision of the 
scenario, in order to get a full vision in which the positions 
and coverage areas of the different primary transmitters are 
estimated. It is worth mentioning that the considerations on 
the sensing process itself (such as errors in the process or the 
determination on which frequencies has to sense every 
sensor) and the means to report the sensing results are out of 
the scope of the paper and are left for future work. 

III. PROPOSED METHODOLOGIES  
The proposed methodologies assume that the radio 

environment can be characterized by an image, where each 
pixel (i.e. a rectangular area of dimensions Δx × Δy) contains 
the information about the frequencies that are measured in 
this area. This information can be encoded either with the 
binary or the multi-level methods. Then, given that only the 
values of the pixels where a sensor is located are known, 
these values will be combined using image processing 
techniques in order to reconstruct the overall image and to 
discover the transmitter positions, as it is illustrated in Fig. 2. 
In the following, the two proposed methods are presented. In 
all cases it is assumed that a pixel can only have the result of 
one sensor. 

 

Figure 2.  Inputs and outputs of the considered problem. 

A. Binary method 
As we mention in Section II, in this method, each sensor 

measures the received power in a number of specific 
frequencies in its position and sends just one bit, for each 
frequency fi (i=1,2,…N), which takes the value 1 if the 
received power is above a given threshold Pth(fi) and 0 
otherwise. It can be obtained the following binary 
representation for each frequency at each sensor position: 
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From this binary representation, it is possible to 
characterize the measurement at all frequencies given by the 
sensor at coordinate (x,y) by a value corresponding to the 
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Figure 1.  Generic scenario with different RATs and frequencies. 

f1

f2 f2

f1

f3

f4
f2

f5

f1

f2 f2

f1

f3

f4
f2

f5

Primary network - Real 
situation 

Sensor network – Input 
data 

IMAGE 
PROCESSING-

BASED 
METHODOLOGY 

f1

f2 f2

f1

f3

f4
f2

f5

Output data – Estimated 
primary network 

113113



sum of the binary representations of all the N considered 
frequencies: 
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We assume that the coverage area of a transmitter to be 
discovered will be approximately circular, which would be 
valid in terms of average received power according to the 
distance-dependent path loss whenever omnidirectional 
antennas are used. Then, the proposed methodology aims at 
identifying in the image the existing circular regions, using 
an object-based reconstruction technique. 

The steps of this method are illustrated in Fig. 3 and 
explained in the following. 

• First, from the information received from the 
secondary sensors we build an image by 
interpolating the intermediate pixels for those 
positions where no sensor was available. We do that 
through the nearest neighbour interpolation 
technique, by attributing to each unknown pixel the 
value of the nearest known pixel. 

• From the resulting image, we build a set of N binary 
images, each one corresponding to one frequency.  
The pixels of the binary image corresponding to 
frequency fi take the binary values M(fi,x,y). These 
binary images will be used as the basis to identify 
the different “objects” (i.e. an object is a region 
where a certain frequency fi is detected, or 
correspondingly where the pixels of the binary 
image take the value 1). 

• It is possible that in some cases, some objects are not 
properly detected, because they are not clearly 
separated with each other. In order to eliminate this 
drawback, before of object-based reconstruction 
technique, we apply an image processing technique 
called erosion to the binary images resulting from 
the interpolated image. In the erosion, the value of 
the output pixel is the minimum value of all the 
pixels in the input pixel's neighborhood. We assume 
that a pixel’s neighborhood corresponds to a circular 
structuring element [22], defined by a circular area 
of radius 5 pixels around the input pixel. Note that in 
the particular case of a binary image, if any of the 
pixels of the neighborhood is set to the value 0, the 
output pixel after the erosion will be set to 0, which 
will tend to decrease the size of the objects and thus 
to separate them. 

• Then, for each binary image (i.e. for each frequency 
fi), we apply an object-based reconstruction 
technique in order to detect the objects and measure 
their properties. Object detection is done following 
the so-called connected-component labelling 
technique [23] that consists in scanning the image 
and making groups of adjacent pixels having the 
same value (it is assumed that pixels are adjacent if 
their edges touch). For each detected object, the 
measured properties are the centroid and the radius, 
which correspond, respectively, to the centre and 

radius of a circle with the same area than the object. 
With these properties, the object-based 
reconstruction process regenerates a new image 
replacing each object by a circle with the 
corresponding radius and centered in the 
corresponding centroid. 

• Because of the prior erosion process, the resulting 
object area after object-based reconstruction 
technique has become smaller than in the binary 
images, which would lead to more reduced coverage 
areas than in the real situation. To compensate this 
effect, we apply the dilation technique to the binary 
images resulting from the object-based 
reconstruction technique. The dilation is the image 
processing technique opposite to the erosion process, 
and in this case the value of the output pixel is the 
maximum value of all the pixels in the input pixel's 
neighborhood. The dilation is the image processing 
technique opposite to the erosion process, and in this 
case the value of the output pixel is the maximum 
value of all the pixels in the input pixel's 
neighborhood [22]. In particular, in a binary image, 
if any of the pixels of the neighborhood is set to the 
value 1, the output pixel is set to 1, which will tend 
to increase the size of the objects. The same 
neighborhood shape (i.e. circular structuring 
element) as in the erosion is considered. After 
dilation, a second object based reconstruction 
process is carried out, to obtain the final centroids 
and radii of the detected objects. Note that the 
computed centroids will correspond to the final 
estimated transmitter positions. In addition, the radii 
will provide a first insight of the coverage ranges. 

• Due to the shadowing effects in the propagation, 
after the reconstruction process, it may happen that 
certain objects are detected with an area significantly 
smaller than that of the rest of objects, so they 
cannot be considered as transmitters. To cope with 
this, in the last step, we filter out the resulting 
images by eliminating those objects that have an 
area below a fraction α of the average area of all the 
detected objects. 

• Finally, after this filtering, we combine the binary 
images to obtain a new image including information 
of all the frequencies. This image includes the 
transmitter estimated positions, coverage areas 
assumed to be circular and frequencies of the 
different primary transmitters. 

B. Multi-level method 
In the multi-level method, each sensor measures the 

received power in a number of specific frequencies in its 
position and quantifies this value in a set of 2k levels with 
quantification step Δ and minimum power level Pth(fi), as 
shown in Fig. 5. This value is sent to the central entity 
encoded as a word of k bits, for each frequency. 

From the information of each sensor, we build an image 
in which each pixel is characterized not only by the 
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Figure 3.  Steps of the binary method. 

 
Figure 4.  Steps of the multi-level method. 

 

frequencies detected, like in the binary method, but also by 
the values of received powers at each frequency. 

In particular, the value of one pixel will be a set of 
quantified values, one per frequency. The steps of multi-
level method are shown in Fig. 4 and explained in the 
following. 

• From the results of the sensors we build an image 
by interpolating the intermediate pixels for those 
positions where no sensor was available. The 
process is equivalent to the interpolation of the 
binary method, aiming to fill the empty spaces by 
attributing to each unknown pixel the value of the 
nearest known pixel 

• From the resulting interpolated image, like in the 
binary method, we build a set of N binary images, 
one per frequency fi, whose pixels take the value 1 
when frequency fi is detected (i.e. it is above 
Pth(fi)) and 0 otherwise. These images will be used 
as the basis to identify the different “objects”. 

• Next, we apply object identification technique in 
order to detect the objects (i.e. regions where 
frequency fi is detected), following the same 
connected-component labelling technique 
explained in the description of the binary method. 
Furthermore, we remove those small objects that 
have an area below a fraction α of the average area 
of all the detected objects.  

• In the next step, we convert the binary images into 
color images, using the quantified values from the 
received power at each frequency fi after the 
interpolation. Note in Fig. 4 that in the color image 
the same objects as in the binary image can be 
identified but now including the specific value of 

the received power in each pixel. Then, we 
analyze each object individually to determine the 
transmitter positions. In particular, given that the 
highest received power will be measured in the 
pixels where the primary transmitter is located, for 
each object we identify the pixels with the highest 
received power and calculate the centroid of these 
pixels. The value of the centroid will be the 
estimated transmitter position. 

On the other hand, in addition to the transmitters’ 
positions we can also obtain an estimate of the coverage 
range for each transmitter by applying to the binary images 
the same object-based reconstruction technique that was 
used in the binary method. 

 

Figure 5.  Quantization function 

IV. RESULTS 
In order to illustrate the capabilities of the proposed 

methodology, it is evaluated in a cellular scenario with a 5 
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frequency reuse pattern (f1, f2, f3, f4, f5). The total scenario 
size is 10km x 10km, the pixel size is Δx=Δy=20m, and 
there are 21 primary transmitters. The transmitter power is 
40dBm, propagation losses are computed using a planning 
tool in a realistic environment. Power threshold Pth(fi) is 
set to -85dBm for all frequencies. Furthermore, in the 
multi-level method the number of bits is k=5 and the 
quantization step is Δ=3.6dB. In turn, the value of α in the 
object detection process is 0.3. 

In Fig. 6 we can see the original image representing the 
scenario with the position of transmitters, corresponding to 
a terrain in the surroundings of Barcelona, and in Fig. 7 we 
have the transmitters’ coverage area where each color 
represents a different frequency. 

A random sensor deployment with average density D 
sensors/km2 is retained. As a first result, Fig. 8 plots the 
comparison between the real primary transmitter positions 
and the corresponding positions estimated with both 
methods. It can be observed that, although the two 
methods are able to identify quite accurately the positions, 
the estimation is more precise with the multi-level method. 

In order to measure the accuracy in this estimation, we 
compute the relative error as the difference between the 
real transmitter position and the estimated position, 

divided by the estimated transmitter coverage radius. Fig. 
9 represents the relative error for each of the 21 
transmitters in the considered scenario for 
D=100sensors/km2, together with the estimated radii with 
the two methods. It can be observed that, with the binary 
method, the values of the relative errors have a wide 
variation for the different transmitters and can be in some 
cases as high as 45%. Instead, with the multi-level method, 
in all the cases the values of the relative errors are below 
7%. It can also be observed that the estimated radius for 
the different transmitters is quite similar for the two 
methods. 

Fig. 10 shows the mean relative error and the standard 
deviation for different values of sensor density D with the 
two considered methods. For the binary method, notice 
that the mean error improves very slowly when increasing 
the sensor density. In particular, the mean relative errors 
are still above 24%, for sensor densities as high as D=100 
sensors/ km2. On the contrary, for the multi-level method, 
we can observe a more significant reduction in both the 
average error and the standard deviation as the density of 
sensors grows. Notice in this case that only for a rather 
low number of sensor densities (e.g. D=4 sensors/km2) the   

Figure 6.  Image corresponding to real scenario and the transmitter 
positions 

 

Figure 7.  The coverage area of primary transmitters 

 

Figure 8.  Real and estimated primary transmitter positions for 
D=100sensors/km2. 
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Figure 10.  Mean relative error and standard deviation (represented as 
vertical lines) in the transmitter position estimation. 

mean error as well as the standard deviation are high. 
These results allow establishing the minimum required 
density of sensors for a desired accuracy. For example, in 
order to achieve an error below 5%, the required density of 
sensors will be D=50 sensors/km2. 

V. CONCLUSION  
In this paper we have proposed a novel framework 

based on image processing techniques, aimed at 
combining a number of sensed samples at different 
geographical positions collected by secondary sensors, in 
order to build a map with the estimated positions and 
coverage areas of the different primary transmitters. 
Utilization of this information in the context of secondary 
spectrum usage allows the secondary network to discover 
the presence of primary network transmitters and to use 
spectrum opportunities without causing interference to 
them. We applied two different methods on a real 
scenario: the binary and the multi-level methods. Our 
results with multi-level method reveal the advantages of 
the proposed framework, with relative errors below 7% in 
the transmitter position estimation. 
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