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Abstract

The study of periodic solutions with constant sign in the idmpuation of the second kind can be made through
the equation of the first kind. This is because the situatceuivalent under the transformatior- x1, and there
are many results available in the literature for the firstikéguation. However, the equivalence breaks down when
one seeks for solutions with nonconstant sign. This notew®igd to periodic solutions with nonconstant sign in
Abel equations of the second kind. Specifically, we obtaiificent conditions to ensure the existence of a periodic
solution that shares the zeros of the leadingitcient of the Abel equation. Uniqueness and stability feegwf such
solutions are also studied.
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1. Introduction

Abel Ordinary Diferential Equations (ODE) of the second kind [1],
[bo(t) + b1()X] X = @o(t) + au(t)x + &2(t)%%,  a(t), bi(t) € C([0, T)), 1)

can be regarded as a generalization of Riccati's equatiori fiis family of equations deserves special interest in the
applied mathematics field because it appearsfiieidint contexts, running from control problems [2] to math&oal
physics and nonlinear mechanics issues [1, 3]. It is als@rkable that a class of Abel equations of the first kind [1]
can be written as (1) with the change of variabtes x*.

Indeed, polynomial dferential equations of the type

x= Y aMx, a®ec(.T). i=0...n, 2
i=0

are also known as Abel-like [4] or generalized Abel [5] edurad because, whem = 3, (2) is an Abel ODE of the
first kind. The existence of periodic solutions in (2), i.elutions verifyingx(0) = x(T), has attracted considerable
research &ort: see, for example, [4, 5, 6, 7, 8, 9, 10, 11] and referetiemsin. This is mainly due to its relation with
the number of limit cycles of planar polynomial systems ahdrefore, with Hilbert's 16th problem [12]. Contrarily,
few results regarding periodic solutions in Abel ODE of teeand kind have been published [2, 13, 14].

Notice that the change of variablgs—> x + bg/b; allows to recast (1) as

xx = A(t) + B(t)x+ C()x%, A, B,C e ([0, T)). (3)
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The transformation being time-preserving, the study ofgaic solutions in (1) and (3) whenevbi has constant
sign, i.e.by(t) # 0, for allt, is equivalent.
The existence of nontrivial periodic solutions of constsigh in (3) may be carried out after transforming it into
the Abel equation of the first kind
x = A()X + B() X% + C(t)x (4)

using the aforementioned change- x~*, which keeps the equivalence between these class of suliti(3) and
(4). Different conditions are available in the literature yieldmgpper antbr lower bounds on the number of periodic
solutions of (4) or (2)-like Abel ODE with more or less gemarodiicients. The results cover from the simplest case,
A(t) # 0, for all t, in (4) [7, 13] oran(t) # O, for allt, in (2) [5], to the most complex in which no sign condition is
assumed on the cficients [8, 11], going through situations in which some oftbeficients, oftenA(t) or a(t), are
demanded not to change sign [4, 6, 7, 9, 10].

The study of periodic solutions of (3) with nonconstant sigalso a challenging problem that can not be tackled
via the Abel ODE of the first kind and about which, as far as théhars know, no results have been yet reported.
Notice also that if a solution of (3) has nonconstant sigantiis zeros are also zeros Aft). Hence, the search of
periodic solutions in (3) with nonconstant sign only makesse wher(t) itself has nonconstant sign.

This note deals with the existence of this type of periodiatians in Abel equations of the second kind. The
main result reads as follows:

Theorem 1. Let At), B(t), C(t) beC?, T-periodic functions. If &) has at least one zero {®, T] and
min|B(t)]> > =4 minA(t) - [1 + T max|C(t)]], (5)
then (3) has a T -periodic solution that has the sigr-8{t)B(t), and it is alsoC*.

Furthermore, such solutions are shown to be the unigperiodic solutions of (3) with nonconstant sign. In some
cases, it is proved that there exists only one solution sftifpe. Also, a stability analysis reveals that these smhsti
are unstable. These results are later applied to the noomaldf the Abel ODE of the second kind, which is obtained
settingB(t) = 1 andC(t) = 0 in (3). For this case, restriction (5) is shown to be sharp.

The remainder of the paper is organized as follows. Sectisuwl@voted to the proof of Theorem 1. Section 3 deals
with the uniqueness and stability of the periodic solutioh&3) with nonconstant sign. Finally, Section 4 considers
the application of the previous results to the normal forrthefAbel ODE of the second kind.

2. Proof of Theorem 1

Firstly, let us establish a generic and rather straightbodwvesult that will be used in subsequent demonstrations.

Lemma 1. Consider the ODE
Xx=S(tx), S:Q-R, (6)

whereQ = R x R*, R* = R\ {0} and S is a locally Lipschitz function. Assume thahne R and let r :=
{(t,X) : x = mt+ n} be a straight line of slope m, which spli into the half plane€; = {(t,x) : x > mt+ n},
Qr ={(t,¥) : x<mt+n}. Finally, lett;,t; € R, with t; < to.

(i) Assume that 8,x) > m for all (t,x) € [t;,t) x R* nr. Then, any maximal solution(ty of (6) defined for all
tel, € Rwith (t1, x(t1)) € Q is such tha(t, x(t)) € Q;f, forall t € (t1,t2) N I,,.
(i) Assume that &, x) < m for all (t,X) € [t1,t2) x R* nr. Then, any maximal solution(ty of (6) defined for all
t e 1, € Rwith (t1, X(t1)) € Q; is such tha(t, x(t)) € Q,, forallt € (t1,t2) N 1.

Proof. (i) Notice that if ¢1, x(t1)) € & then, by continuity, fot close enough tty it happens thatt(x(t)) € Q;: for
(t1, X(t2)) € Qf it is rather immediate, while foit{, X(t1)) € r the claim follows becausgt;) > m.

Assume thak(t) contacts for the first time in {1, t;) att = ¢ > ty, i.e. that €, x(c)) € r. Then,x(c) = mc+ n, and
X(t) >mt+nfort; <t<c, so

. mt+n—-(mc+n)
< lim =m
t—c t— C
2

x(c) = lim
t—c

4

X(t) - x(¢)
t-c



which contradicts the hypothesifc) = S(c, x(c)) > m. Hence x(t) can not contact againand, therefore, it remains
in Qf forallte (ty,t2) N 1.
The proof of (ii) is analogous. O

The hypotheses of Theorem 1 are assumed to be fulfilled thoighe rest of the section. Furthermore, the
T-periodicity andC! character of\(t) implies that minA(t) < 0. Hence, it is immediate from (5) th&(t) = O for all
t. Thus, using the change of variabbes> —x if necessary, it is no loss of generality to assugfg > 0, for allt, for
the remainder of the section.

Theorem 1 considers a case in whigft) has nonconstant sign. The next Lemmas study the behavithreof
solutions of (3) in an open intervad,(b) whereA(t) > 0, a, b being two consecutive zeros Aft).

Remark 1. Notice that there is no loss of generality in assumirf) & 0 in (a, b) because, otherwise, the change of
variables(t, x) — (-t, —x) reduces (3) to

xx = At) + B(t)x + C(t)x3,
with A(t) = —A(-t), B(t) = B(~t) andC(t) = —C(~t), for all t € (a, b).

Lemma 2. If (5) is satisfied, then
min|B(t)]? > 2 maxA(t)| - max|C(t)], 7)

Proof. Recalling that mirA(t) < 0, (5) yields
min|B(t)? > —4 minA(t) - [1 + T max|C(t)[]] > —2T min A(t) max|C(t)|.

Then, it is stfficient to prove that .
—T min A(t) > max|A(t)|. (8)

For, letty € R be such thatA(tg)| = max|A(t)|, and letty, t; be zeros ofA(t) suchthato — T <ty <tg <tp <tg+T.
Then, applying the Mean Value Theorem,

Alt)) = Alto) - Alts) = (to — t)A1) = T minAt)
~Alt)) = Atr) - Alto) = (t2 - to)A(&2) = T minA(t),
from which we deduce (8) and therefore (7). O

Lemma3. Letab € R be such that fa) = A(b) = 0, with A(t) > 0, for all t € (a, b). Then, any negative solutioiftx
of (3) defined oifty, 1), t; > a, can be extended fty, b).

Proof. The ODE (3) can be written as

. At
X = S(t,x) = % + B() + C(H)x ©)
in the domaim2™ := R x R™. Let x(t) be a solution withx(t;) < 0 and maximal interval of definitioh, = (w-, w.),
with w_ < t;. Let us assume that, < b and proceed by contradiction.
As w; < b, t - w, implies that eithex(t) —» —co or x(t) — 0. Let us first see that it is not possible to have
X(t) — —oo. For, let us selecM € R* and let us define the straight limg := {(t,X) : x+ M = 0}. If C # 0, the
and relation (7) in Lemma 2 indicate that

selection
_ [max|At)|
— '\ max|C(t)|
A(t)

S(t,x) = Svh +Blt)+C(H)M >0, V(X el, xR Nry. (10)



Alternatively, ifC = 0, the selection of a sficiently largeM also yields (10). In any case, by Lemma k(t)+ M > O,
forallt € (t1, wy), SOX(t) » —co fort —» w, <b.

Let us now see that it cannot k@) — 0 fort — w, < b. For, let us take € R, t; < ¢ < w, and selecN € R*
small enough, in such a way that

S(t,x) = —% +B(t) + C(t)N <0, Vte[c w,].

Then, definingy := {(t,X) : x+ N = 0}, it is immediate thaS(t, x) < 0, for all (t,x) € [c,w;] X R™ N ry and, by
Lemma L.ii,x(t) + N < O fort € (c, w.), i.e. X(t) - O.

Consequently, it has to ke, > b and the solutiorx(t) is defined in {1, b). O

Lemma4. Letab e R be such that fa) = A(b) = 0, with At) > 0, for all t € (a, b). Then, there exists@* solution
x*(t) of (3) in(a, b), which is negative and such that

X(t) >0 and X (t) - ? - \/%a)z +A@ when t—a'.

Proof. The introduction of a new variable allows to transform (3) in the following planar, generatiZeiénard
system [17]:

dt
s = % (11)
% = A(t) + B(t)x + C()x°. (12)

Notice that, wherx # 0, the portrait of the integral curves of (3) and the phaseelaf (11)-(12) are coincident,
preserving the orientation ¥ > 0 and reversing it ik < 0.
SinceA(a) = 0 andA > 0'in (a, b), it results tha#A(a) > 0. Let us study these two cases:

() If A@@) > 0, then {, ) = (a,0) is a hyperbolic critical point, indeed a saddle, of (113X The eigenvalues are:

2 .
A8 = ? + 4/ B(j) + A(a),

with A2 € R because of (5), the associated invariant subspaces ohttggilzed system being

E? = EY = span((1,49)), E° = E2 = span|(L %)).

Hence, by the Stable Manifold Theorem [15], there existsiqueC? invariant stable manifold, tangentl&3 at (a, 0),
with slopeA?, i.e. lying on the subset®™ = {(t,X) : t<a, x> 0}andA ™ :={(t,X): t>a, X< 0}whent # a. The
branch of the manifold that lies ifi* is a positiveC* solutionx*(t) of (3) in (a— €, @), € > 0, that satisfies*(t) — 0
andx‘(t) — 1% whent — a™. Equivalently, the branch it~ is a negativeC* solutionx*(t) of (3) in (a,a+ ¢€), € > 0,
that satisfiesc(t) — 0 andx*(t) —» 12 whent — a*.

(i) If A(@) = 0, then ¢, x) = (a, 0) is a non-hyperbolic critical point with eigenvalues
A =B(a), A2=0,
the associated invariant subspaces of the linearizedsystng
E = spari(L, B(@))), EZ = spari(L,0)).

Hence, by the Center Manifold Theorem [16], there existsad iecessarily unique)?, invariant center manifold,
tangent tdE. at (a, 0).



Let us finally see that this orbit lies @fi-, which means that it matches a negat@é solution X' (t) of (3) that
satisfiesx*(t) — 0 andx*(t) — 0 whent — a*. Let us denote this orbit as = h(t), with h(a) = h(a) = 0 and
satisfying .

h(t)(C(t)h(t) + B(t) — h(t)) = —A(t).
As C(a)h(a) + B(a) — h(a) = B(a) > 0, thenC(t)h(t) + B(t) — h(t) > O for t — a small enough; consequenttyand—A
have the same sign in a neighborhooda), soh(t) < 0 forO<t-a<< 1.

Finally notice that, by Lemma 3, th@&' solutionx(t) is defined in &, b), which completes the proof. O

Lemmab. Letab e R be such that fa) = A(b) = 0, with A(t) > 0, for all t € (a, b). Then, there exists@* solution
X*(t) of (3) in(a, b), which has the sign 6fA(t), and is such that

X(t) >0 and X (t) - ? - \/%a)z +A(@ when t— a',
X(t) >0 and X () — @ - ,/%b)z +A() when t—b.

Proof. Let x*(t) be the solution of (3) featured in Lemma 4. Then, it remainisg proved the behavior for— b~.
Firstly, for allt € (a, b), the Mean Value Theorem ensures that there e#istt, b) such thatA(t) = A(&)(t - b).
Let nowry, be the straight liney, := {(t, X) : X = a(t — b)}, where

—minA(t)

a = Y~ il

1+ T max|C(t)]

Then, for allt € (a, b) such that{, x) € rp,

@ + B(t) + C(t)x

AO= - min] () - oT max ()

S(t, X)

v

v

a + min|B(t)| - a(1 + T max|C(t)]) +

min A(t)
(07

= a+ min[B)I - 2~ minAQL+ T maxic(y)) > o,

where in the last inequality we have used condition (5). AsLbmma 4,x*(t) — 0 whent — a*, Lemma 1.i
guarantees that‘(t) > a(t — b) for all t € (a, b). But sincex*(t) is negative in 4, b), thena(t — b) < x*(t) < 0 and,
taking limits fort — b, it is immediate thak*(t) — O.

Secondly, consider the equivalent expression of (3) in sevfrthe planar, autonomous system (11)-(12). Since
A(b) = 0 andA(t) > 0in (a, b), it results thatA(b) < 0. Let us then split the study in two cases:

(i) If A(b) <0, then {,x) = (b, 0) is a hyperbolic critical point of (11)-(12). The eigenves are:

A= @i w/%b)z + A(b),

with 22 € R* because of (5), the associated invariant subspaces ofhtrailzed system being
R? = Ef = spar{(1, %), (1. 42)}.

Hence, it is an unstable node andt ia b, all the orbits are tangent to one of the two eigenvectortssipank®. It is
then immediate that the solutiofi(t) of (3), which is known to satisfx*(t) > a(t — b), matches one of these orbits.
Therefore, fott close enough tb it has to bex*(t) < a and, as it can be easily proved thilt< a < 12, it results that

X(t) > A° = @ - ,/%b)z +A(b) whent—b".

5



(i) If A(b) = 0, the situation is equivalent to the cad@) = 0 discussed in the proof of Lemma 4. Namely,
(t, X) = (b, 0) is a non-hyperbolic critical point with eigenvalues

L =Bb), 12=0,
the associated invariant subspaces of the linearizedsystg
Ef = spari(1, B(b))}, E2 = spari(1,0)}.
A technique similar to the one followed in the preceding itg#mws thak*(t) — 0 whent — b~. O

Let us now proceed with the proof of Theorem 1. A@$) has, at least, one zero in,[D] by hypothesis, let; € R
be such tha#\(tp) = 0. Then, we define

Z:={te[to,to+T]: Alt) =0}

Let® and N denote the sets of maximal intervals tg, fo + T] whereA(t) is positive and negative, respectively. Let
thenl; = (a, by), &, by € Z, denote an interval 3 U N. Lemma 5 and Remark 1 ensure that, for eMerthere exists
aC! solutionx:(t) of (3) onl;, which has the sign oA(t) in I;, and is such that'(t) — 0 whent — &' and also when

t — b;. Hence, the function constructed as

= (50§ 1

is indeed a continuous solution of (3)Mwhich is alsaC! in every open interval. Let us finally prove thax*(t) is
C'for all t; € Z. Three diferent situations need to be considered:

() If A(t) > O then the graph ok*(t) in a neighborhood of; is the orbit of the (unique) stable manifold of
(11)-(12), sox*(t) is Ct in t; (see the discussion in the proof of Lemma 4 for the &% > 0).

(i) If At) = 0, then the graph of*(t) in a neighborhood of is the orbit of a center manifold of (11)-(12), so
x*(t) isCtin t; (see the discussion in the proof of Lemma 4 for the @xsg = 0).

(iii) If A(t;) < 0, then the graph of'(t) in a neighborhood of matches an orbit of (11)-(12) with slope

X'(t) = @ - %')2 + At),

sox‘(t) isClin t; (see the discussion in the proof of Lemma 5 for the (& < 0).
Finally, theT-periodic extension o&* is aC* solution of (3) defined iR, which completes the proof. O

Remark 2. Notice that if At) has degenerate zeros, then the construction of the solutionrequires the use of the
Center Manifold Theorem. This means that, in such a casee thay exist a family of periodic solutions of (3) with
the same sign asA(t) B(t).

3. Uniqueness and stability

The next result reveals that tlieperiodic solution(s) with non constant sign that ariserfiftheorem 1 are unique,
in the sense that there do not exist otfieperiodic solutions with nonconstant sign in (3) sharingy@ome of the
zeros ofA(t).

Theorem 2. Let the assumptions of Theorem 1 be fulfilled. Then, all Tiegar solutions of (3) with nhonconstant
sign have the sign ofA(t)B(t). Moreover, if all the zeros of & are simple, then (3) has a uniq@, T-periodic
solution with nonconstant sign.



Proof. Let x(t) be a solution of (3) with nonconstant sign and non idenidal(otherwise the result is trivial). As
stated in Section 1, the zerosxit) are also zeros dA(t). Then, letl = (a, b) be an interval whera(t) +# 0, for all

t € I, and such thax(a) = x(b) = 0. It is no loss of generality to assume tht) < 0 in | (see Remark 1), which
yieldsx(a) < 0. Let us consider three cases:

(i) If A() > 0, it has been noticed in the proof of Lemma 4 that (11)-(18psses two invariant manifolds i 0),
a stable one and an unstable one, with negative and podiijess respectively. A%(t) has non positive derivative in
t = a, it has to coincide with the solution curve correspondinth®stable manifold orbit and, consequently, with the
periodic solution with nonconstart(t) guaranteed by Theorem 1, frams a to the next zero oA(t), and this zero
hasto beirt = h.

(ii) If A(a) = 0, it has been noticed in the proof of Lemma 4 that (11)-(12speses two invariant manifolds in
(& 0), a (non necessarily unique) center one and an unstablevithenull and positive slopes, respectively. Ag)
has non positive derivative in= a, it has to coincide with one of the solution curves correstiog to the center
manifold and, consequently, with the periodic solutionhwibnconstank*(t) guaranteed by Theorem 1, fran= a
to the next zero of\(t), and this zero has to be = b.

(i) If A(@) < 0, it has been noticed in the proof of Lemma 4 that (11)-(12gpeses an unstable nodeand),
and also that all the solutions tending to this point havetpesslope. This is in contradiction witk(a) < 0, which
means that there cannot exist a solution of (3) verifyita) < 0 andA(a) < 0.

It is therefore proved that(t) = x*(t), for all t such thatx(t) # 0. Furthermore, wheg(t) = 0, thenA(t) = 0 and
x*(t) = 0, which implies thak(t) = x*(t), for all t € R.

Finally, when all the zeros oA(t) are simple, the uniqueness of the Stable Manifold (seerbef pf Lemma 4)
yields the existence of a unigdeperiodic solutionx*(t), with nonconstant sign. O

The instability of theT -periodic solutions of (3) with nonconstant sign is clainiedext Theorem:

Theorem 3. Let the assumptions of Theorem 1 be fulfilled. ThenGin¥ -periodic solution of (3) with nonconstant
sign is unstable.

Proof. Assume thaB(t) > 0, for all t, which is no loss of generality. Lét= (a,b) € #, i.e. an interval such that
A(t) > 0, for allt (in case tha#\(t) < 0, for allt, use the change of variablasx) — (-t, —x) suggested in Remark 1).
Theorems 1 and 2 ensure that ayperiodic solution of (3) with nonconstant sign has the 9:§rA(t). Hence, let
X*(t) denote one of these solutions, which satiskigt) < 0, for allt € I.
Let X, € R* and consider the straight ling, := {(t,X) : X— X4 = 0}. It is rather immediate that there exists an
open intervall ¢ R* such that, for alk, € J,
At)
S(t, x) = R +B(t) +C(t)xa >0, V(t,x)e[ab)xRfNry,.
Therefore, by Lemma 1.i, any solutioxft, X;) of (3) with x(a) = x4 € J is strictly positive for allt € I. As a
consequencéx(t, x3) — X (1) > [x*(t)] in I, which yields the instability ok*(t). O

Remark 3. When t= a is a simple zero of @), the behavior of the solutions brought out in Theorem 3 arise
immediately from the fact that, in such a caé®,0) is a saddle point of the corresponding two-dimensionalesyst
(11)-(12).
4. An example case: the normal form
The normal form of Abel equations of the second kind is of threnf
xX = A(t) + X. (14)

This type of ODE is specially important because the genehelA&quation of the second kind (3) is readily trans-
formable to (14) with a change of variables that, howeveesdwot preserve time [1].

7



Proposition 1. Let At) be aC?, T-periodic function. If &) has at least one zero {@, T] and
o 1
min A(t) > 7 (15)

then (14) has, at least, one T-periodic solution’(}, that has the sign ofA(t), and it is alsoC' and unstable.
Furthermore, if all the zeros of (§ are simple, then*t) is the unique T -periodic solution of (14) with nonconstant
sign. Additionally, if

T
f A(t)dt = 0, (16)
0
then (14) has no other periodic solutions buftx

Proof. The first part is straightforward from Theorems 1, 2 and 3.

The last part of the statement follows if one can ensurewtatn (16) is assumed, (14) hasThgeriodic solutions
with constant sign. For, the change of variables x~! and Theorem 2.1 in [9] guarantee the nonexistence of pesitiv
periodic solutions in (14). An equivalent conclusion fogagive periodic solutions follows using— —xL. O

Remark 4. Itis worth mentioning that restriction (15) is sharp. Fogaall from Section 2 that tienotes an element of
Z, the set of time instants wherétpvanishes. Then, notice thatAft;) < —1/4, the phase plane poii(t, 0) becomes
a focus of (11)-(12), which implies that there can not exist solution Xt) of (14) such that ;) = 0.
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