Cotangent Bundle Reduction with Singularities

Miguel Rodríguez-Olmos

The University of Manchester & Technical University of Catalonia

RatiuFest 2010 @ CIRM

Regular Poisson and symplectic reduction

Let $(\mathcal{P}, \omega, G, \mathbf{J})$ be a Hamiltonian *G*-space for a free and proper *G*-action on \mathcal{P} .

3 1 4

Regular Poisson and symplectic reduction Let $(\mathcal{P}, \omega, G, \mathbf{J})$ be a Hamiltonian *G*-space for a free and proper *G*-action on \mathcal{P} .

• The quotient \mathcal{P}/G is a smooth Poisson manifold with bracket defined by

$$\{f,g\}(\pi(z)) = \omega(X_{f\circ\pi}, X_{g\circ\pi})(z)$$

where $\pi : \mathcal{P} \to \mathcal{P}/\mathcal{G}$.

Regular Poisson and symplectic reduction

Let $(\mathcal{P}, \omega, G, \mathbf{J})$ be a Hamiltonian *G*-space for a free and proper *G*-action on \mathcal{P} .

• The quotient \mathcal{P}/G is a smooth Poisson manifold with bracket defined by

$$\{f,g\}(\pi(z)) = \omega(X_{f\circ\pi}, X_{g\circ\pi})(z)$$

where $\pi: \mathcal{P} \to \mathcal{P}/\mathcal{G}$.

• (Marsden, Weinstein '74) Let μ be a value of J. The quotient $J^{-1}(\mu)/G_{\mu}$ is a smooth symplectic manifold with 2-form ω_{μ} defined by

 $\pi^*\omega_\mu = \iota^*\omega, \qquad \text{where}$

・得下 ・ヨト ・ヨト ・ヨ

Regular Poisson and symplectic reduction

1

Let $(\mathcal{P}, \omega, G, \mathbf{J})$ be a Hamiltonian *G*-space for a free and proper *G*-action on \mathcal{P} .

• The quotient \mathcal{P}/G is a smooth Poisson manifold with bracket defined by

$$\{f,g\}(\pi(z)) = \omega(X_{f\circ\pi}, X_{g\circ\pi})(z)$$

where $\pi: \mathcal{P} \to \mathcal{P}/\mathcal{G}$.

• (Marsden, Weinstein '74) Let μ be a value of J. The quotient $J^{-1}(\mu)/G_{\mu}$ is a smooth symplectic manifold with 2-form ω_{μ} defined by

$$egin{aligned} & \mathfrak{s}^*\omega_\mu = \iota^*\omega, & ext{where} \ & \mathbf{J}^{-1}(\mu)^{\sub{\iota}} & & \mathcal{P} \ & & \pi \ & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & &$$

Relationship: symplectic leaves and orbit reduction (Marle '76).

In case the G-action is not free, $\{H_i\}$ set of (compact) stabilizers and orbit type

$$\mathcal{P}_{(H_i)} = \{z \in \mathcal{P} : G_z \text{ is conjugate to } H_i\}.$$

In case the G-action is not free, $\{H_i\}$ set of (compact) stabilizers and orbit type

$$\mathcal{P}_{(H_i)} = \{ z \in \mathcal{P} : G_z \text{ is conjugate to } H_i \}.$$

• \mathcal{P}/G is a singular stratified space with strata

 $\mathcal{P}_{(H_i)}/G$

which carry a Poisson bracket obtained by regular Poisson reduction.

In case the G-action is not free, $\{H_i\}$ set of (compact) stabilizers and orbit type

$$\mathcal{P}_{(H_i)} = \{ z \in \mathcal{P} : G_z \text{ is conjugate to } H_i \}.$$

• \mathcal{P}/G is a singular stratified space with strata

 $\mathcal{P}_{(H_i)}/G$

which carry a Poisson bracket obtained by regular Poisson reduction.

• (Sjamaar, Lerman '91) $J^{-1}(0)/G$ is a singular stratified space with strata $(J^{-1}(0)\cap \mathcal{P}_{(H_i)})/G$

which carry a 2-form obtained by regular symplectic reduction.

In case the G-action is not free, $\{H_i\}$ set of (compact) stabilizers and orbit type

$$\mathcal{P}_{(H_i)} = \{ z \in \mathcal{P} : G_z \text{ is conjugate to } H_i \}.$$

• \mathcal{P}/G is a singular stratified space with strata

 $\mathcal{P}_{(H_i)}/G$

which carry a Poisson bracket obtained by regular Poisson reduction.

• (Sjamaar, Lerman '91) $J^{-1}(0)/G$ is a singular stratified space with strata $(J^{-1}(0)\cap \mathcal{P}_{(H_i)})/G$

which carry a 2-form obtained by regular symplectic reduction.

$$\begin{array}{ccc} \mathcal{P}_{(H_i)} & \stackrel{\iota}{\longrightarrow} \mathcal{P} & \mathbf{J}^{-1}(0) \cap \mathcal{P}_{(H_i)} & \stackrel{\iota}{\longrightarrow} \mathcal{P} \\ \pi & & \pi \\ \mathcal{P}_{(H_i)} / \mathcal{G} & (\mathbf{J}^{-1}(0) \cap \mathcal{P}_{(H_i)}) / \mathcal{G} \end{array}$$

Regular and Almost Regular Cotangent Bundle Reduction

Cotangent Bundles

If *M* is a smooth manifold where *G* acts one has a canonical construction of a Hamiltonian *G*-space ($\mathcal{P}, \omega, G, J$), where

•
$$\mathcal{P} = T^*M$$

- ω is the canonical 2-form $\omega_c = \mathbf{d}x^i \wedge \mathbf{d}y_i$
- G acts on T*M by canonical lifts

•
$$\langle \mathsf{J}(p_x),\xi\rangle = \langle p_x,\xi_M(x)\rangle$$
 for all $p_x \in T^*M,\,\xi\in\mathfrak{g}.$

Cotangent Bundles

If *M* is a smooth manifold where *G* acts one has a canonical construction of a Hamiltonian *G*-space ($\mathcal{P}, \omega, G, J$), where

•
$$\mathcal{P} = T^*M$$

- ω is the canonical 2-form $\omega_c = \mathbf{d} x^i \wedge \mathbf{d} y_i$
- G acts on T*M by canonical lifts

•
$$\langle \mathsf{J}(p_x),\xi\rangle = \langle p_x,\xi_M(x)\rangle$$
 for all $p_x \in T^*M, \xi \in \mathfrak{g}$.

These are Hamiltonian G-spaces with an extra fibered structure

 $\tau:\,T^*M\to M$

Cotangent Bundles

If *M* is a smooth manifold where *G* acts one has a canonical construction of a Hamiltonian *G*-space ($\mathcal{P}, \omega, G, J$), where

•
$$\mathcal{P} = T^*M$$

- ω is the canonical 2-form $\omega_c = \mathbf{d} x^i \wedge \mathbf{d} y_i$
- G acts on T*M by canonical lifts

•
$$\langle \mathsf{J}(p_x),\xi\rangle = \langle p_x,\xi_M(x)\rangle$$
 for all $p_x \in T^*M, \xi \in \mathfrak{g}$.

These are Hamiltonian G-spaces with an extra fibered structure

 $\tau: T^*M \to M$

Is this fibered structure also preserved by the reduction schemes together with the symplectic or Poisson structures?

Regular Cotangent Bundle Reduction

Regular Cotangent Bundle Reduction

• Satzer '77

$$\mathbf{J}^{-1}(0)/G\simeq T^*(M/G)$$

イロト イヨト イヨト イヨト

• Satzer '77

$$\mathbf{J}^{-1}(0)/G\simeq T^*(M/G)$$

• Symplectic diffeomorphism with respect to the canonical symplectic form on $T^*(M/G)$.

< 行い

Satzer '77

$$\mathbf{J}^{-1}(0)/G\simeq T^*(M/G)$$

- Symplectic diffeomorphism with respect to the canonical symplectic form on $T^*(M/G)$.
- We can define the cotangent bundle of M/G as the symplectic quotient at μ = 0 for T*M.

Regular Cotangent Bundle Reduction

$G_{\mu} = G$

• Satzer '77, Abraham and Marsden '78, Kummer '81

$$\mathsf{J}^{-1}(\mu)/\mathcal{G}_{\mu}\simeq \mathcal{T}^*(M/\mathcal{G})$$

イロト イポト イヨト イヨト

$G_{\mu} = G$

• Satzer '77, Abraham and Marsden '78, Kummer '81

$$\mathbf{J}^{-1}(\mu)/G_{\mu}\simeq T^{*}(M/G)$$

- Symplectic diffeomorphism with respect to a twisted symplectic form $\omega_c \tau^* B_\mu$ on $T^*(M/G)$.
- $B_{\mu} \in \Omega^2(M/G)$ comes from the curvature of a principal connection on

$$M \rightarrow M/G$$

Regular Cotangent Bundle Reduction

Miguel Rodríguez-Olmos (Manchester) Cotangent Bundle Reduction

μ embedding

• Abraham and Marsden '78, Kummer '81

$$\mathsf{J}^{-1}(\mu)/\mathcal{G}_{\mu} \hookrightarrow (\mathcal{T}^*(\mathcal{M}/\mathcal{G}_{\mu}), \omega_{c} - \tau^*\mathcal{B}_{\mu})$$

symplectic embedding

- (E

Regular Cotangent Bundle Reduction

μ fibrating

• Zaalani '99, Marsden and Perlmutter '00

symplectic leaves of the Weinstein and Sternberg Poisson reduced spaces

$${\sf J}^{-1}(\mu)/{\it G}_{\mu}\simeq V$$

μ fibrating

• Zaalani '99, Marsden and Perlmutter '00

symplectic leaves of the Weinstein and Sternberg Poisson reduced spaces

$$\mathsf{J}^{-1}(\mu)/\mathit{G}_{\mu}\simeq V$$

where

$$\mathcal{O}_{\mu}
ightarrow V
ightarrow T^{*}(M/G)$$

symplectic form on V:

- ω_c on $T^*(M/G)$
- KKS form on \mathcal{O}_{μ}
- curvature term B_{μ}

Regular Cotangent Bundle Reduction

Weinstein and Sternberg spaces

(The Gauge Picture of Mechanics)

• Sternberg '77, Weinstein '78, Montgomery, Marsden & Ratiu '84

$$(T^*M)/G \simeq S$$
 or $(T^*M)/G \simeq W$

where

$$\mathfrak{g}^* \to S \to T^*(M/G)$$

Poisson structure on S (or W):

- ω_c on $T^*(M/G)$
- Lie-Poisson bracket on g*
- curvature term B_{μ}

Pull-back

 $\begin{matrix} M \\ \downarrow \pi \\ M/G \end{matrix}$

< A > < E

Pull-back

 $T^*(M/G) \xrightarrow{\tau} M/G$

▶ ∢ ⊒

Pull-back

Pull-back

Association

$$S := \widetilde{M} \times_G \mathfrak{g}^*$$

$$\downarrow$$

$$T^*(M/G)$$

July 2010 20 / 36

.

э

Single Orbit Type Cotangent Bundle Reduction

Symplectic

Historical Remark

Year	Single Orbit Type	Singular Symplectic
'83	μ embedding, Montgomery	
'90	$\mu = 0$, Emmrich & Römer	
'91		$\mu = 0$, Sjamaar & Lerman
'97		$\mu eq 0$, Bates & Lerman
'02	$G_{\mu}=G$, Schmah	
'06	Weinstein, Hochgerner	
'09	Sternberg, Perlmutter & MR-O	

イロト イヨト イヨト イヨト

The General Situation of Singular Cotangent Bundle Reduction

Singular Cotangent Bundle Reduction

Singular Cotangent Bundle Reduction

- Perlmutter, Sousa-Dias & MR-O '07
 - the cotangent bundle projection $\tau : T^*M \to M$ induces a continuous projection

$$au^{0}: \mathbf{J}^{-1}(0)/G
ightarrow M/G$$

- Perlmutter, Sousa-Dias & MR-O '07
 - the cotangent bundle projection $\tau : T^*M \to M$ induces a continuous projection

$$au^0: \mathbf{J}^{-1}(0)/G
ightarrow M/G$$

• M/G has a natural orbit type stratification

$$M/G = \bigsqcup M_{(\kappa)}/G$$

- Perlmutter, Sousa-Dias & MR-O '07
 - the cotangent bundle projection $\tau : T^*M \to M$ induces a continuous projection

$$au^0: \mathbf{J}^{-1}(0)/G o M/G$$

• M/G has a natural orbit type stratification

$$M/G = \bigsqcup M_{(\kappa)}/G$$

• $J^{-1}(0)/G$ has the symplectic stratification

$$\mathbf{J}^{-1}(0)/G = \bigsqcup (\mathbf{J}^{-1}(0) \cap (T^*M)_{(H)})/G$$

- Perlmutter, Sousa-Dias & MR-O '07
 - the cotangent bundle projection $\tau : T^*M \to M$ induces a continuous projection

$$au^0: \mathbf{J}^{-1}(0)/G
ightarrow M/G$$

• M/G has a natural orbit type stratification

$$M/G = \bigsqcup M_{(K)}/G$$

• $J^{-1}(0)/G$ has the symplectic stratification

$$\mathsf{J}^{-1}(0)/G = \bigsqcup(\mathsf{J}^{-1}(0) \cap (\mathcal{T}^*M)_{(H)})/G$$

Question: Is τ^0 a stratified fibration?

- Perlmutter, Sousa-Dias & MR-O '07
 - the cotangent bundle projection $\tau : T^*M \to M$ induces a continuous projection

$$au^0: \mathbf{J}^{-1}(0)/G
ightarrow M/G$$

• M/G has a natural orbit type stratification

$$M/G = \bigsqcup M_{(\kappa)}/G$$

• $J^{-1}(0)/G$ has the symplectic stratification

$$\mathsf{J}^{-1}(0)/G = \bigsqcup(\mathsf{J}^{-1}(0) \cap (\mathcal{T}^*M)_{(H)})/G$$

Question: Is τ^0 a stratified fibration? Answer: NO!

$$\tau^0\left((\mathsf{J}^{-1}(0)\cap(\mathcal{T}^*M)_{(H)})/G\right)=\overline{M_{(H)}/G}$$

Solution: The Coisotropic Stratification

We define the quotient manifolds

$$\mathcal{P}_{K\to H} = \mathsf{J}^{-1}(0) \cap (\mathcal{T}^*M)_{(H)}$$

- E

Solution: The Coisotropic Stratification

We define the quotient manifolds

$$\mathcal{P}_{K\to H} = \frac{\left. \mathsf{J}^{-1}(0) \cap (\mathcal{T}^*M)_{(H)} \cap \mathcal{T}^*M \right|_{M_{(K)}}}{G}$$

- E

Solution: The Coisotropic Stratification We define the quotient manifolds

$$\mathcal{P}_{K\to H} = \frac{\mathbf{J}^{-1}(0) \cap (\mathcal{T}^*M)_{(H)} \cap \mathcal{T}^*M|_{M_{(K)}}}{G}$$

They satisfy the topological properties

•
$$\mathbf{J}^{-1}(0)/G = igsqcup \mathcal{P}_{K
ightarrow H}$$
 is a stratification

• it is a refinement of the symplectic stratification

$$\mathcal{P}_{K \to H} \subset (\mathbf{J}^{-1}(0) \cap (T^*M)_{(H)})/G$$

• $\tau^0: \mathbf{J}^{-1}(0)/G \to M/G$ restricts to a fibration

$$\tau^0: \mathcal{P}_{K \to H} \longrightarrow M_{(K)}/G$$

and the geometric properties

- $\mathcal{P}_{K \to H}$ is a coisotropic submanifold of $(\mathbf{J}^{-1}(0) \cap (\mathcal{T}^*M)_{(H)})/G$
- The leaf space of $\mathcal{P}_{K \to H}$ is symplectomorphic to $(T^*(M_{(K)}/G), \omega_c)$
- In particular P_{K→K} is symplectomorphic to (T*(M_(K)/G), ω_c) and open and dense in (J⁻¹(0) ∩ (T*M)_(K))/G

イロト イポト イヨト イヨト

and the geometric properties

- $\mathcal{P}_{K \to H}$ is a coisotropic submanifold of $(\mathbf{J}^{-1}(0) \cap (\mathcal{T}^*M)_{(H)})/G$
- The leaf space of $\mathcal{P}_{K \to H}$ is symplectomorphic to $(T^*(M_{(K)}/G), \omega_c)$
- In particular P_{K→K} is symplectomorphic to (T*(M_(K)/G), ω_c) and open and dense in (J⁻¹(0) ∩ (T*M)_(K))/G

Via the coisotropic stratification the symplectic quotient $J^{-1}(0)/G$ can be realized as a collection of glued cotangent bundles

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Singular Cotangent Bundle Reduction

Miguel Rodríguez-Olmos (Manchester) Cotangent Bundle Reduction

Singular Sternberg Space

• Perlmutter, Ratiu & MR-O '10

Construction of the singular Sternberg space. Step 1.

Singular Sternberg Space

• Perlmutter, Ratiu & MR-O '10

Construction of the singular Sternberg space. Step 1.

Singular Sternberg Space

• Perlmutter, Ratiu & MR-O '10

Construction of the singular Sternberg space. Step 1.

where we substitute

T*(M/G) → J⁻¹(0)/G with the coisotropic stratification (Satzer)
 M → N*M = ∐ N*M_(K) ⊂ T*M with its orbit type stratification

With these stratifications each arrow is a stratified morphism.

・ 「「」、 ・ 」、 ・ 」、 」

Construction of the singular Sternberg space. Step 2.

The momentum space is \mathfrak{g}^* in the case of free actions

Construction of the singular Sternberg space. Step 2.

The momentum space is \mathfrak{g}^* in the case of free actions

In the case of singular actions $J(T_x^*M) = \mathfrak{g}_x^\circ$. The momentum space is

$$\nu^* = \bigcup_{x \in M} \mathfrak{g}_x^\circ$$

as a singular bundle over M.

- The restriction $\nu^*_{({\cal K})}:=\nu^*\big|_{{\cal M}_{({\cal K})}}$ is a smooth bundle (slice theorem)
- The total momentum space $\nu^* = \bigsqcup \nu_{(K)}$ is endowed with the orbit type stratification

Construction of the Sternberg space. Step 3. Association.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Construction of the Sternberg space. Step 3. Association.

$$S := \widetilde{M} \times_{G} \nu^{*} \qquad \phi_{A} : S \longrightarrow (T^{*}M)/G$$

$$\downarrow_{\pi^{\sharp}}$$

$$J^{-1}(0)/G$$

There is a natural stratification $S = \bigsqcup S^K_{H_2 \to H_1}$ with

$$S = \bigsqcup S_{H_2 \to H_1}^{\mathcal{K}} = \pi^{\sharp}(\mathcal{P}_{H_2 \to H_1}) \times_{\mathcal{G}} (\nu_{(H_2)}^*)_{(\mathcal{K})}$$

イロト 不得下 イヨト イヨト 二日

Construction of the Sternberg space. Step 3. Association.

$$S := \widetilde{M} \times_{G} \nu^{*} \qquad \phi_{A} : S \longrightarrow (T^{*}M)/G$$
$$\bigvee_{\pi^{\sharp}} \mathbf{J}^{-1}(0)/G$$

There is a natural stratification $S = \bigsqcup S^K_{H_2 \to H_1}$ with

$$S = \bigsqcup S_{H_2 \to H_1}^{\mathcal{K}} = \pi^{\sharp}(\mathcal{P}_{H_2 \to H_1}) \times_{\mathcal{G}} (\nu_{(H_2)}^*)_{(\mathcal{K})}$$

satisfying the topological properties

• It is a refinement of the Poisson stratification of $(T^*M)/G$

$$\phi_A(S_{H_2\to H_1}^K) \subset (T^*M)_{(H_1\cap K)}/G$$

• π^{\sharp} over each stratum is a fibration over a coisotropic stratum of $\mathbf{J}^{-1}(0)/G$

$$\pi^{\sharp}: S_{H_2 \to H_1}^{K} \longrightarrow \mathcal{P}_{H_2 \to H_1}$$

and the geometric property

$$S_{H_2 \to H_1}^{K} \hookrightarrow (T^*M)_{(H_1 \cap K)}/G$$

is a backwards Dirac map

< E

and the geometric property

$$S_{H_2 \to H_1}^K \hookrightarrow (T^*M)_{(H_1 \cap K)}/G$$

is a backwards Dirac map

So we realize the singular Poisson quotient space $(T^*M)/G$ as a stratified fiber bundle over the symplectic quotient $J^{-1}(0)/G$ where the total spaces are Dirac submanifolds of the ambient Poisson strata

HAPPY BIRTHDAY TUDOR

Miguel Rodríguez-Olmos (Manchester) Cotangent Bundle Reduction

Image: A matching of the second se