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Abstract

The study of periodic solutions with constant sign in the Abel equation of the second kind can be made through
the equation of the first kind. This is because the situation is equivalent under the transformationx 7→ x−1, and there
are many results available in the literature for the first kind equation. However, the equivalence breaks down when
one seeks for solutions with nonconstant sign. This note is devoted to periodic solutions with nonconstant sign in
Abel equations of the second kind. Specifically, we obtain sufficient conditions to ensure the existence of a periodic
solution that shares the zeros of the leading coefficient of the Abel equation. Uniqueness and stability features of such
solutions are also studied.
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1. Introduction

Abel Ordinary Differential Equations (ODE) of the second kind [1],

[b0(t) + b1(t)x] ẋ = a0(t) + a1(t)x+ a2(t)x2, ai(t), bi(t) ∈ C([0,T]), (1)

can be regarded as a generalization of Riccati’s equation [1]. This family of equations deserves special interest in the
applied mathematics field because it appears in different contexts, running from control problems [2] to mathematical
physics and nonlinear mechanics issues [1, 3]. It is also remarkable that a class of Abel equations of the first kind [1]
can be written as (1) with the change of variablesx 7→ x−1.

Indeed, polynomial differential equations of the type

ẋ =
n
∑

i=0

ai(t)xi , ai(t) ∈ C([0,T]), i = 0, . . . , n, (2)

are also known as Abel-like [4] or generalized Abel [5] equations because, whenn = 3, (2) is an Abel ODE of the
first kind. The existence of periodic solutions in (2), i.e. solutions verifyingx(0) = x(T), has attracted considerable
research effort: see, for example, [4, 5, 6, 7, 8, 9, 10, 11] and referencestherein. This is mainly due to its relation with
the number of limit cycles of planar polynomial systems and,therefore, with Hilbert’s 16th problem [12]. Contrarily,
few results regarding periodic solutions in Abel ODE of the second kind have been published [2, 13, 14].

Notice that the change of variablesx 7→ x+ b0/b1 allows to recast (1) as

xẋ = A(t) + B(t)x+C(t)x2, A, B,C ∈ C([0,T]). (3)

∗Corresponding Author. Tel.+34-934054243, Fax.+34-934011713.
Email addresses:josep.olm@upc.edu (Josep M. Olm),xavier.ros.oton@upc.edu (Xavier Ros-Oton),tere.m-seara@upc.edu (Tere

M. Seara)
1Partially supported by the spanish Ministerio de Ciencia e Innovación (MICINN) under project DPI2010-15110 and also through the Programa

Nacional de Movilidad de Recursos Humanos of the Plan Nacional de I+D+i 2008-2011.
2Partially supported by the spanish Ministerio de Educación (MEC) under project MTM2008-06349 C03 01.

Preprint submitted to Journal of Mathematical Analysis andApplications February 23, 2011

*Manuscript



The transformation being time-preserving, the study of periodic solutions in (1) and (3) wheneverb1 has constant
sign, i.e.b1(t) , 0, for all t, is equivalent.

The existence of nontrivial periodic solutions of constantsign in (3) may be carried out after transforming it into
the Abel equation of the first kind

ẋ = A(t)x3 + B(t)x2 +C(t)x (4)

using the aforementioned changex 7→ x−1, which keeps the equivalence between these class of solutions in (3) and
(4). Different conditions are available in the literature yielding to upper and/or lower bounds on the number of periodic
solutions of (4) or (2)-like Abel ODE with more or less generic coefficients. The results cover from the simplest case,
A(t) , 0, for all t, in (4) [7, 13] oran(t) , 0, for all t, in (2) [5], to the most complex in which no sign condition is
assumed on the coefficients [8, 11], going through situations in which some of thecoefficients, oftenA(t) or an(t), are
demanded not to change sign [4, 6, 7, 9, 10].

The study of periodic solutions of (3) with nonconstant signis also a challenging problem that can not be tackled
via the Abel ODE of the first kind and about which, as far as the authors know, no results have been yet reported.
Notice also that if a solution of (3) has nonconstant sign, then its zeros are also zeros ofA(t). Hence, the search of
periodic solutions in (3) with nonconstant sign only makes sense whenA(t) itself has nonconstant sign.

This note deals with the existence of this type of periodic solutions in Abel equations of the second kind. The
main result reads as follows:

Theorem 1. Let A(t), B(t),C(t) beC1, T -periodic functions. If A(t) has at least one zero in[0,T] and

min |B(t)|2 > −4 minȦ(t) · [1 + T max|C(t)|] , (5)

then (3) has a T-periodic solution that has the sign of−A(t)B(t), and it is alsoC1.

Furthermore, such solutions are shown to be the uniqueT-periodic solutions of (3) with nonconstant sign. In some
cases, it is proved that there exists only one solution of this type. Also, a stability analysis reveals that these solutions
are unstable. These results are later applied to the normal form of the Abel ODE of the second kind, which is obtained
settingB(t) = 1 andC(t) = 0 in (3). For this case, restriction (5) is shown to be sharp.

The remainder of the paper is organized as follows. Section 2is devoted to the proof of Theorem 1. Section 3 deals
with the uniqueness and stability of the periodic solutionsof (3) with nonconstant sign. Finally, Section 4 considers
the application of the previous results to the normal form ofthe Abel ODE of the second kind.

2. Proof of Theorem 1

Firstly, let us establish a generic and rather straightforward result that will be used in subsequent demonstrations.

Lemma 1. Consider the ODE
ẋ = S(t, x), S : Ω→ R, (6)

whereΩ := R × R
∗, R∗ = R \ {0} and S is a locally Lipschitz function. Assume that m, n ∈ R and let r :=

{(t, x) : x = mt+ n} be a straight line of slope m, which splitsR2 into the half planesΩ+r = {(t, x) : x > mt+ n},
Ω−r = {(t, x) : x < mt+ n}. Finally, let t1, t2 ∈ R, with t1 < t2.

(i) Assume that S(t, x) > m for all (t, x) ∈ [t1, t2) × R
∗ ∩ r. Then, any maximal solution x(t) of (6) defined for all

t ∈ Iω ⊆ R with (t1, x(t1)) ∈ Ω+r is such that(t, x(t)) ∈ Ω+r , for all t ∈ (t1, t2) ∩ Iω.

(ii) Assume that S(t, x) < m for all (t, x) ∈ [t1, t2) × R
∗ ∩ r. Then, any maximal solution x(t) of (6) defined for all

t ∈ Iω ⊆ R with (t1, x(t1)) ∈ Ω−r is such that(t, x(t)) ∈ Ω−r , for all t ∈ (t1, t2) ∩ Iω.

Proof. (i) Notice that if (t1, x(t1)) ∈ Ω+r then, by continuity, fort close enough tot1 it happens that (t, x(t)) ∈ Ω+r : for
(t1, x(t1)) ∈ Ω+r it is rather immediate, while for (t1, x(t1)) ∈ r the claim follows because ˙x(t1) > m.

Assume thatx(t) contactsr for the first time in (t1, t2) at t = c > t1, i.e. that (c, x(c)) ∈ r. Then,x(c) = mc+ n, and
x(t) > mt+ n for t1 < t < c, so

ẋ(c) = lim
t→c−

x(t) − x(c)
t − c

≤ lim
t→c−

mt+ n− (mc+ n)
t − c

= m,
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which contradicts the hypothesis ˙x(c) = S(c, x(c)) > m. Hence,x(t) can not contact againr and, therefore, it remains
in Ω+r for all t ∈ (t1, t2) ∩ Iω.

The proof of (ii) is analogous.

The hypotheses of Theorem 1 are assumed to be fulfilled throughout the rest of the section. Furthermore, the
T-periodicity andC1 character ofA(t) implies that minȦ(t) ≤ 0. Hence, it is immediate from (5) thatB(t) , 0 for all
t. Thus, using the change of variablesx 7→ −x if necessary, it is no loss of generality to assumeB(t) > 0, for all t, for
the remainder of the section.

Theorem 1 considers a case in whichA(t) has nonconstant sign. The next Lemmas study the behavior ofthe
solutions of (3) in an open interval (a, b) whereA(t) > 0, a, b being two consecutive zeros ofA(t).

Remark 1. Notice that there is no loss of generality in assuming A(t) > 0 in (a, b) because, otherwise, the change of
variables(t, x) 7→ (−t,−x) reduces (3) to

xẋ = Â(t) + B̂(t)x+ Ĉ(t)x2,

with Â(t) = −A(−t), B̂(t) = B(−t) andĈ(t) = −C(−t), for all t ∈ (a, b).

Lemma 2. If (5) is satisfied, then
min |B(t)|2 > 2 max|A(t)| ·max|C(t)|, (7)

Proof. Recalling that miṅA(t) ≤ 0, (5) yields

min |B(t)|2 > −4 minȦ(t) · [1 + T max|C(t)|] ≥ −2T min Ȧ(t) max|C(t)|.

Then, it is sufficient to prove that
−T min Ȧ(t) ≥ max|A(t)|. (8)

For, lett0 ∈ R be such that|A(t0)| = max|A(t)|, and lett1, t2 be zeros ofA(t) such thatt0 − T < t1 ≤ t0 ≤ t2 < t0 + T.
Then, applying the Mean Value Theorem,

A(t0) = A(t0) − A(t1) = (t0 − t1)Ȧ(ξ1) ≥ T min Ȧ(t)

−A(t0) = A(t2) − A(t0) = (t2 − t0)Ȧ(ξ2) ≥ T min Ȧ(t),

from which we deduce (8) and therefore (7).

Lemma 3. Let a, b ∈ R be such that A(a) = A(b) = 0, with A(t) > 0, for all t ∈ (a, b). Then, any negative solution x(t)
of (3) defined on[t1, t2), t1 ≥ a, can be extended to[t1, b).

Proof. The ODE (3) can be written as

ẋ = S(t, x) =
A(t)

x
+ B(t) +C(t)x (9)

in the domainΩ− := R × R−. Let x(t) be a solution withx(t1) < 0 and maximal interval of definitionIω = (ω−, ω+),
with ω− < t1. Let us assume thatω+ < b and proceed by contradiction.

As ω+ < b, t → ω+ implies that eitherx(t) → −∞ or x(t) → 0. Let us first see that it is not possible to have
x(t) → −∞. For, let us selectM ∈ R

+ and let us define the straight linerM := {(t, x) : x + M = 0}. If C . 0, the
selection

M =

√

max|A(t)|
max|C(t)|

and relation (7) in Lemma 2 indicate that

S(t, x) = −
A(t)
M
+ B(t) +C(t)M > 0, ∀ (t, x) ∈ Iω × R

− ∩ rM . (10)
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Alternatively, ifC ≡ 0, the selection of a sufficiently largeM also yields (10). In any case, by Lemma 1.i,x(t)+M > 0,
for all t ∈ (t1, ω+), sox(t) 9 −∞ for t → ω+ < b.

Let us now see that it cannot bex(t) → 0 for t → ω+ < b. For, let us takec ∈ R, t1 < c < ω+ and selectN ∈ R+

small enough, in such a way that

S(t, x) = −
A(t)
N
+ B(t) +C(t)N < 0, ∀t ∈ [c, ω+] .

Then, definingrN := {( t, x) : x + N = 0}, it is immediate thatS(t, x) < 0, for all (t, x) ∈ [c, ω+] × R
− ∩ rN and, by

Lemma 1.ii,x(t) + N < 0 for t ∈ (c, ω+), i.e. x(t) 9 0.
Consequently, it has to beω+ ≥ b and the solutionx(t) is defined in [t1, b).

Lemma 4. Let a, b ∈ R be such that A(a) = A(b) = 0, with A(t) > 0, for all t ∈ (a, b). Then, there exists aC1 solution
x∗(t) of (3) in (a, b), which is negative and such that

x∗(t)→ 0 and ẋ∗(t)→
B(a)

2
−

√

B(a)2

4
+ Ȧ(a) when t→ a+.

Proof. The introduction of a new variables allows to transform (3) in the following planar, generalized Liénard
system [17]:

dt
ds

= x, (11)

dx
ds

= A(t) + B(t)x+C(t)x2. (12)

Notice that, whenx , 0, the portrait of the integral curves of (3) and the phase plane of (11)-(12) are coincident,
preserving the orientation ifx > 0 and reversing it ifx < 0.

SinceA(a) = 0 andA > 0 in (a, b), it results thatȦ(a) ≥ 0. Let us study these two cases:

(i) If Ȧ(a) > 0, then (t, x) = (a, 0) is a hyperbolic critical point, indeed a saddle, of (11)-(12). The eigenvalues are:

λa
± =

B(a)
2
±

√

B(a)2

4
+ Ȧ(a),

with λa
± ∈ R because of (5), the associated invariant subspaces of the linearized system being

E
a
+ = E

a
u = span

{(

1, λa
+

)}

, E
a
− = E

a
s = span

{(

1, λa
−

)}

.

Hence, by the Stable Manifold Theorem [15], there exists a uniqueC1 invariant stable manifold, tangent toEa
s at (a, 0),

with slopeλa
−, i.e. lying on the subsetsA+ := {(t, x) : t < a, x > 0} andA− := {(t, x) : t > a, x < 0} whent , a. The

branch of the manifold that lies inA+ is a positive,C1 solutionx∗(t) of (3) in (a− ǫ, a), ǫ > 0, that satisfiesx∗(t)→ 0
andẋ∗(t)→ λa

− whent → a−. Equivalently, the branch inA− is a negative,C1 solutionx∗(t) of (3) in (a, a+ ǫ), ǫ > 0,
that satisfiesx∗(t)→ 0 andẋ∗(t)→ λa

− whent→ a+.

(ii) If Ȧ(a) = 0, then (t, x) = (a, 0) is a non-hyperbolic critical point with eigenvalues

λa
u = B(a), λa

c = 0,

the associated invariant subspaces of the linearized system being

E
a
u = span{(1, B(a))}, E

a
c = span{(1, 0)}.

Hence, by the Center Manifold Theorem [16], there exists a (not necessarily unique)C1, invariant center manifold,
tangent toEc at (a, 0).

4



Let us finally see that this orbit lies onA−, which means that it matches a negative,C1 solutionx∗(t) of (3) that
satisfiesx∗(t) → 0 and ẋ∗(t) → 0 whent → a+. Let us denote this orbit asx = h(t), with h(a) = ḣ(a) = 0 and
satisfying

h(t)(C(t)h(t) + B(t) − ḣ(t)) = −A(t).

As C(a)h(a)+ B(a) − ḣ(a) = B(a) > 0, thenC(t)h(t) + B(t) − ḣ(t) > 0 for t − a small enough; consequently,h and−A
have the same sign in a neighborhood of (a, 0), soh(t) < 0 for 0< t − a << 1.

Finally notice that, by Lemma 3, thisC1 solutionx∗(t) is defined in (a, b), which completes the proof.

Lemma 5. Let a, b ∈ R be such that A(a) = A(b) = 0, with A(t) > 0, for all t ∈ (a, b). Then, there exists aC1 solution
x∗(t) of (3) in (a, b), which has the sign of−A(t), and is such that

x∗(t)→ 0 and ẋ∗(t)→
B(a)

2
−

√

B(a)2

4
+ Ȧ(a) when t→ a+,

x∗(t)→ 0 and ẋ∗(t)→
B(b)

2
−

√

B(b)2

4
+ Ȧ(b) when t→ b−.

Proof. Let x∗(t) be the solution of (3) featured in Lemma 4. Then, it remains to be proved the behavior fort → b−.
Firstly, for all t ∈ (a, b), the Mean Value Theorem ensures that there existsξ ∈ (t, b) such thatA(t) = Ȧ(ξ)(t − b).

Let nowrb be the straight linerb := {(t, x) : x = α(t − b)}, where

α =

√

−min Ȧ(t)
1+ T max|C(t)|

.

Then, for allt ∈ (a, b) such that (t, x) ∈ rb,

S(t, x) =
A(t)

x
+ B(t) +C(t)x

≥
Ȧ(ξ)(t − b)
α(t − b)

+min |B(t)| − αT max|C(t)|

≥ α +min |B(t)| − α(1+ T max|C(t)|) +
min Ȧ(t)
α

= α +min |B(t)| − 2
√

−min Ȧ(t)(1+ T max|C(t)|) > α,

where in the last inequality we have used condition (5). As, by Lemma 4,x∗(t) → 0 whent → a+, Lemma 1.i
guarantees thatx∗(t) > α(t − b) for all t ∈ (a, b). But sincex∗(t) is negative in (a, b), thenα(t − b) < x∗(t) < 0 and,
taking limits fort → b−, it is immediate thatx∗(t)→ 0.

Secondly, consider the equivalent expression of (3) in terms of the planar, autonomous system (11)-(12). Since
A(b) = 0 andA(t) > 0 in (a, b), it results thatȦ(b) ≤ 0. Let us then split the study in two cases:

(i) If Ȧ(b) < 0, then (t, x) = (b, 0) is a hyperbolic critical point of (11)-(12). The eigenvalues are:

λb
± =

B(b)
2
±

√

B(b)2

4
+ Ȧ(b),

with λb
± ∈ R

+ because of (5), the associated invariant subspaces of the linearized system being

R
2 = E

b
u = span

{(

1, λb
−

)

,
(

1, λb
+

)}

.

Hence, it is an unstable node and, int = b, all the orbits are tangent to one of the two eigenvectors that spanEb
u. It is

then immediate that the solutionx∗(t) of (3), which is known to satisfyx∗(t) > α(t − b), matches one of these orbits.
Therefore, fort close enough tob it has to be ˙x∗(t) < α and, as it can be easily proved thatλb

− < α < λ
b
+, it results that

ẋ∗(t)→ λb
− =

B(b)
2
−

√

B(b)2

4
+ Ȧ(b) when t→ b−.
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(ii) If Ȧ(b) = 0, the situation is equivalent to the caseȦ(a) = 0 discussed in the proof of Lemma 4. Namely,
(t, x) = (b, 0) is a non-hyperbolic critical point with eigenvalues

λb
u = B(b), λb

c = 0,

the associated invariant subspaces of the linearized system being

E
b
u = span{(1, B(b))}, E

b
c = span{(1, 0)}.

A technique similar to the one followed in the preceding itemshows that ˙x∗(t)→ 0 whent → b−.

Let us now proceed with the proof of Theorem 1. AsA(t) has, at least, one zero in [0,T] by hypothesis, lett0 ∈ R
be such thatA(t0) = 0. Then, we define

Z := {t ∈ [t0, t0 + T] : A(t) = 0}.

LetP andN denote the sets of maximal intervals in [t0, t0 + T] whereA(t) is positive and negative, respectively. Let
thenI i = (ai, bi), ai, bi ∈ Z, denote an interval ofP∪N. Lemma 5 and Remark 1 ensure that, for everyI i , there exists
aC1 solutionx∗i (t) of (3) on I i , which has the sign ofA(t) in I i , and is such thatx∗i (t)→ 0 whent→ a+i and also when
t→ b−i . Hence, the function constructed as

x∗(t) =

{

x∗i (t) if t ∈ I i

0 if t ∈ Z,
(13)

is indeed a continuous solution of (3) inR which is alsoC1 in every open intervalI i . Let us finally prove thatx∗(t) is
C1 for all ti ∈ Z. Three different situations need to be considered:

(i) If Ȧ(ti) > 0 then the graph ofx∗(t) in a neighborhood ofti is the orbit of the (unique) stable manifold of
(11)-(12), sox∗(t) isC1 in ti (see the discussion in the proof of Lemma 4 for the caseȦ(a) > 0).

(ii) If Ȧ(ti) = 0, then the graph ofx∗(t) in a neighborhood ofti is the orbit of a center manifold of (11)-(12), so
x∗(t) isC1 in ti (see the discussion in the proof of Lemma 4 for the caseȦ(a) = 0).

(iii) If Ȧ(ti) < 0, then the graph ofx∗(t) in a neighborhood ofti matches an orbit of (11)-(12) with slope

ẋ∗(ti) =
B(ti)

2
−

√

B(ti)2

4
+ Ȧ(ti),

sox∗(t) isC1 in ti (see the discussion in the proof of Lemma 5 for the caseȦ(b) < 0).
Finally, theT-periodic extension ofx∗ is aC1 solution of (3) defined inR, which completes the proof.

Remark 2. Notice that if A(t) has degenerate zeros, then the construction of the solutionx∗(t) requires the use of the
Center Manifold Theorem. This means that, in such a case, there may exist a family of periodic solutions of (3) with
the same sign as−A(t)B(t).

3. Uniqueness and stability

The next result reveals that theT-periodic solution(s) with non constant sign that arise from Theorem 1 are unique,
in the sense that there do not exist otherT-periodic solutions with nonconstant sign in (3) sharing only some of the
zeros ofA(t).

Theorem 2. Let the assumptions of Theorem 1 be fulfilled. Then, all T -periodic solutions of (3) with nonconstant
sign have the sign of−A(t)B(t). Moreover, if all the zeros of A(t) are simple, then (3) has a uniqueC1, T -periodic
solution with nonconstant sign.
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Proof. Let x(t) be a solution of (3) with nonconstant sign and non identically 0 (otherwise the result is trivial). As
stated in Section 1, the zeros ofx(t) are also zeros ofA(t). Then, letI = (a, b) be an interval wherex(t) , 0, for all
t ∈ I , and such thatx(a) = x(b) = 0. It is no loss of generality to assume thatx(t) < 0 in I (see Remark 1), which
yields ẋ(a) ≤ 0. Let us consider three cases:

(i) If Ȧ(a) > 0, it has been noticed in the proof of Lemma 4 that (11)-(12) posesses two invariant manifolds in (a, 0),
a stable one and an unstable one, with negative and positive slopes, respectively. Asx(t) has non positive derivative in
t = a, it has to coincide with the solution curve corresponding tothe stable manifold orbit and, consequently, with the
periodic solution with nonconstantx∗(t) guaranteed by Theorem 1, fromt = a to the next zero ofA(t), and this zero
has to be int = b.

(ii) If Ȧ(a) = 0, it has been noticed in the proof of Lemma 4 that (11)-(12) possesses two invariant manifolds in
(a, 0), a (non necessarily unique) center one and an unstable one, with null and positive slopes, respectively. Asx(t)
has non positive derivative int = a, it has to coincide with one of the solution curves corresponding to the center
manifold and, consequently, with the periodic solution with nonconstantx∗(t) guaranteed by Theorem 1, fromt = a
to the next zero ofA(t), and this zero has to be int = b.

(iii) If Ȧ(a) < 0, it has been noticed in the proof of Lemma 4 that (11)-(12) possesses an unstable node in (a, 0),
and also that all the solutions tending to this point have positive slope. This is in contradiction with ˙x(a) ≤ 0, which
means that there cannot exist a solution of (3) verifying ˙x(a) ≤ 0 andȦ(a) < 0.

It is therefore proved thatx(t) = x∗(t), for all t such thatx(t) , 0. Furthermore, whenx(t) = 0, thenA(t) = 0 and
x∗(t) = 0, which implies thatx(t) = x∗(t), for all t ∈ R.

Finally, when all the zeros ofA(t) are simple, the uniqueness of the Stable Manifold (see the proof of Lemma 4)
yields the existence of a uniqueT-periodic solution,x∗(t), with nonconstant sign.

The instability of theT-periodic solutions of (3) with nonconstant sign is claimedin next Theorem:

Theorem 3. Let the assumptions of Theorem 1 be fulfilled. Then, anyC1, T -periodic solution of (3) with nonconstant
sign is unstable.

Proof. Assume thatB(t) > 0, for all t, which is no loss of generality. LetI = (a, b) ∈ P, i.e. an interval such that
A(t) > 0, for all t (in case thatA(t) ≤ 0, for all t, use the change of variables (t, x) 7→ (−t,−x) suggested in Remark 1).
Theorems 1 and 2 ensure that anyT-periodic solution of (3) with nonconstant sign has the signof −A(t). Hence, let
x∗(t) denote one of these solutions, which satisfiesx∗(t) < 0, for all t ∈ I .

Let xa ∈ R
+ and consider the straight linerxa := {(t, x) : x− xa = 0}. It is rather immediate that there exists an

open intervalJ ⊆ R
+ such that, for allxa ∈ J,

S(t, x) =
A(t)
xa
+ B(t) +C(t)xa > 0, ∀(t, x) ∈ [a, b) × R+ ∩ rxa.

Therefore, by Lemma 1.i, any solutionx(t, xa) of (3) with x(a) = xa ∈ J is strictly positive for allt ∈ I . As a
consequence,|x(t, xa) − x∗(t)| > |x∗(t)| in I , which yields the instability ofx∗(t).

Remark 3. When t = a is a simple zero of A(t), the behavior of the solutions brought out in Theorem 3 arises
immediately from the fact that, in such a case,(a, 0) is a saddle point of the corresponding two-dimensional system
(11)-(12).

4. An example case: the normal form

The normal form of Abel equations of the second kind is of the form

xẋ = A(t) + x. (14)

This type of ODE is specially important because the generic Abel equation of the second kind (3) is readily trans-
formable to (14) with a change of variables that, however, does not preserve time [1].
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Proposition 1. Let A(t) be aC1, T -periodic function. If A(t) has at least one zero in[0,T] and

min Ȧ(t) > −
1
4
, (15)

then (14) has, at least, one T-periodic solution, x∗(t), that has the sign of−A(t), and it is alsoC1 and unstable.
Furthermore, if all the zeros of A(t) are simple, then x∗(t) is the unique T-periodic solution of (14) with nonconstant
sign. Additionally, if

∫ T

0
A(t)dt = 0, (16)

then (14) has no other periodic solutions but x∗(t).

Proof. The first part is straightforward from Theorems 1, 2 and 3.
The last part of the statement follows if one can ensure that,when (16) is assumed, (14) has noT-periodic solutions

with constant sign. For, the change of variablesx 7→ x−1 and Theorem 2.1 in [9] guarantee the nonexistence of positive
periodic solutions in (14). An equivalent conclusion for negative periodic solutions follows usingx 7→ −x−1.

Remark 4. It is worth mentioning that restriction (15) is sharp. For, recall from Section 2 that ti denotes an element of
Z, the set of time instants where A(t) vanishes. Then, notice that ifȦ(ti) < −1/4, the phase plane point(ti , 0) becomes
a focus of (11)-(12), which implies that there can not exist any solution x(t) of (14) such that x(ti) = 0.
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