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Abstract

The feasibility pump (FP) [5, 7] has proved to be a successfulheuristic for finding feasible so-
lutions of mixed integer linear problems (MILPs). FP was improved in [1] for finding better
quality solutions. Briefly, FP alternates between two sequences of points: one of feasible so-
lutions for the relaxed problem (but not integer), and another of integer points (but not feasible
for the relaxed problem). Hopefully, the procedure may eventually converge to a feasible and
integer solution. Integer points are obtained from the feasible ones by some rounding procedure.
This short paper extends FP, such that the integer point is obtained by rounding a point on the
(feasible) segment between the computed feasible point andthe analytic center for the relaxed
linear problem. Since points in the segment are closer (may be even interior) to the convex hull
of integer solutions, it may be expected that the rounded point has more chances to become fea-
sible, thus reducing the number of FP iterations. When the selected point to be rounded is the
feasible solution of the relaxation (i.e., one of the two endpoints of the segment), this analytic
center FP variant behaves as the standard FP. Computationalresults show that this variant may
be efficient in some MILP instances.

Key words: Analytic Center, Interior-point Methods, Mixed-integer Linear Programming,
Feasibility Problem, Primal Heuristics

1. Introduction

The problem of finding a feasible solution of a generic mixed integer linear problem (MILP)
of the form

min
x

cT x

s. to Ax= b
x ≥ 0
x j integer ∀ j ∈ I,

(1)

where A∈ R
mxn
,b ∈ R

m
, c ∈ R

n andI ⊆ N = {1, . . . ,n}, is a NP-hard problem. In [5, 7] the au-
thors proposed a new heuristic approach to compute MILP solutions, named thefeasibility pump
(FP). This heuristic turned out to be successful in finding feasible solutions even for some hard
MILP instances. A slight modification of FP was suggested in [1], named theobjective feasibility
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1. initialize t := 0 andx∗ := arg min{cT x : Ax= b, x ≥ 0}
2. if x∗

I
is integerthen return(x∗) end if

3. x̃ := [x∗] (rounding ofx∗)
4. while time< TimeLimit do
5. x∗ := arg min{△ (x, x̃) : Ax= b, x ≥ 0}
6. if x∗

I
is integerthen return(x∗) end if

7. if ∃ j ∈ I : [x∗j ] , x̃ j then
8. x̃ := [x∗]
9. else

10. restart
11. end if
12. t := t + 1
13. end while
14. return(FP failed)

Figure 1: The feasibility pump heuristic (original version)

pump, in order to improve the quality of the solutions in terms of the objective value. The main
difference between both versions is that the objective FP, in contrast to the original version, takes
the objective function of the MILP into account during the course of the algorithm. FP alternates
between feasible (for the linear relaxation of MILP) and integer points, hopefully converging to
a feasible integer solution. The integer point is obtained by applying some rounding procedure
to the feasible solution. This paper suggests an extension of FP where all the points in a feasible
segment are candidates to be rounded. The end points of this segment are the feasible point of the
standard FP and some interior point of the polytope of the relaxed problem, the analytic center
being the best candidate. When the end point of the segment in the boundary of the polytope is
considered for rounding, we obtain the standard FP algorithm. The motivation of this approach
is that rounding a point of the segment closer to the analyticcenter may increase the chances
of obtaining an integer point, in some instances, thus reducing the number of FP iterations. Al-
though interior-point methods have been applied in the pastin branch-and-bound frameworks
for MILP and mixed integer nonlinear problems (MINLP) [3, 4,11, 12], as far as we know this
is the first attempt to apply them to a primal heuristic. The computational results show that, for
some instances, taking a point in the interior of the feasible segment may be more effective than
the standard end point of the objective FP. A recent version of FP [8] introduced a new improved
rounding scheme based on constraint propagation. Althoughin this work we considered as base
code a freely available implementation of the objective FP,the analytic center FP approach could
also be used with the above new rounding scheme.

The paper is organized as follows. The remainder of Section 1reviews the original FP version
of [5, 7] and the modified objective FP of [1]. Section 2 introduces the analytic center FP variant.
Finally, Section 3 reports computational results on a subset of MILP instances from MIPLIB
2003 [2].

1.1. The original feasibility pump

The FP heuristic starts by solving the linear programming (LP) relaxation of (1)

min
x
{cT x : Ax= b, x ≥ 0}, (2)
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and its solutionx∗ is rounded to an integer point ˜x, which may be infeasible for (2). The rounding
x̃ of a givenx∗, denoted as ˜x = [x∗], is obtained by setting ˜x j = [x∗j ] if j ∈ I and x̃ j = x∗j
otherwise, where [¦] represents scalar rounding to the nearest integer. If ˜x is infeasible, FP finds
the closestx∗ ∈ P, where

P = {x ∈ R
n : Ax= b, x ≥ 0}, (3)

by solving the following LP

x∗ = arg min{△ (x, x̃) : Ax= b, x ≥ 0}, (4)

△ (x, x̃) being defined (using theL1 norm) as

△ (x, x̃) =
∑

j∈I

|x j − x̃ j |. (5)

Notice that continuous variables ˜x j , j < I, don’t play any role. If△ (x∗, x̃) = 0 thenx∗j (=x̃ j) is
integer for all j ∈ I, sox∗ is a feasible solution for (1). If not, FP finds a new integer point x̃ from
x∗ by rounding. The pair of points ( ˜x, x∗) with x̃ integer andx∗ ∈ P are iteratively updated at each
FP iteration with the aim of reducing as much as possible the distance△ (x∗, x̃). An outline of the
FP algorithm is showed in Figure 1. To avoid that the procedure gets stuck at the same sequence
of integer and feasible, there is a restart procedure when the previous integer point ˜x is revisited
(lines 7–11 of algorithm of Figure 1). In a restart, a random perturbation step is performed.

The FP implementation has three stages.Stage 1is performed just on the binary variables
by relaxing the integrality conditions on the general integer variables. Instage 2FP takes all
integer variables into account. The FP algorithm exits stage 1 and goes to stage 2 when either
(a) a feasible point with respect to only the binary variables has been found; (b) the minimum
△ (x∗, x̃) was not updated during a certain number of iterations; or (c) the maximum number of
iterations was reached. The point ˜x that produced the smallest△ (x∗, x̃) is stored and passed to
stage 2 as the initial ˜x point. When FP turns out to be unable to find a feasible solutionwithin
the provided time limit, the default procedure of the underlying MILP solver (CPLEX 12 [10] in
this work) is started; this is namedstage 3.

1.2. The modified objective feasibility pump

According to [1], although the original FP heuristic of [5, 7] has proved to be a very suc-
cessful heuristic for finding feasible solutions of mixed integer programs, the quality of their
solutions in terms of objective value tends to be poor. In theoriginal FP algorithm of [5, 7] the
objective function of (1) is only used at the beginning of theprocedure. The purpose of the ob-
jective FP [1] is, instead of instantly discarding the objective function of (1), to consider a convex
combination of it and△ (x, x̃), reducing gradually the influence of the objective term. The hope
is that FP still converges to a feasible solution but it concentrates the search on the region of
high-quality points. The modified objective function△α (x, x̃) is defined as

△α (x, x̃) := (1− α) △ (x, x̃) + α
|| △ ||

||c||
cT x, α ∈ [0,1], (6)

where|| ¦ || is the Euclidean norm of a vector, and△ is the objective function vector of△ (x, x̃)
(i.e., at stage 1 is the number of binary variables, and at stage 2 is the number of integer (both
general integer and binary) variables). At each FP iteration α is geometrically decreased with
a fixed factorϕ < 1, i.e.,αt+1 = ϕαt andα0 ∈ [0,1]. Notice that the original FP algorithm
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is obtained usingα0 = 0. The objective FP algorithm is basically the same as the original FP
algorithm of Figure 1, replacing△ (x, x̃) by △αt (x∗, x̃) at line 5, performing at the beginning the
initialization ofα0, and adding at the end of the loopαt+1 = ϕαt.

2. The analytic center feasibility pump

2.1. The analytic center
Given the LP relaxation (2), its analytic center is defined asthe pointx̄ ∈ P that minimizes

theprimal potential function−
∑n

i=1 ln xi , i.e.,

x̄ = arg min
x
−
∑n

i=1 ln xi

s. to Ax= b
x > 0.

(7)

Note that constraintsx > 0 could be avoided, since the domain of ln are the positive numbers.
Problem (7) is a linearly constrained strictly convex optimization problem. It is easily seen that
the objective function min−

∑n
i=1 ln xi is equivalent to max

∏n
i=1 xi . Therefore, the analytic center

provides the point that maximizes the distance to the hyperplanesxi = 0, i = 1, . . . ,n, and it is
thus expected to be well centered in the interior of the polytope P. We note that the analytic
center is not a topological property of a polytope, and it depends on howP is defined. In this
sense, redundant inequalities may change the location of the analytical center. Additional details
can be found in [13].

The analytic may be computed by solving the KKT conditions of(7)

Ax = b
ATy+ s = 0

xi si = 1 i = 1, . . . ,n
(x, s) > 0,

(8)

y ∈ R
m ands ∈ R

n being the Lagrange multipliers ofAx = b andx > 0 respectively. Alterna-
tively, and in order to use an available highly efficient implementation, the analytic center was
computed in this work by applying a primal-dual path-following interior-point algorithm to the
barrier problem of (2), after removing the objective function term (i.e., settingc = 0):

min
x
−µ
∑n

i=1 ln xi

s. to Ax= b
x > 0,

(9)

whereµ is a positive parameter (the parameter of the barrier) that tends to zero. The arc of
solutions of (9)x∗(µ) is named the central path. The central path converges to theanalytic center
of the optimal set. Whenc = 0 (as in (9)) the central path converges to the analytic center of the
feasible setP [13].

2.2. Using the analytic center in the feasibility pump heuristic
Once the analytic center has been computed, it can be used to (in theory infinitely) increase

the number of feasible points candidates to be rounded. Instead of rounding, at each FP iteration,
the feasible pointx∗ ∈ P, points on the segment

x(γ) = γx̄+ (1− γ)x∗ γ ∈ [0,1] (10)
4



1. initialize t := 0,α0 ∈ [0,1], ϕ ∈ [0,1], andx∗ := arg min{cT x : Ax= b, x ≥ 0}
2. { Beginning of stage 0}
3. compute analytic center ¯x := arg min

{

−
∑n

i=1 ln xi : Ax= b, x > 0
}

4. for γ ∈ [0,1] do
5. x(γ) := γx̄+ (1− γ)x∗

6. x̃(γ) := [x(γ)] (rounding ofx(γ))
7. if x̃(γ) is feasiblethen return(x̃(γ)) end if
8. end for
9. { End of stage 0}

10. select ˜x from the set{x̃(γ)}
11. while time< TimeLimit do
12. x∗ := arg min{△αt (x, x̃) : Ax= b, x ≥ 0}
13. for γ ∈ [0,1] do
14. x(γ) := γx̄+ (1− γ)x∗

15. x̃(γ) := [x(γ)] (rounding ofx(γ))
16. if x̃(γ) is feasiblethen return(x̃(γ)) end if
17. end for
18. select ˆx from the set{x̃(γ)}
19. if x̂I , x̃I then
20. x̃ := x̂
21. else
22. restart
23. end if
24. αt+1 := ϕαt

25. t := t + 1
26. end while
27. return(FP failed)

Figure 2: The analytic center feasibility pump heuristic
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will be considered. Note that the segment is feasible, sinceit is a convex combination of two
feasible points.

The analytic center FP first considers astage 0(which is later applied at each FP iteration)
where severalx(γ) points are tested, fromγ = 0 to γ = 1 (i.e, from x∗ to x̄ ). Eachx(γ) is
rounded to ˜x(γ). If x̃(γ) is feasible, then a feasible integer solution was found andthe procedure
is stopped at the stage 0. Otherwise the algorithm proceeds with the next stage of FP, considering
two different options:

a) using the point ˜x(0) = [x∗] (optionγ = 0);
b) using the point ˜x(γ) that minimizes||x̃(γ) − x(γ)||∞ (optionL∞).

If the first option is applied at each FP iteration, and no feasible x̃(γ) for γ > 0 is found, the
analytic center FP behaves as the standard FP algorithm. In the second option, if no feasible ˜x(γ)
is found, the procedure selects thex(γ) which is closer to [x(γ)] according to theL∞ norm. The
aim is to select the point with more chances to become both integer and feasible, in an attempt
to reduce the number of FP iterations. This second option provided better results in general and
it was used in the computational results of Section 3. It is worth to note that if the rounding of
severalx(γ) points is feasible, the procedure selects the one with a lowerγ, i.e., the one closer to
x∗ (instead of the one closer to the analytic center ¯x), since this point was computed considering
the objective function (forα > 0). An outline of the algorithm is shown in Figure 2.

3. Computational results

The analytic center FP was implemented using the base code ofthe objective FP, freely avail-
able fromhttp://www.or.deis.unibo.it/research_pages/ORcodes/FP-gen.html. The
base FP implementation was extended for computing the analytic center using three different
interior-point solvers, CPLEX [10], GLPK [9] and PCx [6]. The new code can be obtained from
the authors on request. CPLEX integrates better with the rest of the FP code, which also relies
on CPLEX, and it also turned out to be significantly more efficient than GLPK and PCx. On the
other hand, even deactivating all the preprocessing options and removing the crossover postpro-
cess, CPLEX was not always able to provide the analytic center of P because of its aggressive
reduced preprocessing (which can not be deactivated as we were told by CPLEX developers).
For instance, forP = {x :

∑n
i=1 = n, x ≥ 0}, the barrier option of CPLEX did not apply the

interior-point algorithm, not providing an interior solution (i.e., it providedxi = n, x j = 0, j , i),
whereas both GLPK and PCx reported the right analytic centerxi = 1, i = 1, . . . ,n. Of the other
two solvers, PCx turned out to be much more efficient than GLPK. Indeed, PCx may handle
upper bounds implicitly (i.e., 0≤ x ≤ 1 from linear relaxations ofx ∈ {0,1}) in its interior-point
implementation, whereas GLPK transforms the problem to thestandard form (replacingx ≤ 1
by x+ s= 1, s≥ 0), significantly increasing the size of the Newton’s systemto be solved at each
interior-point iteration.

The analytic center FP implementation was applied to a subset of MIPLIB2003 instances,
whose dimensions are shown in Table 1. Columns “rows”, “cols”, “nnz”, “int”, “bin” and “con”
provide respectively the number of constraints, variables, nonzeros, general integer variables, bi-
nary variables, and continuous variables of the instances.Column “objective” shows the optimal
objective function. Unknown optimal objectives are markedwith a “?”.

Table 2 shows the results obtained for the objective FP, the analytic center FP using PCx,
and the analytic center FP using CPLEX-12.1. For each variant, Table 2 reports the number of
FP iterations (columns “niter”), objective value of feasible point found (“fobj”), gap between
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Instance rows cols nnz int bin con objective
10teams 230 2025 12150 0 1800 225 924
a1c1s1 3312 3648 10178 0 192 3456 11503.40
aflow30a 479 842 2091 0 421 421 1158
aflow40b 1442 2728 6783 0 1364 1364 1168
air04 823 8904 72965 0 8904 0 56137
air05 426 7195 52121 0 7195 0 26374
arki001 1048 1388 20439 96 415 877 7580810
atlanta-ip 21732 48738 257532 106 46667 1965 90.00
cap6000 2176 6000 48243 0 6000 0 -2451380
dano3mip 3202 13873 79655 0 552 13321 ?
danoint 664 521 3232 0 56 465 65.66
disctom 399 10000 30000 0 10000 0 -5000
ds 656 67732 1024059 0 67732 0 93.52
fast0507 507 63009 409349 0 63009 0 174
fiber 363 1298 2944 0 1254 44 405935
fixnet6 478 878 1756 0 378 500 3983
gesa2-o 1248 1224 3672 336 384 504 25779900
gesa2 1392 1224 5064 168 240 816 25779900
glass4 396 322 1815 0 302 20 1200010000
harp2 112 2993 5840 0 2993 0 -73899800
liu 2178 1156 10626 0 1089 67 ?
manna81 6480 3321 12960 3303 18 0 -13164
markshare1 6 62 312 0 50 12 1
markshare2 7 74 434 0 60 14 1
mas74 13 151 1706 0 150 1 11801.20
mas76 12 151 1640 0 150 1 40005.10
misc07 212 260 8619 0 259 1 2810
mkc 3411 5325 17038 0 5323 2 -563.84
mod011 4480 10958 22254 0 96 10862 -54558500
modglob 291 422 968 0 98 324 20740500
msc98-ip 15850 21143 92918 53 20237 853 19839500
mzzv11 9499 10240 134603 251 9989 0 -21718
mzzv42z 10460 11717 151261 235 11482 0 -20540
net12 14021 14115 80384 0 1603 12512 214
noswot 182 128 735 25 75 28 -41
nsrand-ipx 735 6621 223261 0 6620 1 51200
nw04 36 87482 636666 0 87482 0 16862
opt1217 64 769 1542 0 768 1 -16
p2756 755 2756 8937 0 2756 0 3124
pk1 45 86 915 0 55 31 11
pp08aCUTS 246 240 839 0 64 176 7350
pp08a 136 240 480 0 64 176 7350
protfold 2112 1835 23491 0 1835 0 -31
qiu 1192 840 3432 0 48 792 -132.87
roll3000 2295 1166 29386 492 246 428 12890
rout 291 556 2431 15 300 241 1077.56
set1ch 492 712 1412 0 240 472 54537.80
seymour 4944 1372 33549 0 1372 0 423
sp97ar 1761 14101 290968 0 14101 0 660706000
swath 884 6805 34965 0 6724 81 467.40
timtab1 171 397 829 94 64 239 764772
timtab2 294 675 1482 164 113 398 1096560
tr12-30 750 1080 2508 0 360 720 130596
vpm2 234 378 917 0 168 210 13.75
?: Unknown value

Table 1: Characteristics of the subset of MILP instances from MIPLIB 2003
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the feasible and the optimal solution (“gap%”), and FP stagewhere the feasible point was found
(“stage”). For the objective FP, the column “tt” shows the total CPU time. For the two analytic
center FP variants, columns “tFP(tAC))” report separatelythe CPU time spent in stages 1 to 3
(“tFP”) and the time for computing the analytic center at stage 0 (in brackets, “tAC”); the total
time is the sum of the two values. For the two analytic center FP variants columns “AC value”
show the value of the original objective function evaluatedat the analytic center. Differences are
due to different computed analytic centers because both solvers applyvery distinct preprocessing
strategies. The default FP settings were used as suggested in [1]. All runs were carried on a Dell
PowerEdge 6950 server with four dual core AMD Opteron 8222 3.0 GHZ processors (without
exploitation of parallelism capabilities) and 64 GB of RAM.

Although from Table 2, in general it can be concluded that theanalytic center FP is inferior
to the objective FP, there are some notable exceptions. For instance, for the 13 instances with
both binary and general integer variables, the analytic center FP (either with PCx or CPLEX)
obtained a solution with a lower gap than the objective FP in eight of the 13 instances; in some
cases more efficiently and even being able to find a solution when the objective FP failed (i.e., it
required stage 3), as for instances “roll3000” and “atlanta-ip” (in this latter case, however, at the
expense of a very large CPU time). On the other hand, for problems with only binary variables
the analytic center FP obtained solutions with a lower gap invery few instances. A possible
explanation of this different behaviour in problems with and without general integer variables is
that, for a binary problem, the only feasible integer points“close” to the segmentx(γ) are{0,1}n,
which in addition may be far from the center. For problems with general integer variables, the
number of feasible integer solutions close to the analytic center will be, in general, much larger.
For some problems with only integer binary variables, the analytic center FP behaved very poorly,
as for “mas74” and “mas76” (it stopped at stage 0 in those cases). However, in other instances
it was much more efficient obtaining the same gap that the objective FP, as for “ds”. Note that
for “ds” the analytic center FP with CPLEX obtained the feasible solution in one second at stage
0 (the other two variants failed, requiring stage 3). However, in that case CPLEX did not really
compute the analytic center: it solved minx{0 : x ∈ P} heuristically, instead of applying the
barrier algorithm, as required. It thus considered a segment between two feasible solutions, none
of them being the analytic center ofP. Therefore, the idea of using a segment of feasible points is
not restricted to the case where one of the endpoints is the analytic center, and it can be extended
to more general situations.

4. Conclusions

The analytic center FP is an extension of the original FP where candidate points to be rounded
are found in a segment of feasible points, one of the extremesbeing the analytic center. The
objective FP is a particular case where the endpoint associated to the solution of the relaxed
problem is selected as the point to be rounded. The analytic center FP has not been shown to
outperform the objective FP, in general. However for problems with both general integer and
binary variables, and for some particular binary problems,it may result in more efficient and
lower gap solutions. The analytic center FP could also be used with the recent rounding scheme
based on constraint propagation suggested in [8].
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