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Abstract-Given the set of matrix pairs M ⊂
Mm,n(C) × Mn(C) keeping a subspace S ⊂ C

n

invariant, we obtain a miniversal deformation of a
pair belonging to an open dense subset of M. It
generalizes the known results when S is a supple-
mentary subspace of the unobservable one.
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I. Introduction

This paper contributes to the study of versal defor-
mations when square matrices or pairs of matrices
are considered, together with invariant subspaces.
More specifically, we consider perturbations of a
pair keeping a certain subspace invariant. Versal
deformations were introduced by Arnold in [1] to
study the variations of the invariants of a square
matrix when its entries are perturbed. Thanks to
a natural generalization contained in [16], the same
technique has been applied to other cases, such as
perturbations of pairs of matrices representing lin-
ear systems ([9], [10]).

Invariant subspaces play a key role both in ma-
trix theory (see [14]) and linear control systems (see
[17]), where they are often called ”conditioned” in-
variant subspaces. For instance, in [17] invariant
subspaces are used in control problems such as Dis-
turbance Decoupling or Output Regulation. From
a theoretical point of view, the differentiable struc-
ture of the set of invariant subspaces of a square
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matrix has been studied in [15] and that of condi-
tioned invariant subspaces of a pair in [12] and [13].

In the context of versal deformations, it seems nat-
ural to consider the situation when both a matrix
and an invariant subspace are involved and both or
one of the elements of this couple is perturbed. So,
in [7] one studies the perturbation of a square ma-
trix preserving an invariant subspace. In particular,
this perturbation gives all the solutions of the Carl-
son problem, and hence explicit realizations can be
obtained (see [5]).

Here we generalize [7] to linear systems. That is
to say, we consider the perturbation of a pair of
matrices preserving a given conditioned invariant
subspace: we obtain the equations of a miniversal
deformation (i.e., minimal dimensional versal defor-
mation).

More specifically, we let Mp,q(C) denote the set of
complex matrices having p rows and q columns. If
p = q, we simply write Mp(C), and Gl(p) denotes
the group of nonsingular p × p matrices. If p ≤ q,
we identify C

p as the subspace C
p × {0} ⊂ C

q,
that is, the vectors having q − p zero trailing en-
tries. We consider the set M ⊂ Mn+m,n(C) of
vertically embedded pairs of matrices having C

d as
a conditioned invariant subspace (Definition 0.1).
Two pairs of matrices will be called equivalent if
they are block-similar and the change of basis in
the state space C

n induces an automorphism in C
d

(Definition 0.2). Our aim is to study these equiv-
alence classes and their variations when a pair is
perturbed preserving C

d as conditioned invariant
subspace.

Section 3 is devoted to study the differentiable
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structure of M, which is the starting point to ap-
ply Arnold’s techniques (see [1]). If we fix a basis
adapted to C

d ⊂ C
n ⊂ C

n+m, in Proposition 0.5
we prove that the elements of M are those of the
form

A =

⎛
⎝ A1 A3

FC1 A2

C1 C2

⎞
⎠ .

Notice that for the particular case of square matri-

ces in [7], one obtains simply
(
A1 A3

0 A2

)
. Hence

the generalization to pairs of matrices is non-trivial.
In fact, we prove that M can be differentially strati-
fied by rankC1 (Theorem 0.7) and the above equiv-
alence classes are the orbits under the action on
each stratum of a suitable group (Definition 0.8).

In Section 4 we obtain the equation of a miniver-
sal deformation of a pair belonging to the maxi-
mal stratum M∗, which is an open dense set in M.
Then the equations of a miniversal deformation are
obtained in Theorem 0.14.

As an example, we see that they generalize the ones
obtained in [9] when C

d is a supplementary sub-
space of the unobservable of A.

II. Preliminaries

We will deal with matrices of the form
(
A
C

)
∈

Mn+m,n(C), which we will identify with the pairs of
matrices (C,A), and which will be simply denoted
as A if no confusion is possible.

We are interested in pairs (C,A) having a fixed sub-
space S ∈ C

n as ”invariant”, in the sense of [2].

Definition 0.1 A subspace S ⊂ Cn is (C,A)-
invariant or conditioned invariant if A(S∩KerC) ⊂
S.

When conditioned invariant subspaces are involved,
the usual block similarity between pairs of matrices
is restricted in a natural way:

Definition 0.2 Given two pairs of matrices
(C,A), (C ′, A′) ∈ Mn+m,n(C) having S ⊂ C

n

as a conditioned invariant subspace, we say that
they are S-equivalent (or simply equivalent if no
confusion is possible) if

(i) the pairs are block-similar, that is, A′ =
PAP−1 + RCP−1, C′ = QCP−1, where P ∈
Gl(n), Q ∈ Gl(m), R ∈Mn,m(C),

(ii) and the change of basis P preserves S.

III. Pairs of matrices having a

(C,A)-invariant fixed subspace

In this section, we characterize the elements of the
set M formed by the pairs of matrices having the
subspace S ⊂ C

n as a conditioned invariant. More-
over, we show that these elements form a stratified
manifold and finally we describe a Lie group that
acts on M in such a way that the orbits are just
the equivalence classes in Definition 0.2.

The subspace S may be identified with C
d by con-

sidering ”adapted basis”:

Definition 0.3 Let us consider a subspace S ⊂
C

n, dimS = d. A basis of C
n whose d first vec-

tors form a basis of S is called an adapted basis to
the subspace.

In the above conditions, we will assume that the
matrices A and C are block-partitioned into

A =
(
A1 A3

A4 A2

)
, C =

(
C1 C2

)
,

where A1 ∈Md(C), C1 ∈Mm,d(C).

Now we define and characterize the set M:

Definition 0.4 Given S = C
d ⊂ C

n, let
M = {(C,A) ∈Mn+m,n(C) : A(S ∩ KerC) ⊂ S}
(that is to say, S is (C,A)-invariant.)

Proposition 0.5 Let (C,A) ∈Mm,n(C)×Mn(C).

(1) (C,A) ∈ M if and only if there is a basis
adapted to S such that the pair becomes

(
Ā
C̄

)
=

⎛
⎝ Ā1 Ā3

0 Ā2

C̄1 C̄2

⎞
⎠ ,

with Ā1 ∈Md(C), C̄1 ∈Mm,d(C), d = dimS.
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(2) Equivalently, if the pair (C,A) has the form (in
any adapted basis)

(
A
C

)
=

⎛
⎝ A1 A3

FC1 A2

C1 C2

⎞
⎠ ,

for some F ∈Mn−d,m(C).

Proof.

(1) See, for example, [4].

(2) The elements of C
d ∩ KerC have the form(

x
0

)
with C1x = 0. Thus, A(Cd ∩KerC) ⊂

C
d
. is verified if and only if C1x = 0 implies

A4x = 0, that is, KerC1 ⊂ KerA4. But this
last condition is equivalent to ImAt

4 ⊂ ImCt
1;

or, equivalently, At
4 = Ct

1F
t for some F ∈

Mn−d,m(C).

In order to study the differentiable structure of M,
let us consider the set

N = {(DG,D) : D ∈Md,m(C), G ∈Mm,l(C)}.
In general, N is not a manifold. For example,
{(xy, x) : x ∈ R, y ∈ R} = {(0, 0)} ∪ {(z, x) : x �=
0, z ∈ R}. However, we can stratify N by means of
rankD:

Lemma 0.6 The set

Nr = {(DG,D) : D ∈Md,m(C), G ∈Mm,l(C),

rankD = r}
is a manifold of dimension r(l +m+ d− r).

Proof.

Let M r
d,m(C) be the set of matrices of Md,m(C)

with rank r, which is a manifold of dimension
dm − (d − r)(m − r) (see, for example [3]). If
D0 ∈ M r

d,m(C), let UD0 be an open neighborhood
in M r

d,m(C). Without loss of generality we can as-
sume that ImD0 is spanned by its first r columns
and that this property also holds for all D ∈ UD0 .

Then, for any D ∈ UD0 and each column gj of G,
1 ≤ j ≤ l, Dgj is parameterized by the top r coef-
ficients of gj . Therefore, a coordinate chart of the

matrices (DG,D) = (Dg1, . . . , Dgl, D) is formed by
UD0 and the first r rows of G, and the dimension of
Nr is dm− (d− r)(m − r) + rl.

Therefore, M is a stratified differentiable manifold:

Theorem 0.7 Let Mr ⊂ M defined by:

Mr =

{⎛
⎝ A1 A3

A4 A2

C1 C2

⎞
⎠ ∈ M : rankC1 = r

}
,

M =
⋃

0≤r≤r∗ Mr, where r∗ = min(d,m).

(1) Mr is a manifold of dimension

σr = d2 + (n− d)(n+m) + r(n+m− r).

(2) M =
⋃

r Mr is a stratified differentiable man-
ifold.

(3) The stratum

M∗ = {A ∈ M : rankC1 = r∗},
where r∗ = min(d,m), is an open dense subset
in M.

As a first consequence, the equivalence classes in
Definition 0.2 are the orbits in M under the action
of a suitable Lie group. In a natural way, we con-
sider change of bases in Mn+m,n(C) which preserve
the chain of subspaces C

d ⊂ C
n ⊂ C

n+m.

Definition 0.8 Let G ⊂ Gl(n+m) be defined by

G =

{
P =

⎛
⎝ P1 P3 R1

0 P2 R2

0 0 Q

⎞
⎠ ∈ Gl(n+m),

P1 ∈ Gl(d), P2 ∈ Gl(n− d), Q ∈ Gl(m)

}
.

It is a straightforward computation that G is a sub-
group of Gl(n + m) and that the following result
holds.

Proposition 0.9 The natural action of the sub-
group G ⊂ Gl(N +n) on the differentiable manifold
Mn+m,n(C) can be restricted to Mr. That is, if
P ∈ G and A ∈ Mr, then

P ∗ A =⎛
⎝ P1 P3 R1

0 P2 R2

0 0 Q

⎞
⎠
⎛
⎝ A1 A3

FC1 A2

C1 C2

⎞
⎠
(
P1 P3

0 P2

)−1

∈
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Mr.

If we denote by OA the orbit of A ∈ Mr under the
action of G, then OA is the equivalence class of A
with respect to the equivalence relation in Definition
0.2. Hence, it is a locally closed submanifold of Mr,
with the boundary consisting of the union of orbits
of strictly smaller dimension.

IV. Miniversal deformation preserving a

(C,A)-invariant subspace

In order to study the perturbations of a pair (C,A)
preserving a conditioned invariant subspace, we will
use Arnold’s techniques of the so-called versal defor-
mations (that is, canonical forms of local differen-
tiable families of perturbations). The starting point
is the fact that the equivalence classes are orbits un-
der the action of a Lie group, and hence they are
submanifolds. Then versal/miniversal deformations
can be obtained as submanifolds which are trans-
verse/minitransverse to the orbit. We recall some
general definitions and results which we will apply
to N = M∗.

Definition 0.10 Let N be a manifold. An l-
dimensional deformation of A ∈ N is a differen-
tiable map

ϕ : Λ −→ N ,

where Λ is a neighborhood of the origin in C
l and

ϕ(0) = A. The image ϕ(Λ) is said to be a family of
deformations of A ∈ N .

If there is a Lie group G acting on the differentiable
manifold N , G ×N −→ N , (P ,A) 
−→ P ∗A, a de-
formation is called “versal” if any other deformation
is induced from it in the following sense:

Definition 0.11 Let N be a manifold and G a Lie
group acting on it. A deformation of A ∈ N ,
ϕ : Λ −→ N is called versal if, given any other
deformation of A ∈ N , ψ : Γ −→ N , there is a
neighborhood of the origin Γ′ ⊂ Γ, a differentiable
map ρ : Γ′ −→ Λ and a deformation of the identity
I ∈ G, δ : Γ′ −→ G such that

ψ(τ) = δ(τ) ∗ ϕ(ρ(τ)) , ∀τ ∈ Γ′.

It is called miniversal if it has the minimal dimen-
sion among the versal deformations.

Remark 0.12 It is enough to compute a miniver-
sal deformation of a point of the orbit; then, a
miniversal deformation of any other point of the
same orbit is induced from it by means of the group
action.

We now recall the key relation between “versality ”
and “transversality ”, proved in [1] for square matri-
ces, and which can be generalized (for example [16])
to the cases like the above one, where the equiva-
lence classes are submanifolds given as orbits under
the action of a Lie group.

Proposition 0.13 Let N be a manifold, with a Lie
group G acting on it. Let A ∈ N , OA be its G-
orbit and L ⊂ N be a submanifold minitransverse
to OA at A, that is to say: TAN = TAL ⊕ TAOA,
where TA(·) means the tangent space at A. Then
any local parametrization of L at A is a miniversal
deformation of A in N .

Thus, we have our main result for a generic pair
A ∈ M∗ ⊂ M:

Theorem 0.14 Let A = (C,A) ∈ Mn+m,n(C) be
a pair of matrices and S ⊂ C

n a d-dimensional
(C,A)-invariant subspace:

A =
(
A
C

)
=

⎛
⎝ A1 A3

0 A2

C1 C2

⎞
⎠

(see Proposition 0.5). Assume A ∈ M∗, that is to
say, rankC1 = r∗ = min(d,m). Then the following
statements hold.

(i) If m ≤ d, a miniversal deformation of A pre-
serving S as conditioned invariant subspace is
given by the linear submanifold L ⊂ M formed
by the matrices:

A +

⎛
⎝ X1 X3

Z(C1 + Y1) X2

Y1 Y2

⎞
⎠

satisfying the conditions

(1) X2C
∗
2 + Z = 0,

(2) Y1C
∗
1 + Y2C

∗
2 = 0,

(3) X1C
∗
1 +X3C

∗
2 = 0,

(4) X3A
∗
2 −A∗

1X3 − C∗
1Y2 = 0,

(5) X1A
∗
1 +X3A

∗
3 −A∗

1X1 − C∗
1Y1 = 0,

4
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(6) X2A
∗
2 −A∗

3X3 −A∗
2X2 − C∗

2Y2 = 0.

(ii) If d < m, without loss of generality we can
assume Ct

1 = (Id, 0). Then, a miniversal de-
formation of A in M is given by the set of
matrices

A +

⎛
⎝ X1 X3

Z(Id + Y11) X2

Y1 Y2

⎞
⎠ ,

where Y1 =
(
Y11

Y12

)
, Y11 ∈Md(C), satisfy-

ing (2)-(6) above and
(1′) X2C

∗
2 + (Z, 0) = 0, with Z ∈

Mn−d,r∗(C),

Proof. Firstly, let us assume m ≤ d. Then the sub-
set U of matrices C̄1 ∈ Mm,d(C) having maximal
rank is open and dense, and FC̄1 = 0 only if F = 0.
Hence, the map

γ : W −→ M∗,

W = Md(C) ×Mn−d(C) ×Md,n−d(C) × U×
Mm,n−d(C) ×Mn−d,m(C),

γ(Ā1, Ā2, Ā3, C̄1, C̄2, F ) =

⎛
⎝ Ā1 Ā3

FC̄1 Ā2

C̄1 C̄2

⎞
⎠

is a parametrization of M∗. Bearing in mind
Proposition 0.13, if V ⊂ M∗ is a sufficiently small
neighborhood of A, it is sufficient to prove that
γ−1(V ∩ L) is minitransverse to γ−1(V ∩ OA) at
Ã .= γ−1(A). In fact, we will prove that the first
one is just the normal variety to the second one at
Ã with respect to the natural scalar product:
〈(X1, X2, . . . ), (X ′

1, X
′
2, . . . )〉 = traceX∗

1X
′
1 +

traceX∗
2X

′
2 + . . . , where X∗

i means the conjugate-
transpose matrix of Xi.

It is a straightforward computation that the matri-
ces in γ−1(V ∩ OA) can be seen as the orbit of Ã
under the action of G induced in a natural way from
Proposition 0.9 as P ∗ Ã = γ−1(P ∗ A). Then,

P ∗ Ã = (P1A1P
−1
1 +R1C1P

−1
1 ,

−R2C1P
−1
1 P3P

−1
2 + (P2A2 +R2C2)P−1

2 ,

−(P1A1 +R1C1)P−1
1 P3P

−1
2 +

(P1A3 + P3A2 +R1C2)P−1
2 , QC1P

−1
1 ,

−QC1P
−1
1 P3P

−1
2 +QC2P

−1
2 , R2Q

−1).

Clearly, its tangent space at Ã is Im dαI , where dαI

is the derivative at the identity I ∈ G of the map

α : G −→ W, α(P) = P ∗ Ã. Differentiating this
map we have:

dαI(Ṗ) = (Ṗ1A1 −A1Ṗ1 + Ṙ1C1,

Ṗ2A2 + Ṙ2C2 −A2Ṗ2,

−A1Ṗ3 + Ṗ1A3 + Ṗ3A2 + Ṙ1C2 −A3Ṗ2,

Q̇C1 − C1Ṗ1,−C1Ṗ3 + Q̇C2 − C2Ṗ2, Ṙ2)

for any Ṗ belonging to TIG, that is, for Ṗ1 ∈
Md(C), Ṗ2 ∈ Mn−d(C), Ṗ3 ∈ Md,n−d(C), Ṙ1 ∈
Md,m(C), Ṙ2 ∈Mn−d,m(C), Q̇ ∈Mm(C).

Then, (X1, X2, X3, Y1, Y2, Z) ∈ (TÃγ
−1(V ∩ OA))⊥

if and only if, for any Ṗ1, Ṗ2, Ṗ3, Ṙ1, Ṙ2, Q̇ as above,

trace(X∗
1 (Ṗ1A1 −A1Ṗ1 + Ṙ1C1))+

trace(X∗
2 (Ṗ2A2 + Ṙ2C2 −A2Ṗ2))+

trace(X∗
3 (−A1Ṗ3 + Ṗ1A3 + Ṗ3A2 + Ṙ1C2−A3Ṗ2))+

trace(Y ∗
1 (Q̇C1 − C1Ṗ1))+

trace(Y ∗
2 (−C1Ṗ3+Q̇C2−C2Ṗ2))+trace(Z∗Ṙ2) = 0

or, equivalently,

trace((X1A
∗
1 +X3A

∗
3 −A∗

1X1 − C∗
1Y1)Ṗ ∗

1 )+

trace((X3A
∗
2 −A∗

1X3 − C∗
1Y2)Ṗ ∗

3 )+

trace((X1C
∗
1 +X3C

∗
2 )Ṙ∗

1)+

trace((X2A
∗
2 −A∗

3X3 −A∗
2X2 − C∗

2Y2)Ṗ ∗
2 )+

trace((X2C
∗
2+Z)R∗

2)+trace((Y1C
∗
1 +Y2C

∗
2 )Q̇∗) = 0.

Hence, the matrices in (TÃγ
−1(V ∩ OA))⊥ are just

characterized by (1) − (6).

If d < m and Ct
1 = (Id, 0) then for any

C̄1 =
(
C̄11

C̄12

)
in the vicinity of C1 it holds

that C̄11 is non-singular. So that: F̄ C̄1 =(
F̄1 F̄2

)( C̄11

C̄12

)
= (F̄1 + F̄2C̄12C̄

−1
11 )C̄11

.=

F1C̄11. Hence, the map

γ : Md(C) ×Mn−d(C) ×Md,n−d(C) × U×

Mm,n−d(C) ×Mn−d,d(C) −→ M∗,

γ(Ā1, Ā2, Ā3, C̄1, C̄2, F1) =

⎛
⎝ Ā1 Ā3

F1C̄11 Ā2

C̄1 C̄2

⎞
⎠

is a local parametrization. Then, the proof works
as above.
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Example 0.15 Let us consider the particular case
when S is a supplementary subspace of the unob-
servable one. Clearly, the pair can be taken in the
usual Brunovsky-Kronecker form

ABK =

⎛
⎝ N 0

0 J
E 0

⎞
⎠ .

where N is block-diagonal of nilpotent blocks, J is
a Jordan matrix, and E a full rank block diagonal,
with blocks having the form (0, . . . , 0, 1). Hence,
the equations in Theorem 0.14 become:

(1) Z = 0,

(2) Y1E
∗ = 0,

(3) X1E
∗ = 0,

(4) X3J −N∗X3 − E∗Y2 = 0,

(5) X1N
∗ −N∗X1 − E∗Y1 = 0,

(6) X2J
∗ − J∗X2 = 0.

Let us remark that these equations are just the
(I)-(V) in [9] (page 185). We point out that hor-
izontal pairs are considered in [9]. Hence the
matrices N, J, E in [9] correspond in our nata-
tion to N∗, J∗, E∗. In a similar way, the solu-
tions U1

1 , U
1
2 , U

2
1 , U

2
2 , V

1
1 and V 1

2 must be identified
with X1, X3, Z(C1+Y1), X2, Y1 and Y2 respectively,
whereas V 2

1 and V 2
2 do not appear here due to our

hypothesis of the pair of matrices having full rank.

Remark 0.16 The above example shows the quite
surprising fact that the same perturbed pairs appear
with the restriction or not that a fixed subspace S
is preserved as conditioned invariant. Indeed, from
the results in [9] it follows that, when S is a sup-
plementary subspace of the unobservable one of the
initial pair, then it is also conditioned invariant for
all the perturbed pairs. In this sense our approach
is a generalization of [9] for S being any conditioned
invariant subspace.

References

[1] V.I. Arnold, On Matrices Depending on Pa-
rameters, Uspekhi Mat. Nauk., 26 (1971), p.
101–114.

[2] G. Basile; G. Marro, Controlled and condi-
tioned invariant subspaces in linear system the-
ory, J. Optim. Theory Appl., 3 (1969), p. 306–
315.

[3] Th. Brocker; L. Lander, Differentiable
Germs and Catastrophes, Cambridge Univer-
sity Press, Cambridge (1975).

[4] A. Compta; J. Ferrer, On (A,B)t-
invariant Subspaces Having Extendible
Brunovsky Bases, Linear Algebra Appl., 225
(1997), p. 185–201.

[5] A. Compta; J. Ferrer, Matricial Realiza-
tions of the Solutions of the Carlson Prob-
lem,Linear Algebra Appl., 353 (2002), p. 197–
206.

[6] A. Compta; J. Ferrer; M. Peña, Dimen-
sion of the Orbit of Marked Subspaces,Linear
Algebra Appl., 379 (2004), p. 239–248.

[7] A. Compta; J. Ferrer; F. Puerta,
Miniversal deformations of marked matrices,
Linear Algebra Appl., 361 (2003), p. 181–201.

[8] A. Compta; U. Helmke; M. Peña; X.

Puerta, Simultaneous Versal Deformations of
Endomorphisms and Invariant Subspaces, Lin-
ear Algebra Appl., 413 (2006), p. 303–318.

[9] J. Ferrer; M.I. Garćıa; F. Puerta,
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