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Interconnection and damping assignment (IDA) passivity-based control (PBC) is currently a well-known viable
alternative for solving regulation control problems of a wide class of nonlinear systems. However, a distinctive
feature that, in spite of its appearance under several applications, has not been exhaustively exploited, is the
flexibility that this technique exhibits for designing output-feedback controllers (OFCs). The purpose of this
article is to illustrate this attractive characteristic by approaching the (practically important) case study given by
the improvement of the transient stability properties of power systems. The particular system composed by a
synchronous generator connected to an infinite bus via a thyristor controlled series capacitor is considered.
Two OFCs are presented, one that does not involve the unmeasurable state and another that, although including
this state, presents some input-to-state stability properties that allow for establishing a sort of separation
principle concerning an observer-based structure for the closed-loop system. The advantages of both controllers
are illustrated by numerical simulations when a three-phase short circuit at the generator bus is induced.

Keywords: nonlinear control; IDA passivity-based control; output-feedback; SMIB; TCSC

1. Introduction

Output-feedback control (OFC) is the branch of

control theory that deals with the problem of designing

control schemes involving only available for measure-

ment information. Roughly speaking, this task can be

carried out following two general approaches, namely:

one that synthesises the control law using only the

available for measurement states (pure OFC) and

another that substitutes the unavailable state for a

corresponding estimate obtained from a dynamical

observer (observer-based OFC).
Due to the structural richness of nonlinear systems,

the solutions that can be found in the literature for

solving OFC problems is also varied. However,

identification of new ways for approaching this topic

still imposes an attractive research challenge. Hence,

the aim of this article is to illustrate, by means of a

practically important problem, how the interconnec-

tion and damping assignment (IDA) passivity-based

control (PBC) methodology design (Ortega and

Garcia-Canseco 2004) can state a viable alternative in

this sense.
The motivation to approach the OFC problem

under the IDA-PBC perspective comes from the

experiences reported in Ortega and Garcia-Canseco

(2004), regarding the control of an electromechanical

system, and in Batlle, Doria-Cerezo, Espinosa-Perez,

and Ortega (2009), concerning the induction machine

control, where it has been shown that exploiting the

flexibility offered for solving the matching equation

(ME), a key step in the controller design, can lead to

the proposition of control laws that do not require
unmeasurable states.

In this article, this possibility is exploited to

propose two controllers that solve the transient

stability control problem of a single machine infinite

bus (SMIB) system equipped with a thyristor con-

trolled series capacitor (TCSC). The contribution

actually consists of one pure and one observer-based

OFC that are obtained by tailoring the ME of the

IDA-PBC design. For the latter, a novel observer is

also introduced and the stability of the closed-loop

system is proved by exploiting another feature of the

approach that has been also previously identified

(Moreno and Espinosa-Pérez 2007), namely, the

input-to-state stability (ISS) properties exhibited from

the observation to the control errors.
Concerning the case study approached in this

article, the importance of the transient stability

problem in power networks is evident. The stringent

operation conditions imposed to these systems induce

oscillations, e.g. by the presence of disturbances,
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that could lead to unstable behaviours (Machowski,

Bialek, and Bumby 2008) unless they are damped in a

proper way. Usually, this undesirable operation is

avoided by means of the power system stabiliser (PSS)
and/or the automatic voltage regulator (AVR).

However, in many situations, the effect of these devices

is not sufficient and the use of power converters

has emerged as an efficient complement to
achieve the desired behaviour (Hingorani and

Gyugyi 2000).
In this work it is assumed that for an SMIB system,

the action of the PSS is complemented by the presence
of a TCSC. This scheme is currently well known and

widely accepted, due to its proved capability for

improving transient stability properties besides its

primary functions, such as voltage and power flow
control, and several controllers for this scheme have

been reported dealing with its nonlinear structure and

the fact that not all states are available for measure-

ment. Unfortunately, they belong to the class of state-
feedback controllers or observer-based schemes,

but exhibiting a complicated structure

(Messina, Hernandez, Barocio, Ochoa, and Arroyo

2002; Sun, Liu, Song, and Shen 2002;
de Leon-Morales, Espinosa-Pérez, and Maya-Ortiz

2004; Manjarekar, Banavar, and Ortega 2008). In

this sense, the distinctive feature of the contribution
presented in this article lies in the simplicity of the

developed controllers.
This article is organised as follows. Section 2 is

devoted to formulate the control problem approached

in this article, including the considered model for the
SMIB–TCSC system and a brief description of the

IDA-PBC design. The main contribution is presented

in Section 3 while its usefulness is illustrated via a
numerical evaluation in Section 4. Section 5 is

dedicated to the presentation of some concluding

remarks.

2. Problem formulation

In this section, the considered model for the

SMIB–TCSC system is first presented to later on,

after quickly reviewing the controller design methodol-

ogy, formulate the control problem.

2.1 SMIB–TCSC system

A widely accepted model for describing the dynamic

behaviour of a single synchronous generator connected

to an infinite bus, known as an SMIB system, is the
so-called Flux decay model which is given by the

following third-order nonlinear system (Pai 1989)

_x1 ¼ x2

_x2 ¼ Pm � a1x2 � �a2 �x3 sinðx1Þ

_�x3 ¼ b3 cosðx1Þ � b4 �x3 þ Eþ �u,

ð1Þ

where x1 is the load angle, x2 is the shaft speed

deviation from the synchronous speed and �x3 is the

quadrature axis internal voltage. The constant mechan-

ical power delivered to the generator is Pm while the

input Eþ �u is the field voltage, E being the constant

value required to maintain the machine on a stable

equilibrium point in the operation region of the system

given by 0 � x1 5 �
2. Among all the positive coeffi-

cients, particularly important in this article is �a2 ¼
V
X�

since it includes the bus voltage V and the total line

reactance X�.
If it is considered that the generator is provided

with a PSS–AVR control system, one way for

improving the transient stability properties of the

system, initially introduced in Vithayathil (1986) as a

‘rapid adjustment method for network impedance’, is

to include a switched capacitor, in series connection as

shown in Figure 1.
Under this structure, it is possible to consider only

the mechanical dynamics of the synchronous genera-

tor, the so-called Swing equation, for describing the

behaviour of the considered system, while the effect of

the included capacitor on the modified line reactance

can be modelled as a first-order system (Hingorani and

Gyugyi 2000), resulting in a model given by

_x1 ¼ x2

_x2 ¼ Pm � a1x2 � a2x3 sinðx1Þ

_x3 ¼ b1 �x3 þ x�3 þ u
� �

,

ð2Þ

where x34 0 is the total admittance of the system,

a2¼E 0V stands for the product of the bus voltage and

E0, the transient voltage of the generator, and

b1¼ 1/Tdc is a positive constant which depends on the

time constant included to model the dynamic response

of the TCSC. In this case the control input u is related

with the firing angle for the switch while the operation

region of the system is still given by 0 � x1 5 �
2.

Figure 1. SMIB system with TCSC.
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In order to formulate the control problem related
with this system, it is necessary to notice that its
equilibria is given by two solutions of

x�2 ¼ 0

Pm ¼ a2x
�
3 sinðx

�
1Þ

x3 ¼ x�3:

ð3Þ

However, the practical interest lies on the solution
corresponding to x�1 ¼ sin�1ðPm=a2x

�
3Þ since the other

one is outside the operation region of the system. Then
the control problem is posed as the stabilisation
of the equilibrium point x� ¼ ðx�1, x

�
2,x
�
3Þ ¼

ðsin�1ðPm=a2x
�
3Þ, 0, x

�
3Þ, problem that is further compli-

cated since this objective must be achieved considering
that the total admittance of the system x3 is not
available for measurement.

Remark 1: It is interesting to mention that if instead
of using the admittance of the system as third state, the
effective line reactance is used, it is still possible to
apply IDA-PBC design, as actually has been done
in Manjarekar et al. (2008). Unfortunately, the
output-feedback case is not approached in this article.

2.2 IDA-PBC design

The problem of stabilising an equilibrium point of
nonlinear systems of the form

_x ¼ f ðx, tÞ þ gðxÞu, ð4Þ

where x2Rn is the state vector, u2Rm (m5 n) is the
control action and g(x) is assumed full rank, is
approached from the IDA-PBC perspective by finding
a control law u(x) that leads to a closed-loop system of
the form

_x ¼ Fd ðx, tÞrxHd ðxÞ, ð5Þ

with1 Fd ðx, tÞ þ FT
d ðx, tÞ � 0 and Hd (x)� 0 is a scalar

(energy) function, which satisfies the condition

x� ¼ arg min Hd ðxÞ,

x� being the equilibrium to be stabilised.
A system with structure as introduced in (5) is

known as a Hamiltonian system and the rational
behind the selection of this structure is that if Hd (x) is
considered as a Lyapunov function of the system, then
its time derivative along the trajectories of (5) is
given by

_Hd ¼ �
@Hd ðxÞ

@x

� �T

Fd ðxÞ þ FT
d ðxÞ

� � @Hd ðxÞ

@x
,

proving (e.g. Lemma 3.2.8 of van der Schaft (2000))
that the equilibrium x� will be asymptotically stable if

the system is detectable from y¼ gT(x)rxHd (x), i.e. if
the implication y(t)� 0) limt!1x(t)¼ x� is true.

In spite of its clear formulation, the major problem
to carry the design out of the controller u(x) comes
from the necessity of solving the so-called ME given by

g?ðxÞ f ðx, tÞ ¼ g?ðxÞFd ðx, tÞrHd ðxÞ, ð6Þ

where g?(x)2R(n�m)�n is a full-rank left-annihilator
of g(x), that is, g?(x)g(x)¼ 0 and rank g?(x)¼ n�m.
As can be noticed, Equation (6) involves the
under-actuated part of system and the complication
for finding a solution comes from the fact that looking
for functions Fd (x, t) and Hd (x) that are compatible
with the dynamic behaviour of system (4), it is
equivalent to solve a nonlinear partial differential
equation in the indeterminant Hd (x).

2.3 Output-feedback IDA-PBC problem

Being the solution of (6), a fundamental element for
implementing the IDA-PBC, a lot of research has been
devoted to this topic (Ortega et al. 2004). However, the
main interest of this article is related with the
possibility for solving this equation in an
output-feedback way for the system (2). Hence, the
problem approached in this article can be formulated
as follows:

Consider the system (2) with state vector given by

x ¼ x1 x2 x3½ �
T,

where x3 is unmeasurable. Design a control law u by
finding a solution of (6) in such a way that one of the
next two conditions is satisfied:

. the control law does not depend on the
unmeasurable state x3, i.e. u¼ fu(x1,x2), or

. the dependency of the proposed controller on
the unmeasurable state allows for designing an
observer-based control scheme, i.e.

u ¼ fuðx1, x2, �Þ

_� ¼ foð�, x1, x2Þ,

whose stability and convergence properties could be
stated in a simple as possible way.

3. Main result

The main contributions of this article are presented in
this section, namely, one pure and one observer-based
OFC (equipped with a novel observer) for system (2).
This section first introduces the common part of the
design for both controllers and later on presents the
particular solutions.

International Journal of Control 2473
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3.1 Common step design

In order to carry out the controller design by following

the general procedure presented in Section 2.2, notice

that the purpose in this case is to find a solution of the

equation given by

f ðxÞ þ gu ¼ Fd
@Hd ðxÞ

@x
, ð7Þ

where

f ðxÞ ¼

x2

Pm � a1x2 � a2x3 sinðx1Þ

�b1 x3 � x�3
� �

2
664

3
775; g ¼

0

0

b1

2
664

3
775

while the matrix Fd is assumed to have the following

form:

Fd ¼

F11 F12 F13

F21 F22 F23

F31 F32 F33

2
64

3
75,

with each entry Fij of appropriate dimension.
With the above definitions, solving the imposed

control problem reduces to find suitable functions that

satisfy the following equalities:

x2 ¼ F11
@Hd ðxÞ

@x1
þ F12

@Hd ðxÞ

@x2
þ F13

@Hd ðxÞ

@x3
, ð8Þ

Pm � a1x2 � a2x3 sinðx1Þ

¼ F21
@Hd ðxÞ

@x1
þ F22

@Hd ðxÞ

@x2
þ F23

@Hd ðxÞ

@x3
, ð9Þ

�b1 x3 � x�3
� �

þ b1u

¼ F31
@Hd ðxÞ

@x1
þ F32

@Hd ðxÞ

@x2
þ F33

@Hd ðxÞ

@x3
, ð10Þ

while guaranteeing, at the same time, that both the

equilibrium assignment condition and the stability

condition Fd ðx, tÞ þ FT
d ðx, tÞ � 0 are simultaneously

satisfied.
Due to the underactuated nature of the system, it is

important to notice that Equations (8) and (9) do not

depend on the control input u leading to the fact that

they must be solved before dealing with the

control-dependent equation (10). Accomplishing this

step in the controller, the design is carried out in the

following proposition.

Proposition 3.1: Consider the input independent equa-

tions of the ME (7) given by (8)–(9). A solution for the

corresponding entries of matrix Fd (x) that, at the same

time, assigns the equilibrium to be stabilised as a

minimum of Hd (x) is given by

F11 ¼ 0; F12 ¼
1

k1
; F13 ¼ 0

F21 ¼ �
1

k1
; F22 ¼ �

a1
k1

; F23 ¼ 0,

ð11Þ

and

Hd ðxÞ ¼
k1
2
x22 þ k1a2x3 cosðx�1Þ � cosðx1Þ

� �
� k1a2x

�
3 sinðx

�
1Þðx1 � x�1Þ þHd2ðx3Þ, ð12Þ

with k1 a positive constant and Hd2(x3) satisfying

@Hd2ðx3Þ

@x3

� �
x3¼x

�
3

¼ 0;

@2Hd2ðx3Þ

@x23

� �
x3¼x

�
3

4
k1a2 sin

2
ðx�1Þ

x�3 cosðx
�
1Þ

:

ð13Þ

Proof: From (8) and considering

Hd ðxÞ ¼
k1
2
x22 þHd1ðx1, x3Þ,

leads2 to F11¼F13¼ 0 and F12 ¼
1
k1
. Looking for a

possible simple way for assuring the required stability

properties, an immediate definition is F21 ¼ �
1
k1

and

F22 ¼ �
a1
k1

implying, considering (9) and (14), that

�
1

k1

@Hd ðxÞ

@x1
þ F23

@Hd ðxÞ

@x3
¼ �a2x3 sinðx1Þ þ Pm:

Taking into account, from (3), the equilibrium

value of Pm, it is possible to define

Hd1ðx1, x3Þ ¼ k1a2x3 cosðx�1Þ � cosðx1Þ
� �

� k1a2x
�
3 sinðx

�
1Þðx1 � x�1Þ þHd2ðx3Þ,

which in its turn requires that

F23 a2 cosðx�1Þ � cosðx1Þ
� �

þ
@Hd2ðx3Þ

@x3

� 	
¼ 0,

forcing F23 to become zero.
The final part of the proof, concerning the

equilibrium point assignment, is carried out by

noticing that up to this point the structure of the

proposed desired energy function is

Hd ðxÞ ¼
k1
2
x22 þ k1a2x3 cosðx�1Þ � cosðx1Þ

� �
� k1a2x

�
3 sinðx

�
1Þðx1 � x�1Þ þHd2ðx3Þ: ð14Þ

2474 G. Espinosa-Pérez et al.
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Thus, the first condition in (13) for Hd2(x3) appears

from the necessity of satisfying

@Hd ðxÞ

@x

� �
x¼x�

¼

k1a2x3 sin ðx1Þ�k1a2x
�
3 sin ðx

�
1Þ

k1x2

k1a2 cos ðx
�
1Þ�k1a2 cosðx1Þþ

@Hd2ðx3Þ

@x3

2
664

3
775

x¼x�

¼ 0,

while the second condition that appears in (13) comes

from the structure of the Hessian matrix associated

to Hd (x) which, in order to guarantee that

argmin{Hd (x)}¼ x�, must satisfy that

@2Hd ðxÞ

@x2

� �
x¼x�

¼

k1a2x
�
3 cosðx

�
1Þ 0 k1a2 sinðx

�
1Þ

0 k1 0

k1a2 sinðx
�
1Þ 0

@2Hd2ðx3Þ

@x23

2
6664

3
7775

x¼x�

4 0,

condition that is fulfilled, applying standard Schur’s

complement arguments, if and only if

@2Hd2ðx3Þ

@x23

� �
x3¼x

�
3

4
k1a2 sin

2
ðx�1Þ

x�3 cosðx
�
1Þ

:

œ

The following remarks are in order about the result

presented above.

Remark 2: It is interesting to notice how the

construction of matrix Fd was carried out by defining

in an advantageous way each of their entries with the

aim of facilitating the stability proof. In addition, it is

also important to mention that the designer arrives to

the controller design step equipped with several degrees

freedom, given by the entries of matrix Fd that have not

yet been defined and the function Hd2(x3).

Once the fixed part of matrix Fd has been defined,

the rest of the design is related with choosing its free

entries. In this sense, notice that under the definition of

the desired energy function (14), Equation (10) takes

the form

�b1ðx3�x�3Þþb1u

¼F31 �k1a2x
�
3 sinðx

�
1Þþk1a2x3 sinðx1Þ

� �
þF32k1x2þF33 k1a2 cosðx�1Þ� cosðx1Þ

� �
þ
@Hd2ðx3Þ

@x3

� 	
:

ð15Þ

As can be seen, there exist several possibilities for

solving this equation. Among them, the designer must

look for those that while satisfying condition

Fd ðx, tÞ þ FT
d ðx, tÞ � 0 at the same time hold with the

constraint argmin{Hd (x)}¼x�. In the rest of this

section two different solutions are presented, the first

gives a control law that does not require the

unmeasurable state x3 as a result while the second,

although depending on this variable, exhibits some

properties that simplify the design of an

observer-based control.

3.2 Pure output feedback control

The first OFC proposed in this article is presented in

the next proposition. As will be clear in the proof of the

result, the fact that its structure does not depend on the

unmeasurable state x3 is due to the favourable steps on

which the available degrees of freedom in (15) were

chosen.

Proposition 3.2: Consider the dynamic behaviour of a

SMIB system equipped with a TCSC described by (2).

Assume that

A.1 The only available for measurement states are x1
and x2
A.2 All the model parameters are known.

Under these conditions, a pure OFC that locally

asymptotically stabilises the equilibrium point

x� ¼ ðx�1, x
�
2, x
�
3Þ ¼ ðsin

�1
ðPm=a2x

�
3Þ, 0,x

�
3Þ is given by

u ¼
kk1
b1

x2 �
k1a2
�

cosðx�1Þ � cosðx1Þ
� �

, ð16Þ

with k, k1 and � positive constants that satisfy

�4
k1a2 sin

2
ðx�1Þ

x�3 cosðx
�
1Þ

;

ffiffiffiffiffiffiffiffiffiffiffiffi
4a1b1
k1�

s
4 k: ð17Þ

Proof: Considering the structure of constraint (15),

one way for simultaneously dealing with both the

required elimination of x3 in the control law and the

equilibrium point assignment is to define

Hd2ðx3Þ ¼
�

2
ðx3 � x�3Þ

2, �4 0,

and F33 ¼ �
b1
� , since under these definitions the

conditions imposed in (13) are satisfied under the

first inequality listed in (17), while it is obtained that

b1u ¼ F31 �k1a2x
�
3 sinðx

�
1Þ þ k1a2x3 sinðx1Þ

� �
þ F32k1x2

�
b1k1a2
�

cosðx�1Þ � cosðx1Þ
� �

: ð18Þ
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Then, if F31¼ 0 and F32¼ k, the pure output feedback

control law (16) is obtained with

Fd ¼

0
1

k1
0

�
1

k1
�
a1
k1

0

0 k �
b1
�

2
6666664

3
7777775
,

which satisfies the condition Fd þ FT
d � 0 if and only if

the second condition listed in (17) is satisfied.
In order to prove that the assigned equilibrium

point is asymptotically stable, notice that the time

derivative of Hd (x) along the trajectories of the
closed-loop system can be written as

_Hd ðxÞ ¼ �
2a1
k1

z2 �
2b1
�

z3 þ 2kz2z3,

where z2¼ k1x2 and z3 ¼ k1a2½cosðx
�
1Þ � cosðx1Þ� þ

�ðx3 � x�3Þ. From this expression it is easy to see that

if x2¼ 0, the only condition that leads to Hd (x)¼ 0 is
z3¼ 0, but this last requirement holds only when

x¼ x�, then the proof is completed by invoking

standard La Salle arguments. œ

Remark 3: An interesting feature of the proposed

controller is related with the structure of the desired
energy function which in its complete form reads as

Hd ðxÞ ¼
k1
2
x22 þ k1a2x3 cosðx�1Þ � cosðx1Þ

� �
� k1a2x

�
3 sinðx

�
1Þðx1 � x�1Þ þ

�

2
ðx3 � x�3Þ

2:

This function has the structure similar to the Lyapunov

function proposed in Pai (1989) for studying the

open-loop stability of the flux decay model (1), in
this case the advantage is given by the design

parameters k1 and � that can be used to change its

shape. In Pai (1989), it is recognised that the use of this
function leads to conservative stability conditions since

system (1) remains asymptotically stable even for

operation conditions that are not captured in the
analysis. This situation also appears with the proposed

controller since it is possible to numerically illustrate,

as will be done in Section 4, that the closed-loop
stability properties are preserved under more relaxed

conditions than that stated in the previous proposition.

Evidently, this uncertainty would be eliminated if the
actual region of attraction of the equilibrium point is

computed. Unfortunately, it is well known that

carrying out this task is quite difficult and all the
efforts on this topic have been practically abandoned.

Remark 4: From a tuning perspective, the main
constraint on the controller gains is imposed by the

value of �. Due to the fact that it defines the damping
coefficient for x3, remember that F33 ¼ �

b1
� , its value

must be small. This in turn also forces the value of k1
to be small, since it is required that

4a1b1
k1k2

4 �4
k1a2 sin

2
ðx�1Þ

x�3 cosðx
�
1Þ

,

leading to the following tuning procedure: propose a
small value of k1 and, depending on the chosen value
for �, select the value of k that achieves a better
performance while the inequality is also satisfied.

Remark 5: Another characteristic of the proposed
controller (16) is that it exhibits some robustness
properties since it can be implemented independently
of the parameters a1 and b1. Indeed, defining C1 ¼

k1a2
�

and C2 ¼
kk1
b1
, the control law can be written as

u ¼ C2x2 � C1½cosðx
�
1Þ � cosðx1Þ�,

leading to the stability conditions given by

C1 5
x�3 cosðx

�
1Þ

sin2ðx�1Þ
; C2 5

4C1

kk1
:

Under these conditions the controller gains depend
only on the parameters Pm and a2, since x�1 (and in its
turn C1) depends on them, see (3), and the free design
parameters k, k1. However, due to the purpose of this
article, this additional advantage will not be further
developed leaving its study to be reported somewhere
else.

3.3 Observer-based OFC

In contrast to the pure OFC design, the observer-based
controller design requires to cover several steps in
order to achieve the posed stabilisation objective.
Specifically, in addition to the (in this case
state-feedback) controller design, a dynamic observer
must be proposed and the stability of the whole system
must be guaranteed. In this section these three topics
are approached.

3.3.1 State-feedback design

Concerning the state-feedback design, the key point
that must be taken into account is the possibility to
decide how the unmeasurable state appears in the
control law defined by (15). If F31 is different from
zero, x3 will appear in the control law in a nonlinear
fashion while the definition of F33 will determine
whether this state appears in a linear way (due to the
definition of Hd2) in the scheme.

In Proposition 3.3, a state-feedback control law
that locally asymptotically stabilises the desired
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D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
o
n
s
o
r
c
i
 
d
e
 
B
i
b
l
i
o
t
e
q
u
e
s
 
U
n
i
v
e
r
s
i
t
a
r
i
e
s
 
d
e
 
C
a
t
a
l
u
n
y
a
]
 
A
t
:
 
0
9
:
0
8
 
2
8
 
F
e
b
r
u
a
r
y
 
2
0
1
1



equilibrium point is presented. It is developed con-

sidering that a linear dependency on the unmeasurable

state imposes a more treatable structure, hence the

nonlinear dependency is to be avoided.

Proposition 3.3: Consider the dynamic behaviour of a

SMIB system equipped with a TCSC described by (2).

Assume A.2 and the following:

A.3 The complete model state is available for

measurement.

Under these conditions, a state-feedback controller

that locally asymptotically stabilises the equilibrium

point x� ¼ ðx�1, x
�
2, x
�
3Þ ¼ ðsin

�1
ðPm=a2x

�
3Þ, 0,x

�
3Þ is

given by

u ¼
kk1
b1

x2 �
ðb1 þ k2Þk1a2

b1�
cosðx�1Þ � cosðx1Þ
� �

�
k2
b1
ðx3 � x�3Þ, ð19Þ

with k, k1, k2 and � positive constants that satisfy

�4
k1a2 sin

2
ðx�1Þ

x�3 cosðx
�
1Þ

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a1ðb1 þ k2Þ

k1�

s
4 k: ð20Þ

Proof: Consider the constraint (15) and select F31¼ 0,

F32¼ k and F33 ¼ �
ðb1þk2Þ
� . Under these conditions the

resulting control law takes the form given by (19) with

Fd ¼

0
1

k1
0

�
1

k1
�
a1
k1

0

0 k �
b1 þ k2
�

2
6666664

3
7777775
:

The fact that argmin{Hd (x)}¼ x� is proved exactly

in the same way as in the pure OFC design case. This

justifies the first condition in (20). Concerning the

stability properties, the proof is similar to the previous

case, with the difference that in this case

Fd þ FT
d ¼

0 0 0

0 �
2a1
k1

k

0 k �
2ðb1 þ k2Þ

�

2
66664

3
77775,

leading to the second condition listed in (20) and

allowing to apply standard La Salle arguments in order

to conclude asymptotic stability. œ

Remark 6: Since the structure of the state-feedback

control is similar to the structure of the pure OFC

introduced in Proposition 3.2, then the tuning proce-

dure previously proposed can be followed in this case.

The advantage is given by the inclusion of k2, which

offers the possibility of improving the damping of x3
even for restricted values of k. However, this flexibility

must be carefully considered since the scheme will

include a dynamic observer that could compromise the

closed-loop operation.

3.3.2 Observer design

Regarding the dynamic observer design, it is useful to

recognise that in model (2), x3 appears in a linear way

with respect to the measurable states x1, x2. Due to this

characteristic, this model can be equivalently written as

_� ¼  1ð�Þx3 þ  0ð�Þ ð21Þ

_x3 ¼ �b1x3 þ BðuÞ, ð22Þ

where BðuÞ ¼ b1ðx
�
3 þ uÞ, �¼ [x1, x2]

T and

 1ð�Þ ¼
0

�a2 sinðx1Þ

� �
;  0ð�Þ ¼

x2

�a1x2 þ Pm

� �
:

In the next proposition a dynamic observer is

proposed to estimate the state x3 which exploits this

linear structure at a fundamental level.

Proposition 3.4: Consider the dynamic behaviour of an

SMIB system equipped with a TCSC described by (2).

Assume A.1 and A.2. Under these conditions a globally

convergent observer for the unmeasurable state x3 is

given by

_s ¼ � b1 þ a2k3 sin
2
ðx1Þ

� �
ðsþ �ð�ÞÞ þ BðuÞ � Kð�Þ 0ð�Þ

x̂3 ¼ sþ �ð�Þ,

ð23Þ

with

�ð�Þ ¼ �k3x2 sinðx1Þ, k3 4 0, ð24Þ

and

Kð�Þ ¼
@�ð�Þ

@�
: ð25Þ

Proof: Consider the alternative representation of

model (2) given by (21)–(22) and define the variable

y ¼ _� �  0ð�Þ. Under this definition the system

reads as

_x3 ¼ �b1x3 þ BðuÞ

y ¼  1ð�Þx3,

exhibiting a structure that allows for proposing, using

classical arguments, an observer of the form

_̂x3 ¼ �b1x̂3 þ BðuÞ þ Kð�Þð y� ŷÞ ð26Þ

ŷ ¼  1ð�Þx̂3, ð27Þ

International Journal of Control 2477

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
o
n
s
o
r
c
i
 
d
e
 
B
i
b
l
i
o
t
e
q
u
e
s
 
U
n
i
v
e
r
s
i
t
a
r
i
e
s
 
d
e
 
C
a
t
a
l
u
n
y
a
]
 
A
t
:
 
0
9
:
0
8
 
2
8
 
F
e
b
r
u
a
r
y
 
2
0
1
1



where x̂3 is the estimate of x3 and K(�) is a

time-varying gain that depends on the measurable

state, to be determined below.
Under these conditions the dynamic of the estima-

tion error ~x3 ¼ x3 � x̂3 is given by

_~x3 ¼ � b1 þ Kð�Þ 1ð�Þ½ � ~x3,

where, to guarantee convergence, the gain K(�) must

be chosen such that

b1 þ Kð�Þ 1ð�Þ4 0, ð28Þ

for all time.
Since observer (26)–(27) is not implementable, due

to the fact that the variable y ¼ _� � �ð�, uÞ depends on
the time derivative of � which in turn depends on the

unmeasurable state x3, consider the alternative repre-

sentation of the observer given by

_̂x3�Kð�Þ _�¼� b1þKð�Þ 1ð�Þ½ �x̂3þBðuÞ�Kð�Þ 0ð�Þ

ŷ¼ 1ð�Þx̂3
:

Defining the availability for measurement

variable as

s ¼ x̂3 � �ð�Þ,

with �(�) a function that holds with (25), the observer

takes the implementable form

_s ¼ � b1 þ Kð�Þ 1ð�Þ½ �ðsþ �ð�ÞÞ þ BðuÞ � Kð�Þ 0ð�Þ

x̂3 ¼ sþ �ð�Þ
,

that coincides with (23) if it is considered the function

(24). The convergence properties of the scheme are

proved noting that condition (28) is satisfied since

b1 þ Kð�Þ 1ð�Þ ¼ b1 þ a2k3 sin
2
ðx1Þ4 0:

œ

Remark 7: It is interesting to point out that the

proposed observer resembles the obtained by the

application of immersion and invariance (I&I) techni-

ques (Astolfi, Karagiannis, and Ortega 2007). Current

research is under development with the aim to explain

and may further exploit this similarity.

3.3.3 Output-feedback stability analysis

The final step in the observer-based control design is

related with the stability proof of the system composed

by the plant, the state-feedback control and the

observer. In this sense, the advantage of developing

the controller design, as above, lies in the fact that

guaranteeing the stability properties of the closed-loop

system can be achieved in a (relatively) simple way.

For instance, as reported in Moreno et al. (2007), it

is possible to attain this objective by proving that the

map from the observation error ~x3 ¼ x3 � x̂3 to the

control error e¼ x� x� exhibits some ISS properties

(Angeli, Ingalls, Sontag, and Wang 2004). The

motivation for guaranteeing this kind of property

comes from the fact that under ISS, for a bounded

(zero) observation error, the control error will be

bounded (resp., zero), establishing a sort of separation

principle since these convergence properties are guar-

anteed without considering any particular structure for

the estimation scheme, which can be designed in an

independent way. In the proposition below, the desired

ISS properties of the system under study are

established.

Proposition 3.5: Consider the dynamic behaviour of a

SMIB system equipped with a TCSC described by (2) in

closed-loop with the output-feedback version of con-

troller (19) given by

uo ¼
kk1
b1

x2 �
ðb1 þ k2Þk1a2

b1�
cosðx�1Þ � cosðx1Þ
� �

� k2ðx̂3 � x�3Þ: ð29Þ

Under these conditions the map

� : ~x3 ! kx� x�k

is locally input-to-state stable.

Proof: The first point to be noticed is that the output

feedback controller can be written as uo ¼ uþ k2 ~x3
with u the original state feedback controller (19).

Under these conditions, the closed-loop system takes

the form

_x ¼ Fd
@Hd ðxÞ

@x
þ gk2 ~x3,

with Fd and Hd (x) as in the state-feedback design.
The procedure to prove the claimed ISS properties

closely follows as presented in Khalil (2002). In this

sense, notice that if ~x3 ¼ 0 then x� is locally

asymptotically stable, as proved in Section 3.3.1,

while if ~x3 6¼ 0, the time derivative of Hd (x) along

the trajectories of the closed-loop system reads as

_Hd ðxÞ ¼ �
@Hd ðxÞ

@x23

� �T

�Rd
@Hd ðxÞ

@x23
þ
@Hd ðxÞ

@x3
k2 ~x3,

where, under the conditions found in the

state-feedback design, �Rd ¼ �RT
d 4 0 is given by

�Rd ¼

2a1
k1

�k

�k
2ðb1 þ k2Þ

�

2
664

3
775
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and

@Hd ðxÞ

@x23
¼

@Hd ðxÞ

@x2
@Hd ðxÞ

@x3

2
664

3
775:

From this last expression it is possible to show that

_Hd ðxÞ � �ð1� �Þ
@Hd ðxÞ

@x23

� �T

�Rd
@Hd ðxÞ

@x23
, 05 �5 1,

provided the following constraint holds:

kk2 ~x3k

�	minf �Rdg
�
k
@Hd ðxÞ
@x23
k2

k
@Hd ðxÞ
@x3
k
� �1k

@Hd ðxÞ

@x
k; �1 4 1: ð30Þ

On the other hand, notice that @Hd ðxÞ
@x can be

equivalently written as

@Hd ðxÞ

@x

¼

k1a2x
�
3 sinðx1Þ� sinðx�1Þ
 �

þk1a2 sinðx1Þðx3�x�3Þ

k1x2

�k1a2 cosðx1Þ� cosðx�1Þ
 �

þ�ðx3�x�3Þ

2
64

3
75,

leading to the fact that k @Hd ðxÞ
@x k �

ffiffiffiffiffi
�2
p
kx� x�k with

�2 � max k21a
2
2ð1þ x�3Þ

2, ðk21a
2
2 þ �

2Þ
 �

,

allowing for guaranteeing that

05 c1k ~x3k � kx� x�k; c1 ¼
jk2jffiffiffiffiffi

�2
p

�	minf �Rdg
:

The proof is completed by a direct application of
the Theorem 4.19 reported in Khalil (2002, p. 176). For
this, notice that since Hd (x) is composed by quadratic
and locally bounded terms, this function can be locally
upper and lower bounded by class-K1 functions.
Then, the only point is to find a class-K function 

that satisfies kx� x�k � 
ðk ~x3kÞ4 0. However, this
function can be readily identified, from the inequalities
presented above, as 
(r)¼ c1r, proving that the map
� : ~x3 ! e is ISS. œ

4. Numerical evaluation

The usefulness of the proposed OFCs is illustrated
in this section via some numerical simulations. The
purpose is to show that, in addition to the achievement
of the stabilisation objective, the proposed schemes
offer some performance advantage over the open-loop
behaviour. To carry out this evaluation, the param-
eters of the SMIB model (given in pu) were taken from
de Leon-Morales et al. (2004) as Pm¼ 16, a1¼ 1,
a2¼ 21.3358 and b1¼ 20. Under these conditions the

equilibrium point that must be stabilised is given by
x� ¼ ðx�1, x

�
2, x
�
3Þ ¼ ð0:984936, 0, 0:9Þ while the longest

fault duration allowable for open-loop stability, i.e. the
critical clearing time, is tcl¼ 180ms.

To evaluate the controllers, it was considered that
at the beginning of the experiment the system was
operating in the desired equilibrium point, i.e. the
initial conditions of the states were defined by x�, while
the initial condition of the estimated state (in the case
of the observer-based scheme) was given by x̂3ð0Þ ¼ 0,
with the aim to consider the worst operating case.
Under this scenario, a three-phase short circuit at the
generator bus was induced by letting the value of the
parameter a2 to take the zero value (this condition is
equivalent to drop the generated power to be zero).
The length of the fault was equal to tcl starting at
t¼ 0.5 s.

Regarding the controller gains, for both the pure
and the observer-based OFC the considered values
were k1¼ 0.01, �¼ 100 and k¼ 8.5, which satisfy the
stated stability conditions. In addition, for the second
one it was considered that k2¼ 10 while the observer
gain was set at k3¼ 0.1. The reason that justifies these
values was the intention to evaluate both controllers
under similar conditions allowing, at the same time, to
illustrate the performances that they can achieve. In
this sense, as usual, special attention was given to the
first overshot in the time response of the load angle,
since this value is fundamental in determining whether
if the variables will remain or not in the region of
attraction of the equilibrium point.

Figure 2 shows, in comparison with the open-loop
behaviour (in continuous–line), the load angle beha-
viour under both the pure (in dashed-line) and the
observer-based (in dotted-line) schemes. Besides the
fact that with the two controllers the stabilisation
objective is achieved improving the open-loop transient
response, the superiority of the latter can be noticed,
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Figure 2. Load angle behaviour under a three-phase short
circuit at the generator bus of duration tcl¼ 180ms and
starting at t¼ 0.5 s.
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since it reduces the overshot in about 10% in contrast

to the 5% reduction exhibited by the pure OFC. This

advantage is less notorious concerning the speed

behaviour, which is presented in Figure 3, but is

drastically different regarding the total admittance,

included in Figure 4, where it can be observed that

after a peak value of about 1.5��1, produced by the

uncertainty introduced in the initial condition of

the estimated state, the observed-based scheme reaches

the corresponding value of the equilibrium point

faster than the pure OFC. In Figures 5 and 6 the

error signals for x1 and x3 are included (the corre-

sponding picture for x2 is the same than Figure 3)

while, with the aim to illustrate the internal stability

properties of the observer-based algorithm, in Figure 7

the behaviour of the estimated state is presented.
Although at this point of the evaluation procedure

the observer-based OFC has exhibited a better

performance, it is quite interesting to illustrate some

stabilisation properties of the pure OFCs that are not

captured in the stability analysis presented in
Section 3.2. In Figures 8–10 the closed-loop behaviour
of the three states of the system are presented when
k¼ 8.5, in continuous line and when k¼ 170, in
dashed-line. In these pictures it is evident that the
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Figure 5. Load angle error behaviour under a three-phase
short circuit at the generator bus of duration tcl¼ 180ms and
starting at t¼ 0.5 s.
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Figure 6. Total admittance error behaviour under a three-
phase short circuit at the generator bus of duration
tcl¼ 180ms and starting at t¼ 0.5 s.
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Figure 3. Angular speed behaviour under a three-phase
short circuit at the generator bus of duration tcl¼ 180ms and
starting at t¼ 0.5 s.
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Figure 4. Total admittance behaviour under a three-phase
short circuit at the generator bus of duration tcl¼ 180ms and
starting at t¼ 0.5 s.
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Figure 7. Estimated admittance behaviour when x̂3ð0Þ ¼ 0.
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superior performance is achieved under the second
condition, since the overshot for the load angle is
reduced in 	15% with respect to the first condition
(and 19% with respect to the open-loop behaviour).
However, as can be verified, the value k¼ 170 does not

hold with the stability condition found in Section 3.2.

As mentioned before, this kind of behaviour is due to

the conservative structure of the desired energy

function viewed as a Lyapunov function and deserves

a deeper study (which is currently developed), but

authors believe that it could be exploited even if its
formal justification is still under study.

Remark 8: Even though it is difficult to carry out a

fair comparison, it is interesting to point out that the
presented result exhibits some advantages with respect

to previously reported results. To illustrate this point,

the scheme presented by the authors in

de Leon-Morales et al. (2004) can be considered

where exactly the same model with the same param-
eters were used. In this case, the overshot reduction

achieved by the reported scheme is around 15%,

however the structure of the proposed observer is

remarkably complex. Thus, if it is considered that

similar performances are achieved with a much simpler

controller, then the advantage of the contribution of
this article is clear.

5. Concluding remarks

In this article it has been illustrated how the flexibility

offered for solving the ME in the application of the

IDA-PBC design methodology can be used to generate

OFCs. This illustration was carried out by considering

the practically important problem of improving the
transient stability properties of a power system

composed by a synchronous generator connected to

an infinite bus via a TCSC. Two controllers were

proposed, a pure and an observer-based OFC, and

both of them, in addition to achieve the stabilisation

objective, have shown a better transient response with
respect to the open-loop behaviour. Although the

observer-based scheme showed a superior perfor-

mance, it was illustrated that the pure OFC can

achieve remarkable responses considering operating

conditions that are not captured in the stability
analysis. Current research is carried out with the aim

to explain this advantageous behaviour. In addition, it

was also illustrated how the aforementioned flexibility

in tailoring the ME can be further exploited with the

aim of simplifying the design of the observer-based

control. Specifically, it was shown that deciding the
structure of the state-feedback control could allow for

the use of some tools, ISS, for establishing a sort of

separation principle which in turn gives some freedom

to the designer for approaching the observer design

problem in an independent way with respect to the
controller proposition.
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Figure 8. Load angle behaviour under operation conditions
(k¼ 170) outside the gain range determined by the stability
analysis.
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Figure 9. Angular speed behaviour under operation condi-
tions (k¼ 170) outside the gain range determined by the
stability analysis.
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Figure 10. Total admittance behaviour under operation
conditions (k¼ 170) outside the gain range determined by
the stability analysis.
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Notes

1. All vectors in this article are column vectors, even the
gradient of a scalar function denoted rð
Þ ¼

@
@ ð
Þ. When

clear from the context, the subindex will be omitted.
2. Notice that x2 � x�2 ¼ x2 is due to the fact that x�2 ¼ 0.
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