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Abstract This paper takes a new look at ideals generated by 2×2 minors of 2×3 matrices whose entries
are powers of three elements not necessarily forming a regular sequence. A special case of this is the ideals
determining monomial curves in three-dimensional space, which were studied by Herzog. In the broader
context studied here, these ideals are identified as Northcott ideals in the sense of Vasconcelos, and so
their liaison properties are displayed. It is shown that they are set-theoretically complete intersections,
revisiting the work of Bresinsky and of Valla. Even when the three elements are taken to be variables
in a polynomial ring in three variables over a field, this point of view gives a larger class of ideals than
just the defining ideals of monomial curves. We then characterize when the ideals in this larger class
are prime, we show that they are usually radical and, using the theory of multiplicities, we give upper
bounds on the number of their minimal prime ideals, one of these primes being a uniquely determined
prime ideal of definition of a monomial curve. Finally, we provide examples of characteristic-dependent
minimal prime and primary structures for these ideals.
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1. Introduction

Let A be a commutative Noetherian ring (with identity) and x1, x2, x3 be a sequence
of elements of A generating a proper ideal of height 3. Set N0 = N ∪ {0} and take
a = (a1, a2, a3) ∈ N3

0 and b = (b1, b2, b3) ∈ N3
0. Let c = a + b, c = (c1, c2, c3). Let M be

the matrix

M =

(
xa1

1 xa2
2 xa3

3

xb2
2 xb3

3 xb1
1

)
,

and v1 = xc1
1 − xb2

2 xa3
3 , v2 = xc2

2 − xa1
1 xb3

3 and D = xc3
3 − xb1

1 xa2
2 , the 2 × 2 minors of M

up to a change of sign. Consider I2(M) = (v1, v2, D), the determinantal ideal generated
by the 2 × 2 minors of M. Note that xb2

2 D = −xb3
3 v1 − xb1

1 v2, so that, if b2 = 0, then
I2(M) = (v1, v2).

Our motivation to consider these ideals comes from the following well-known result
of Herzog in [10] (see also [14, pp. 138–139]). Take the irreducible affine space curve of
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A3
k = k3, k a field, given by the parametrization x1 = tn1 , x2 = tn2 , x3 = tn3 , where

n = (n1, n2, n3) ∈ N3 (ni > 0), with gcd(n1, n2, n3) = 1. Let pn be the vanishing ideal
of this curve, i.e. the height-two prime ideal of the polynomial ring in three variables
A = k[x1, x2, x3] defined as the kernel of the natural morphism ϕ : k[x1, x2, x3] → k[t],
ϕ(xi) = tni . We will call pn the Herzog ideal associated to n = (n1, n2, n3) (see § 7 for
more details concerning this definition; note that Huneke [11] used the term Herzog ideals
for a different class of ideals). Herzog proved that pn is either a complete intersection or
an almost complete intersection ideal (in the sense of [9]). Concretely, with a suitable
numbering of the variables, pn has a set of generators of one of the following two types:

(ci): v1 = xc1
1 − xa3

3 , v2 = xa2
2 − xa1

1 xb3
3 , c1, a2, a3 ∈ N, a1b3 �= 0 (here b2 = 0);

(aci): v1 = xc1
1 − xb2

2 xa3
3 , v2 = xc2

2 − xa1
1 xb3

3 and D = xc3
3 − xb1

1 xa2
2 , with a, b ∈ N3.

In other words, a Herzog ideal can always be seen as an ideal of the type I2(M) =
(v1, v2, D), for some appropriate a, b ∈ N3

0. However, even in the case of a polynomial
ring, an ideal of the form I2(M) = (v1, v2, D) is not always a Herzog ideal because (as
we will show) it might not be a prime ideal (see Theorem 7.8), whereas a Herzog ideal is
prime by definition.

Herzog also proved that pn is always a set-theoretic complete intersection. Subse-
quently, Bresinsky and Valla gave constructive proofs that an ideal of the form I2(M) is
a set-theoretic complete intersection (see [2] and [20, Theorem 3.1]), the former in the
polynomial case A = k[x1, x2, x3], the latter in our setting and using a general result on
determinantal ideals proved by Eagon and Northcott [4, Theorem 3].

We recently made use of Herzog ideals in order to produce a negative answer to a
long-standing question about the uniform Artin–Rees property on the prime spectrum of
an excellent ring. Concretely, for s ∈ N, s � 4, and n1(s) = s2−3s+1, n2(s) = s2−3s+3
and n3(s) = s2 − s + 1, n(s) = (n1(s), n2(s), n3(s)) ∈ N3, the one parameter family of
(non-complete intersection) Herzog ideals pn(s) satisfies the relation that, for all s � 4,
ps

n(s) ∩ x3A � pn(s)(ps−1
n(s) ∩ x3A) [16].

On the other hand, in [15], Northcott considered the following situation: let u =
u1, . . . , ur and v = v1, . . . , vr be two sets of r elements of a Noetherian ring A, connected
by the relations

v1 = a1,1u1 + a1,2u2 + · · · + a1,rur,

v2 = a2,1u1 + a2,2u2 + · · · + a2,rur,

...

vr = ar,1u1 + ar,2u2 + · · · + ar,rur,

with ai,j ∈ A. Let D stand for the determinant of the r × r matrix Φ = (ai,j). Northcott
proved that if (v1, . . . , vr) has grade r and (v1, . . . , vr, D) is proper, then the projec-
tive dimension of A/(v1, . . . , vr, D) is r, and (v1, . . . , vr, D) and all its associated prime
ideals have grade r [15, Theorem 2]. Subsequently, Vasconcelos called such an ideal
(v1, . . . , vr, D) the Northcott ideal associated to Φ and u (see, for example, [21, p. 100]).
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Take now r = 2, u1 = xa1
1 , u2 = −xb2

2 , and v1 = xc1
1 − xb2

2 xa3
3 , v2 = xc2

2 − xa1
1 xb3

3 , the
aforementioned first two generators of I2(M) = (v1, v2, D). Let Φ be the 2 × 2 matrix
defined by

Φ =

(
xb1

1 xa3
3

−xb3
3 −xa2

2

)
,

whose determinant, note, is just D = xc3
3 − xb1

1 xa2
2 , the third generator of I2(M). We

clearly have Φ · [u]T = [v]T. In other words, the ideal I2(M) = (v1, v2, D) (in particular, a
Herzog ideal) can be viewed as a Northcott ideal whenever the ideal (v1, v2) has grade 2.∗

This fact, though simple, was extremely useful in proving the main result in [16]. As a
consequence, it awakened our interest in this family of ideals. In this paper, we study
their general properties, though we will restrict ourselves just to the case when a, b ∈ N3,
i.e. ai, bj > 0. For ease of reference, we state the following definition.

Definition 1.1. Let A be a commutative Noetherian ring and let x = x1, x2, x3 be a
sequence of elements of A generating an ideal of height 3. Let a = (a1, a2, a3) ∈ N3 and
b = (b1, b2, b3) ∈ N3 (ai, bj > 0) and set c = a + b, c = (c1, c2, c3). Let M be the matrix

M =

(
xa1

1 xa2
2 xa3

3

xb2
2 xb3

3 xb1
1

)
,

and v1 = xc1
1 −xb2

2 xa3
3 , v2 = xc2

2 −xa1
1 xb3

3 and D = xc3
3 −xb1

1 xa2
2 , the 2×2 minors of M up

to a change of sign. The ideal I = I2(M) = (v1, v2, D) will be called the Herzog–Northcott
(HN) ideal associated to M.

The paper is organized as follows. In § 2 we start with a few preliminary results. In § 3,
following Bresinsky’s ideas in [2], we prove, in our general setting, that HN ideals are
set-theoretically complete intersections, thus recovering the result of Valla. Concretely,
we prove that the element gB considered by Bresinsky verifies rad(I) = rad(v1, gB) in
complete generality (see Theorem 3.1). Comparing the element gB given by Bresinsky
with the element gV given by Valla, we show that they are equal modulo (v1) under mild
hypotheses and are in general closely related. Section 4 is mainly devoted to studying
the condition grade(v1, v2) = 2. In §§ 5 and 6, and supposing that x = x1, x2, x3 is a
regular sequence and that (v) has grade 2, we prove that HN ideals are geometrically
linked to a complete intersection and that they are almost complete intersections (in the
sense of [9]). From § 7 onwards, we restrict ourselves to the case of the polynomial ring
A = k[x1, x2, x3], where k is a field and x = x1, x2, x3 are three variables over k. Then,
in § 7, we characterize when an HN ideal is a prime ideal. To do this, we first consider an
integer vector m(I) = (m1, m2, m3) ∈ N3 associated to I and the corresponding Herzog

∗ After submitting this paper, we found that Waldi had earlier observed that the vanishing ideal of
a monomial curve in affine 4-space in a Northcott ideal (Waldi used the term ‘special’ to refer to such
ideals): see [22]. Subsequently, Kunz drew our attention to the thesis of his former student Gastinger,
which contained the result that the property of being a Northcott ideal no longer held for monomial
curves in affine space of dimension greater than 4: see [7]. We thank Professor Kunz for providing us
with a copy of his thesis.
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(prime) ideal pm(I). Then we prove that I being prime, gcd(m(I)) = 1 and I = pm(I) are
three equivalent conditions (see Theorem 7.8). Section 8 is devoted to finding a bound
for the number of minimal components of an HN ideal. Concretely, we prove that the
number of minimal components of an HN ideal I is bounded above in terms of the
greatest common divisor of any pair (mi, mj), i �= j, where (m1, m2, m3) = m(I) is
the integer vector associated to I (Theorem 8.3). Finally, in § 9, and provided that k

has characteristic zero or is big enough, we prove that an HN ideal is always radical
(Theorem 9.1). We finish by giving some illustrative examples.

2. Preliminary results

In this section, A will be a commutative Noetherian ring and x = x1, x2, x3 a sequence
of elements of A generating a proper ideal of height 3. We keep the notation of § 1,
i.e. v1 = xc1

1 − xb2
2 xa3

3 , v2 = xc2
2 − xa1

1 xb3
3 and D = xc3

3 − xb1
1 xa2

2 , and u1 = xa1
1 and

u2 = −xb2
2 , where a, b ∈ N3. In particular, set I = I2(M) = (v1, v2, D).

Remark 2.1. Let I be an HN ideal. Then rad(v) = rad(I) ∩ rad(u).

Proof. Let p a prime ideal of A. Suppose that p ⊇ (v). Then xb2
2 D = −xb3

3 v1−xb1
1 v2 ∈

p. If x2 �∈ p, then D ∈ p and I ⊆ p. On the other hand, if x2 ∈ p, then x1 ∈ p since
v1 ∈ p. It follows that p ⊇ I or p ⊇ (u) or, equivalently, p ⊇ I ∩ (u). Conversely, it is
immediate that if p ⊇ I ∩ (u), then p ⊇ I ⊇ (v) or p ⊇ (u) ⊇ (v). �

For stronger results we need more restrictive conditions (see Proposition 2.2 (a) and
Corollary 2.3). The following proposition is a direct consequence of the work of Northcott
[15].

Proposition 2.2. Let I be an HN ideal. Suppose that grade(v) = 2.

(a) Then (v) : D = (u) and (v) : I = (u).

(b) The ideals (v), I and (u) are grade-unmixed of grade 2.

(c) Moreover, if x = x1, x2, x3 is a regular sequence, then each of x1, x2, x3 is regular
modulo I.

Proof. The first part of (a) follows from [15, Proposition 1] (which does not require
the ring to be local), and the statement that (v) : I = (u) follows from the equality
(v) : D = (u). By [13, Theorem 130], (v) is grade-unmixed and by [15, Theorem 2] I

also has grade 2 and is grade-unmixed. From a minimal primary decomposition of (v) and
the equality (v) : D = (u), one can extract another minimal primary decomposition of
(u), and hence (u) is grade-unmixed and clearly has grade 2. Moreover, if x = x1, x2, x3

is a regular sequence and if some xi were in an associated prime p of I, then p would
contain x1, x2, x3, a contradiction, since p has grade 2 by part (b). �

Corollary 2.3. Let I be an HN ideal. Suppose that x = x1, x2, x3 is a regular sequence
and that grade(v) = 2. Then I ∩ (u) = (v).
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Proof. Clearly, (v) ⊆ I ∩ (u) and, by Cramer’s rule, D · (u) ⊂ (v). To see that
I∩(u) ⊆ (v), it suffices to show that (u) : D = (u), for if z ∈ I∩(u), then z = w+qD ∈ (u),
with w ∈ (v) ⊆ (u). Thus, qD ∈ (u) and q ∈ (u) : D = (u) would follow. Therefore, one
would deduce that qD ∈ (v) and z ∈ (v). But D is indeed regular modulo (u). Were D

in an associated prime p of (u), then p would contain the regular sequence x1, x2, x3, a
contradiction, since p has grade 2 by Proposition 2.2 (b). �

3. HN ideals are set theoretically complete intersections

In this section, A will be a commutative Noetherian ring and x = x1, x2, x3 a sequence
of elements of A generating a proper ideal of height 3. We keep the notation of § 1, i.e.
v1 = xc1

1 −xb2
2 xa3

3 , v2 = xc2
2 −xa1

1 xb3
3 and D = xc3

3 −xb1
1 xa2

2 , and u1 = xa1
1 and u2 = −xb2

2 ,
with a, b ∈ N3.

In the next result we produce the desired element g using an algorithm employed by
Bresinsky in [2] (there, in the case where A = k[x1, x2, x3] is a polynomial ring over the
field k). For this reason we will refer to this choice of g as gB. This candidate for g will
subsequently be contrasted in Example 3.2 and Remark 3.3 with the candidate for g,
denoted gV, advanced by Valla in [20] (in our general setting). To examine this contrast
in detail, we pay close attention to the form of g.

Theorem 3.1 (cf. [2], [20]). Let I be an HN ideal. Then there exists an algorith-
mically specified element g in the radical of I such that rad(I) = rad(v1, g). Moreover, if
x = x1, x2, x3 is a regular sequence and grade(v) = 2, then this element g lies in I.

Proof. We prove that there exists an element g in A of the form g = (−1)c1xr
3 + h,

with r � 1 and h ∈ (x1, x2), and such that vc1
2 − pv1 = xa1b2

2 g, for some p ∈ A.
From this last equation, it follows that v2 ∈ rad(v1, g) and g ∈ (v) : ua1

2 ⊆ I : ua1
2 .

Since I is the ideal generated by the 2×2 minors of a 2×3 matrix, by [4, Theorem 3] any
minimal prime of I is of height at most 2. In particular, x2 is not in any minimal prime
of I. Thus, ua1

2 is regular modulo rad(I) and g ∈ rad(I). Moreover, if x = x1, x2, x3 is a
regular sequence and grade(v) = 2, by Proposition 2.2, x2 and hence ua1

2 is regular modulo
I and g ∈ I in this case. Then Dr − (−1)c1c3gc3 ∈ rad(I) ∩ (x1, x2) ⊆ rad(I ∩ (u)) which,
by Remark 2.1, is equal to rad(v) and so is included in rad(v1, g). Thus, D ∈ rad(v1, g)
and rad(I) = rad(v1, g), and the result is then proved.

Now construct the desired g (call it gB) by following Bresinsky’s argument in [2]. His
idea is to take the binomial expansion of vc1

2 = (xc2
2 − xa1

1 xb3
3 )c1 and, by subtracting a

multiple of v1 = xc1
1 − xb2

2 xa3
3 , eliminate the higher-order terms in xa1

1 xb3
3 . To assist the

reader we include details that were omitted in Bresinsky’s paper.
For i = 0, write B0 = vc1

2 , p0 = 0 and q0 = 0. For i = 1, . . . , a1, write

Bi =
c1∑

j=i

(−1)c1−j

(
c1

j

)
xjc2

2 x
a1(c1−j)
1 x

b3(c1−j)
3 ,

pi =
i−1∑
j=0

(−1)c1−j

(
c1

j

)
x

ja2+(i−1)b2
2 x

(a1−i+j)c1−ja1
1 x

(i−1−j)a3+b3(c1−j)
3 ,
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qi = pix
b2
2 xa3

3

=
i−1∑
j=0

(−1)c1−j

(
c1

j

)
xja2+ib2

2 x
(a1−i+j)c1−ja1
1 x

(i−j)a3+b3(c1−j)
3 .

Note that Bi is just a part of the binomial expansion of vc1
2 = (xc2

2 − xa1
1 xb3

3 )c1 . More-
over,

Bi − Bi+1 + qi − pi+1x
c1
1

= Bi − Bi+1 + pix
b2
2 xa3

3 − pi+1x
c1
1

= (−1)c1−i

(
c1

i

)
xic2

2 x
a1(c1−i)
1 x

b3(c1−i)
3

+
[ i−1∑

j=0

(−1)c1−j

(
c1

j

)
x

ja2+(i−1)b2
2 x

(a1−i+j)c1−ja1
1 x

(i−1−j)a3+b3(c1−j)
3

]
xb2

2 xa3
3

−
[ i∑

j=0

(−1)c1−j

(
c1

j

)
xja2+ib2

2 x
(a1−i−1+j)c1−ja1
1 x

(i−j)a3+b3(c1−j)
3

]
xc1

1

= 0.

Now, for i = 0, . . . , a1, let us see that vc1
2 −

∑i
j=0 pjv1 = Bi + qi. Indeed, for i = 0,

since B0 = vc1
2 and p0 = 0 and q0 = 0, vc1

2 − p0v1 = B0 + q0. Suppose the equality holds
for i, 0 < i < a1. Then

vc1
2 −

i+1∑
j=0

pjv1 = Bi + qi − pi+1v1

= Bi+1 + (Bi − Bi+1 + qi − pi+1x
c1
1 ) + pi+1x

b2
2 xa3

3

= Bi+1 + qi+1.

In particular, for i = a1,

vc1
2 −

a1∑
j=0

pjv1 = Ba1 + qa1

=
c1∑

j=a1

(−1)c1−j

(
c1

j

)
xjc2

2 x
a1(c1−j)
1 x

b3(c1−j)
3

+
a1−1∑
j=0

(−1)c1−j

(
c1

j

)
xja2+a1b2

2 x
j(c1−a1)
1 x

(a1−j)a3+b3(c1−j)
3

= xa1b2
2

[ c1∑
j=a1

(−1)c1−j

(
c1

j

)
x

ja2+(j−a1)b2
2 x

a1(c1−j)
1 x

b3(c1−j)
3

]

+ xa1b2
2

[ a1−1∑
j=0

(−1)c1−j

(
c1

j

)
xja2

2 x
j(c1−a1)
1 x

(a1−j)a3+b3(c1−j)
3

]
.
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Thus, taking p =
∑a1

j=0 pjv1 and

gB =
c1∑

j=a1

(−1)c1−j

(
c1

j

)
x

ja2+(j−a1)b2
2 x

a1(c1−j)
1 x

b3(c1−j)
3

+
a1−1∑
j=0

(−1)c1−j

(
c1

j

)
xja2

2 x
j(c1−a1)
1 x

(a1−j)a3+b3(c1−j)
3 ,

one has vc1
2 − pv1 = xa1b2

2 gB. Moreover, note that the term j = 0 of gB gives (−1)c1xr
3,

with r = a1a3 + b3c1, and the rest of the terms of gB are in (x1, x2). �

Example 3.2. In [20, Theorem 3], Valla constructed an element gV in the radical of
I such that rad(I) = rad(v1, gV). In concrete terms, changing Valla’s notation to ours,

gV =
c1∑

j=0

(−1)c1−j

(
c1

j

)
xs

1x
(c1−j)c2+tb2−a1b2
2 xjb3+ta3

3 ,

where for 0 � j � c1, ja1 = tc1 + s with 0 � s � c1 − 1.
For instance, if we take

M =

(
x2

1 x2 x3

x2
2 x3 x2

1

)
,

which is the example considered by Bresinsky in [2], then the element gB considered in
the proof of Theorem 3.1 is

gB =
4∑

j=2

(−1)4−j

(
4
j

)
x

j+(j−2)2
2 x

2(4−j)
1 x4−j

3 +
1∑

j=0

(−1)4−j

(
4
j

)
xj

2x
j2
1 x

(2−j)+(4−j)
3 ,

so that

gB = x8
2 − 4x5

2x
2
1x3 + 6x2

2x
4
1x

2
3 − 4x2x

2
1x

4
3 + x6

3.

On the other hand,

gV = x8
2 − 4x5

2x
2
1x3 + 6x4

2x
3
3 − 4x2x

2
1x

4
3 + x6

3.

We note that gB − gV = 6x2
2x

2
3v1. This pattern is completely general, as we now show.

Remark 3.3. If v1, x2 is a regular sequence, then gB−(−1)c1gV is in (v1). In particular,
if, moreover, x = x1, x2, x3 is a regular sequence and grade(v) = 2, then gB and gV are
in I.

Proof. By using the beginning of the proof of Valla [20, Theorem 3], changing his
notation to ours, we have

(−1)c1vc1
2 = xa1b2

2 gV mod(v1).
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On the other hand, from Theorem 3.1 we have vc1
2 = xa1b2

2 gB + pv1. Hence,

xa1b2
2 [gB − (−1)c1gV] = 0 mod(v1). (3.1)

If x2 is regular modulo (v1), then gB − (−1)c1gV ∈ (v1). If, moreover, x = x1, x2, x3

is a regular sequence and grade(v) = 2, by Theorem 3.1, gB can be taken in I, and so
can gV. �

Remark 3.4. It is always the case that x2 is regular modulo rad(I) for a general HN
ideal I (see the proof of Theorem 3.1). Hence, it follows from Theorem 3.1 and (3.1) that
rad(I) = rad(v1, gV) for a general HN ideal I.

4. On the condition grade(v) = 2

In this section, A will be a commutative Noetherian ring and x = x1, x2, x3 a sequence
of elements of A (not necessarily generating a proper ideal of height 3). We keep the
notation of § 1, i.e. v1 = xc1

1 − xb2
2 xa3

3 , v2 = xc2
2 − xa1

1 xb3
3 and D = xc3

3 − xb1
1 xa2

2 . The
purpose of this section is to study the condition grade(v) = 2 versus the condition that
x1, x2 or x1, x2, x3 forms a regular sequence. These results are of interest in view of
Remark 3.3 and of results in subsequent sections.

In § 7 onwards, we shall be particularly interested in the case of a polynomial ring. As
will be seen in Example 4.3, this case can be placed in a graded context. For this reason
and for ease of reference, we introduce the following notation. With the assumptions of
this section, we say that (A, x) satisfies the homogeneous condition (∗) if A can be graded
by N0, with x1, x2, x3 and v1, v2, D homogeneous elements of positive degree.

The following result is folklore (see [3, Corollary 1.6.19] for any unexplained notation
and a proof in the local case). For the graded case use [1, § 9.7, Corollaire 2] and [3,
Theorem 1.6.17 (b)].

Theorem 4.1. Let R be a commutative Noetherian ring. Let y = y1, . . . , yn be a
sequence of elements of R. Let M be a finitely generated R-module. Suppose either that
y1, . . . , yn are in the Jacobson radical of R, or that R =

⊕
n�0 Rn is N0-graded, y1, . . . , yn

are homogeneous elements of positive degree and M =
⊕

n�0 Mn is graded over R. Then
the following conditions are equivalent:

1. grade((y1, . . . , yn); M) = n;

2. Hi(y; M) = 0 for all i � 1;

3. H1(y; M) = 0;

4. y = y1, . . . , yn is a regular sequence (in any order).

We now state the desired result.

Proposition 4.2. Let x = x1, x2, x3 be a sequence of elements of A. Suppose either
that x1, x2, x3 are in the Jacobson radical of A, or that (A, x) satisfies the homogeneous
condition (∗). Then
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(a) x1, x2 is a regular sequence if and only if v1, x2 is a regular sequence,

(b) x1, x2, x3 is a regular sequence if and only if v1, v2, x3 is a regular sequence (so
grade(v) = 2 in either case),

(c) if, moreover, x1, x2, x3 generate a proper ideal of height 3, grade(v) = 2 and A

satisfies the Serre condition (S3), then x1, x2, x3 is a regular sequence.

Proof. We have (v1, x2) = (xc1
1 , x2) and (v1, v2, x3) = (xc1

1 , xc2
2 , x3). Thus,

grade(v1, x2) = grade(xc1
1 , x2) and grade(v1, v2, x3) = grade(xc1

1 , xc2
2 , x3).

By Theorem 4.1, v1, x2 is a regular sequence if and only if grade(v1, x2) = 2, and so,
by Theorem 4.1 again, if and only if xc1

1 , x2 is a regular sequence. Analogously, v1, v2, x3

is a regular sequence if and only if xc1
1 , xc2

2 , x3 is a regular sequence. Using [13, Exer-
cise 3.1.12 (c)], one deduces (a) and (b).

Finally, if grade(v) = 2, since (v) ⊆ (x1, x2), grade(x1, x2) = 2, by [13, Theorem 125].
By Theorem 4.1, x1, x2 is a regular sequence, and by [13, Theorem 130] the ideal (x1, x2)
is grade-unmixed. Thus, for any associated prime p of (x1, x2), depth(Ap) = grade(p) = 2
and height(p) � 2. Since A satisfies the Serre condition (S3),

2 = depth(Ap) � inf(3, height(p)).

Hence, p has height 2, so x3 /∈ p since (x1, x2, x3) has height 3, by assumption. Thus,
x1, x2, x3 is a regular sequence. �

Example 4.3. Let A = k[x1, x2, x3] be the polynomial ring in three variables x1, x2, x3

over a field k. Set m1 = c2c3 − a2b3, m2 = c1c3 − a3b1 and m3 = c1c2 − a1b2. Endow A

with the natural grading induced by giving xi weight mi. Then A is graded by N0 and
x1, x2, x3 and v1, v2, D are homogeneous elements of positive degree, i.e. (A, x) satisfies
the homogeneous condition (∗). In particular, v1, v2 is a regular sequence in either order.

Proof. Clearly, mi > 0, so xi is a homogeneous element of positive degree. On the
other hand, v1, v2, D are homogeneous provided that (m1, m2, m3) satisfies the following
system of equations:

c1m1 = b2m2 + a3m3,

c2m2 = a1m1 + b3m3,

c3m3 = b1m1 + a2m2.

⎫⎪⎬
⎪⎭ (4.1)

It is easily checked that this is indeed the case. Hence, v1, v2, D are homogeneous ele-
ments of positive degree and so (A, x) satisfies the homogeneous condition (∗). Applying
Proposition 4.2, we deduce that v1, v2 is a regular sequence, and in either order because
of Theorem 4.1. �



170 L. O’Carroll and F. Planas-Vilanova

Remark 4.4. In fact, note that in (4.1) each of the three equations can be obtained
from the other two via addition. Moreover, since c1 > a1 and c2 > b2, the system can be
reduced to the Q-linear system of rank 2 formed by the first two equations:

(
c1 −b2 −a3

−a1 c2 −b3

) ⎛
⎜⎝m1

m2

m3

⎞
⎟⎠ =

(
0
0

)
.

By Cramer’s rule, the Q-linear subspace of solutions is generated by the non-zero vector(∣∣∣∣∣a3 −b2

b3 c2

∣∣∣∣∣ ,

∣∣∣∣∣ c1 a3

−a1 b3

∣∣∣∣∣ ,

∣∣∣∣∣ c1 −b2

−a1 c2

∣∣∣∣∣
)

= (a2a3 + a3b2 + b2b3, a1a3 + a1b3 + b1b3, a1a2 + a2b1 + b1b2)

= (c2c3 − a2b3, c1c3 − a3b1, c1c2 − a1b2)

= (m1, m2, m3).

Thus, (m1, m2, m3) ∈ N3 is a solution of (4.1) which is unique up to a non-zero rational
multiple.

One can have a Cohen–Macaulay domain A and a sequence of elements x = x1, x2, x3

of A generating a proper ideal of height 3 (and hence grade 3), though with grade(v1, v2)
equal to 1. Necessarily, by Proposition 4.2, x = x1, x2, x3 are not in the Jacobson radical
and (A, x) does not satisfy the homogeneous condition (∗).

Example 4.5 (Kaplansky [13, Exercise 7, p. 102]). Let A = k[y1, y2, y3] be the
polynomial ring in three variables y1, y2, y3 over a field k. Then the elements x3 = y1,
x1 = y2(1 − y1) and x2 = y3(1 − y1) form a regular sequence in this order, but in the
order x1, x2, x3 they do not; moreover, grade(x1, x2) = grade((x1, x2); A/(x1)) + 1 = 1.
Thus, x1, x2, x3 generate a proper ideal of height (and grade) 3, but grade(v1, v2) = 1.

5. HN ideals are geometrically linked to complete intersections

In this section, A will be a commutative Noetherian ring and x = x1, x2, x3 a regular
sequence. Moreover, we will suppose that the ideal (v) has grade 2 (see, for example,
Proposition 4.2). In spite of (v) having grade 2, it may be that v1, v2 is not a regular
sequence. However, one can ensure that there does exist an element w ∈ A such that
v1 + wv2, v2 is a regular sequence (see, for example, [13, Theorem 125] and its proof).
We keep the rest of the notation as in § 1.

Lemma 5.1. Let I be an HN ideal. Suppose that x = x1, x2, x3 is a regular sequence
and that grade(v) = 2. Then I = (v) : u1 = (v) : u2 = (v) : (u).

Proof. By Corollary 2.3, I ∩ (u) = (v) and, by Proposition 2.2, x1 is regular modulo
I. Then

(v) : u1 = [I ∩ (u)] : u1 = (I : u1) ∩ [(u) : u1] = I : u1 = I.
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Analogously, I = (v) : u2. That I = (v) : (u) follows immediately from this, since

(v) : (u) = ((v) : u1) ∩ ((v) : u2).

�

In particular, (v) is a radical ideal if and only if I and (u) are radical ideals. Indeed,
by Remark 2.1, rad(v) = rad(I) ∩ rad(u) and so (v) is radical if I and (u) are radical.
Conversely, if (v) is radical, then rad(I) = rad((v) : u1) ⊆ rad(v) : u1 = (v) : u1 = I and
rad(u) = rad((v) : D) ⊆ rad(v) : D = (v) : D = (u), by Proposition 2.2. In particular, if
a1 > 1 or b2 > 1, then (u) is not radical, and hence (v) is not either.

Proposition 5.2. Let I be an HN ideal. Suppose that x = x1, x2, x3 is a regular
sequence and that grade(v) = 2. Then I is geometrically linked to (u), i.e. (u) = (v) : I,
I = (v) : (u) and I ∩ (u) = (v).

Proof. By [13, Theorem 125], (v) can be generated by a regular sequence clearly
contained in I ∩ (u). Moreover, (u) = (v) : I, I = (v) : (u) and I ∩ (u) = (v) follow from
Proposition 2.2, Lemma 5.1 and Corollary 2.3, respectively. �

In [21, p. 326 ff], Vasconcelos gives a proof that I = (v) : (u), but it would seem
that there is a hidden Gorenstein hypothesis in his Corollary 4.1.1 (see the appeal to
Corollary A.9.1 in its proof; see also [19, Proposition 2.4], where the local Gorenstein
hypothesis is used again).

In particular, one has Ass(A/I) ∪ Ass(A/(u)) = Ass(A/(v)) (see, for example, [19,
Remark 2.2]).

6. HN ideals are almost complete intersections

In this section, A will again be a commutative Noetherian ring and x = x1, x2, x3 a
regular sequence. Moreover, as before, we will suppose that the ideal (v) has grade 2 (see
Proposition 4.2).

Lemma 6.1. Let I be an HN ideal. Suppose that x = x1, x2, x3 is a regular sequence
and that grade(v) = 2. Then I is minimally generated by three elements.

Proof. By Proposition 2.2, none of x1, x2 or x3 is in any minimal prime of I. Localize
at a minimal prime of (x1, x2, x3) without changing notation. So we suppose that A is
local. If I has a minimal generating set of less than three elements, then at least one
element of the generating set v1, v2, D is redundant: D, say. In this case, I = (v1, v2) ⊆
(x1, x2). By the Generalized Principal Ideal Theorem [13, Theorem 152], there exists a
minimal prime q of (x1, x2) of height 2. But then q would be a minimal prime over I

containing (x1, x2, x3), a contradiction (and similarly for the possible variations on this
argument).
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Alternatively, localize at a minimal prime containing (x1, x2, x3) without changing
notation. The resolving complex constructed in [15, § 2 and Theorem 2] in the case of
our specific Φ, u and v yields the following free resolution of I:

0 → A2 [ϕ]−−→ A3 [ψ]−−→ A → A/(v, D) → 0,

where

[ϕ] =

⎛
⎜⎝

−xa1
1 xb2

2

xa2
2 −xb3

3

xa3
3 −xb1

1

⎞
⎟⎠ and [ψ] =

(
−D v1 v2

)
.

Since all the entries in the matrix maps are in the maximal ideal, this Hilbert–Burch
presentation of I is minimal. �

Remark 6.2. Actually, by Valla’s argument at the top of page 10 in [20], Lemma 6.1
holds for an arbitrary HN ideal. Note also that the second proof presented above requires
only that grade(v) = 2. From this resolution, [ψ]·[ϕ] = 0 and so Dxa1

1 +v1x
a2
2 +v2x

a3
3 = 0.

Therefore, Dxa1
1 ∈ (v) and IAx1 = (v)Ax1 . (This can also be deduced from the equality

I = (v) : (u).)

Proposition 6.3. Let I be an HN ideal. Suppose that x = x1, x2, x3 is a regular
sequence and that grade(v) = 2. Then I is an almost complete intersection (in the sense
of [9]).

Proof. On the one hand, I is minimally generated by three elements and has height 2.
To see this, note that I contains (v) so has grade at least 2. On the other hand, since
rad(I) = rad(v1, g), any minimal prime of I is a minimal prime of (v1, g), which by the
Generalized Principal Ideal Theorem will be of height at most 2. Finally, IAp is locally a
complete intersection at primes p minimal over I, because such a prime p fails to contain
x1, so IAp

∼= (IAx1)Apx1
. But IAx1 = (v)Ax1 and IAp = (v)Ap. �

Remark 6.4. Let I be an HN ideal. Suppose that x = x1, x2, x3 is a regular sequence
and that grade(v) = 2. Then I is generated by a d-sequence, I is of linear type and of
strong linear type.

Proof. Indeed, since (v) : D = (u) and I ∩ (u) = (v),

((v) : D) ∩ I = (u) ∩ I = (v).

Therefore, (v) : D2 = (v) : D. In particular, for some w ∈ A, v1 + wv2, v2, D is a d-
sequence which generates I (see [12] for a general discussion of d-sequences, and [12,
Example 4] in particular for the result at issue here). Hence, I is an ideal of linear type,
i.e. the canonical graded homomorphism α : S(I) → R(I) between the symmetric algebra
of I and the Rees algebra of I is an isomorphism (see, for example, [9]). In fact, a some-
what stronger property holds, namely I is of strong linear type, i.e. H2(A, B,G(I)) = 0,
where H2(A, B,G(I)) stands for the second André–Quillen homology group of the A-
algebra B = A/I with coefficients in the B-module G(I), the associated graded ring of I.
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It is well known that ker(α2) ∼= H2(A, B, B). Moreover, if A ⊃ Q and H2(A, B,G(I)) = 0,
then I is of linear type. Since B as an A-module has projective dimension 2 and I is of lin-
ear type, then the converse also holds and one has H2(A, B,G(I)) = 0 [17, Theorem 3.4
and Proposition 3.10]. �

7. When are HN ideals prime?

Henceforth, A = k[x1, x2, x3] is the polynomial ring in three variables x = x1, x2, x3 over
a field k. In particular, v1, v2 is a regular sequence in any order, by Example 4.3. Denote
by m the maximal ideal of A generated by x1, x2, x3.

We begin with the following definition, which will play a key role. The idea behind it
lies in the subsequent remark and in the proofs of Example 4.3 and Lemma 7.7.

Definition 7.1. Let J be an ideal of A, J ⊂ m, such that xiA + J is m-primary for
all i = 1, 2, 3. The integer vector associated to J , m(J) = (m1(J), m2(J), m3(J)) ∈ N3,
is defined as mi(J) = length(A/(xiA + J)), for each i = 1, 2, 3.

Remark 7.2. Let I = (xc1
1 −xb2

2 xa3
3 , xc2

2 −xa1
1 xb3

3 , xc3
3 −xb1

1 xa2
2 ) be an HN ideal. Then,

for each i = 1, 2, 3, xiA + I is m-primary and mi(I) = e(xi · Am/Im). Moreover, m(I)
can be obtained directly as m(I) = (c2c3 − a2b3, c1c3 − a3b1, c1c2 − a1b2). In particular,
m(I) ∈ N3 generates the Q-linear subspace of solutions of (4.1) (see Remark 4.4), and so
mi(I) is the weight given to xi, i = 1, 2, 3, in Example 4.3.

Proof. We have x1A + I = (x1, x
c2
2 , xb2

2 xa3
3 , xc3

3 ), which is m-primary. Thus, m1(I)
is finite and can be calculated as length(Am/(x1A + I)m). In particular, x1 · Am/Im is
a parameter ideal of the Cohen–Macaulay local ring Am/Im (recall that I is height-
unmixed (see Proposition 2.2)). By [18, Proposition 11.1.10], length(Am/(x1A + I)m) =
e(x1 · Am/Im). On the other hand, the quotient ring A/(x1A + I) is isomorphic to
k[x2, x3]/(xc2

2 , xb2
2 xa3

3 , xc3
3 ), which has length (a2+b2)(a3+b3)−a2b3. There are analogous

arguments for m2(I) and m3(I). �

Now, let us extend the definition of Herzog ideals introduced in § 1.

Definition 7.3. Let n = (n1, n2, n3) ∈ N3 be an integer vector with greatest common
divisor not necessarily equal to 1. The Herzog ideal associated to n is the prime ideal pn

defined as the kernel of the morphism ϕn : A → k[t] sending xi to tni for each i = 1, 2, 3.

We then have the following.

Remark 7.4. Let m = (m1, m2, m3) ∈ N3 and n = (n1, n2, n3) ∈ N3 such that
m = dn for some d ∈ N. Then pm = pn.

Proof. Since A/pn
∼= k[tn1 , tn2 , tn3 ] ⊂ k[t] is an integral extension, dim(A/pn) = 1

and pn is a prime ideal of height 2. Analogously, pm is a prime ideal of height 2. If
gcd(n1, n2, n3) = 1, using an explicit system of generators of pn (given in [10]; see also [14,
pp. 138–139]), one can easily check that pn ⊆ pm, and so they are equal. In general,
factoring out the greatest common divisor e = gcd(n1, n2, n3), let r = n/e = (r1, r2, r3),
where gcd(r1, r2.r3) = 1. Then n = er and m = (de)r; thus, pm = pn = pr. �
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Lemma 7.5. Let pn be the Herzog ideal associated to n = (n1, n2, n3) ∈ N3. Then,
for all i = 1, 2, 3, xiA + pn is m-primary and mi(pn) = e(xi · Am/(pn)m). Moreover,
m(pn) = n/gcd(n).

Proof. By the preceding remark we clearly can suppose that gcd(n1, n2, n3) = 1.
Since xn1

2 = xn2
1 + (xn1

2 − xn2
1 ) ∈ x1A + pn, and analogously for x3, x1A + pn is m-

primary. Thus, m1(pn) is finite and can be calculated as length(Am/(x1A + pn)m). In
particular, x1 · Am/(pn)m is an mAm/(pn)m-primary ideal of the Cohen–Macaulay one-
dimensional domain Am/(pn)m. By [18, Proposition 11.1.10], length(Am/(x1A+pn)m) =
e(x1 · Am/(pn)m). On the other hand, the quotient ring A/(x1A + pn) is isomorphic to
R/tn1R, where R = Im(ϕ) = k[tn1 , tn2 , tn3 ], so length(A/(x1A + pn)) = length(R/tn1R).
To calculate the latter, one can localize at the maximal ideal n = (tn1 , tn2 , tn3) since tn1R

is n-primary, as (tnj )n1 ∈ tn1R, j = 2, 3. Since tn1Rn is a parameter ideal of a Cohen–
Macaulay local ring, length(Rn/tn1Rn) = e(tn1Rn) (again by [18, Proposition 11.1.10]).

Because 1 = s1n1 + s2n2 + s3n3 for some si ∈ Z, R ⊂ k[t] is a birational integral
extension. Set S = R\n. Since tk[t] is the only non-zero prime q of k[t] such that q∩S = ∅,
the saturation of S in k[t] is k[t] \ tk[t], so Rn ⊂ k[t](t) is a birational finite extension.
Then e(tn1Rn) = e(tn1k[t](t)) [18, Corollary 11.2.6]. By [18, Proposition 11.1.10] again,
the latter is equal to length(k[t](t)/tn1k[t](t)) = n1. �

In particular, one has a kind of converse of Remark 7.4.

Corollary 7.6. Let m = (m1, m2, m3) ∈ N3 and n = (n1, n2, n3) ∈ N3. Then pm = pn

if and only if m and n are linearly dependent over the field Q.

Proof. If pm = pn, then m(pm) = m(pn) and, by Lemma 7.5, gcd(n) ·m = gcd(m) ·n.
Conversely, if m and n are linearly dependent over the field Q, then rm = sn for some
r, s ∈ N. By Remark 7.4, pm = pn. �

Now, given an HN ideal I, we want to look for the ‘nearest’ Herzog ideal to I.

Lemma 7.7. Let I be an HN ideal and m(I) ∈ N3 its associated integer vector. Then
pm(I) is the unique Herzog ideal containing I. In particular, pm(I) is a minimal prime
of I.

Proof. Given any m = (m1, m2, m3) ∈ N3,

I = (xc1
1 − xb2

2 xa3
3 , xc2

2 − xa1
1 xb3

3 , xc3
3 − xb1

1 xa2
2 ) ⊆ pm

if and only if m satisfies (4.1), whose Q-linear subspace of solutions is generated by
m(I) ∈ N3 (see Example 4.3 and Remark 7.2). Thus, I ⊆ pm(I). Since both ideals have
height 2, pm(I) is a minimal prime of I.

Suppose now that I ⊆ pm and I ⊆ pn, where m, n ∈ N3. By Remark 7.4 we can
suppose that gcd(m) = 1 and gcd(n) = 1. In particular, since I ⊆ pm, pn, then m

and n are solutions of (4.1). So, there exist p, q ∈ Q, p, q > 0, such that m = pm(I) and
n = qm(I), i.e. rm = sn for some r, s ∈ N (see Remark 4.4). Taking the greatest common
divisor, r = s, m = n and pm = pn. �
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The next result characterizes when an HN ideal is a prime ideal.

Theorem 7.8. Let I be an HN ideal and let m(I) ∈ N3 be its associated integer
vector. Then the following conditions are equivalent:

(i) I is prime;

(ii) I = pm(I);

(iii) gcd(m(I)) = 1.

Proof. By Lemma 7.7, pm(I) is a minimal prime of I. Thus, I is prime if and only if
I = pm(I). Consider the exact sequence

0 → L → A/I → A/pm(I) → 0,

where L = pm(I)/I. Tensoring it with A/x1A and using the fact that x1 �∈ pm(I), one
obtains

0 → L/x1L → A/(x1A + I) → A/(x1A + pm(I)) → 0.

Endow A with the natural grading induced by giving xi weight mi(I), i = 1, 2, 3 (see
Remark 7.2). Then I and pm(I) are homogeneous ideals in this grading. By the graded
variant of Nakayama’s Lemma, L = 0 if and only if L = x1L. Therefore, I = pm(I) if and
only if the Artinian rings A/(x1A + I) and A/(x1A + pm(I)) have the same length. But,
by Lemma 7.5, the length of A/(x1A+ pm(I)) is equal to m1(pm(I)) = m1(I)/gcd(m(I)),
where we recall that m1(I) is by definition the length of A/(x1A + I). So the result
follows. �

Example 7.9. Let Ir be the HN ideal associated to

Mr =

(
xra1

1 xra2
2 xra3

3

xrb2
2 xrb3

3 xrb1
1

)
,

where a, b ∈ N3 and r ∈ N. Then m(Ir) = r2m(I1). In particular, Ir is not prime for all
r > 1. In fact, Ir ⊆ I1, since

xrc1
1 − xrb2

2 xra3
3 = (xc1

1 − xb2
2 xa3

3 )
( r∑

i=1

x
(r−i)c1
1 x

(i−1)b2
2 x

(i−1)a3
3

)
.

Note that the Ir are all distinct and all have the same associated Herzog ideal.

Remark 7.10. One has the maps

m : {HN ideals} → N3 and p• : N3 → {Herzog ideals}

defined by I → m(I) and m → pm.
The map m is not injective. For example, as regards the HN ideal given by the triples

(a1, a2, a3) = (1, 1, 3), (b1, b2, b3) = (3, 2, 3), we get m = (15, 15, 10), which we also
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get whenever (a1, a2, a3) = (2, 3, 3), (b1, b2, b3) = (1, 1, 3). The second ideal contains
a binomial with a pure term in x3

1, whereas the first ideal does not. And indeed m

is not surjective even if we restrict the range to triples of positive integers, each of
which is at least 3; for example, (3, 4, 4) is not in the image of m, since if it were,
a2 = a3 = b2 = b3 = 1, and a contradiction would follow easily. The map p• is not
injective by Remark 7.4 and is surjective by definition.

The composition p• ◦ m, which assigns to each HN ideal its associated Herzog ideal, is
clearly not injective (because m is not injective (see also Example 7.9)).

Is p• ◦ m surjective? What is the image of m?

Remark 7.11. As regards a description of Im(p• ◦ m) and Im(m), at the moment
we have only partial results giving necessary conditions for triples of positive integers
to belong to these image sets. These results have elementary but somewhat lengthy and
technical proofs. So for the moment we confine ourselves to the following observations.

(1) Whenever n = (n1, n2, n3) ∈ N3 has gcd(n) = 1, n ∈ Im(m) if and only if the
subsemigroup H of (N, +) generated by n1, n2, n3 is not symmetric. Indeed, suppose
that there exists an HN ideal I with m(I) = n. By Theorem 7.8, I is prime and
equal to pn. Thus, pn is an HN ideal and so is not a complete intersection. By [10]
(see also [14, p. 139]), H is not symmetric. Conversely, if H is not symmetric,
pn is not a complete intersection. Thus, pn is an HN ideal and, by Remark 7.5,
m(pn) = n, so n ∈ Im(m).

(2) If (m1, m2, m3) is in Im(m) and m1 and m2 are bounded above by r, say, then
it is easy to see that m3 is bounded above by 3r2 − 2. On the other hand, one
can show that if n = (n1, n2, n3) ∈ N3 is such that gcd(n2, n3) = 1, so that in
particular gcd(n1, n2, n3) = 1, and that n1 is contained in Nn2 + Nn3, then pn lies
in Im(p• ◦ m).

8. On the number of primary components of an HN ideal

We keep the notation of the former section, i.e. A = k[x1, x2, x3] is the polynomial ring
in three variables x = x1, x2, x3 over a field k and m is the maximal ideal of A generated
by x1, x2, x3. The purpose of this section is to give bounds for the number of associated
(i.e. minimal) primes of an HN ideal of A. We begin with the following observation.

Remark 8.1. Let I be an HN ideal and let m(I) be its associated integer vector.
Then, for each i = 1, 2, 3,

mi(I) =
∑

q∈Min(A/I)

e(xi · Am/qm) length((A/I)q).

In particular, cardinal Min(A/I) � min{m1(I), m2(I), m3(I)}.
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Proof. By Remark 7.2, m1(I) = e(x1 ·Am/Im) and, by the Associativity Formula [18,
Theorem 11.2.4], this can be calculated as

e(x1 · Am/Im) =
∑

a∈Min(Am/Im)

e(x1 · Am/Im; Am/a) length((Am/Im)a).

Endowing A with the grading obtained by giving xi weight mi(I), i = 1, 2, 3, I is then
homogeneous in this grading and hence any associated prime q of I sits inside m. Thus,
any a in Min(Am/Im) is of the form a = qAm with q in Min(A/I) and vice versa. Hence,
the equality follows. In particular, the sum has as many non-zero terms as I has minimal
primes. �

To improve on this observation, we need the following lemma, which was inspired by,
and in turn generalizes, [6, Lemma 10.15].

Lemma 8.2. Let m2, m3 ∈ N with gcd(m2, m3) = e. Let m2 = ep2 and m3 = ep3

with gcd(p2, p3) = 1. Let f be a factor of xm3
2 − xm2

3 which is not a unit. Then f is of
the form

arp3x
rp3
2 + a(r−1)p3x

(r−1)p3
2 xp2

3 + · · · + ap3x
p3
2 x

(r−1)p2
3 + a0x

rp2
3 ,

with r ∈ N and ai ∈ k, arp3 , a0 �= 0.

Proof. Set the weight of xi equal to pi, i = 2, 3, so that xm3
2 − xm2

3 is homogeneous
of degree ep2p3. Suppose that f is a factor of xm3

2 − xm2
3 ∈ k[x2, x3] which is not a unit.

Then f is homogeneous of degree p, say, where p > 0. Write

f = atx
t
2 + at−1x

t−1
2 x

lt−1
3 + · · · + a0x

l0
3 ,

at, a0 �= 0, with typical term aix
i
2x

li
3 , for 0 � i � t. So ip2 + lip3 = p = tp2. Because

gcd(p2, p3) = 1, p2 divides li and p3 divides t − i. Since tp2 = p < p + q = (e − 1)p2p3,
0 � i � t < (e − 1)p3. So 0 � t − i < (e − 1)p3. Thus, t − i = jp3, and hence i = t − jp3,
with j ∈ Z, 0 � j � e − 2. Therefore,

f = atx
t
2 + at−p3x

t−p3
2 x

lt−p3
3 + at−2p3x

t−2p3
2 x

lt−2p3
3 + · · · + at−(e−2)p3x

t−(e−2)p3
2 x

lt−(e−2)p3
3 .

Since f has a pure term in x3, t = rp3 for some r ∈ N, 1 � r � e − 2, and

f = arp3x
rp3
2 + a(r−1)p3x

(r−1)p3
2 x

l(r−1)p3
3 + · · · + ap3x

p3
2 x

lp3
3 + a0x

l0
3 .

For 0 � j � r, the term with coefficient a(r−j)p3 has degree (r−j)p3p2+ l(r−j)p3p3, which
must be equal to rp2p3, the degree of f . Thus, l(r−j)p3 = jp2. Therefore,

f = arp3x
rp3
2 + a(r−1)p3x

(r−1)p3
2 xp2

3 + · · · + ap3x
p3
2 x

(r−1)p2
3 + a0x

rp2
3 ,

as desired. �
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Theorem 8.3. Let I be an HN ideal and let m(I) be its associated integer vector.
Let q ∈ Min(A/I). Then, for all i, j ∈ {1, 2, 3}, i �= j,

e(xi; Am/qm) � mi(I)/gcd(mi(I), mj(I)).

In particular, setting d = gcd(m(I)) and s = min{gcd(mi(I), mj(I)) | 1 � i < j � 3},

cardinal Min(A/I) � 1 + (s · (d − 1)/d).

Proof. Take q a minimal prime of I in A, and set B = k[x2, x3] and n = (x2, x3) the
maximal ideal of B generated by x2, x3. Clearly, q ∩ B ⊂ n. Note that A/q is a finite
(B/q ∩ B)-module. In particular, (A/q)n is a finite (B/q ∩ B)n-module. But m is the
unique maximal (indeed prime) ideal p ⊇ q in A such that p/q ∩ (B/q ∩ B) = n/q ∩ B

(since in A/q, xc1
1 = xb2

2 xa3
3 ), so that (A/q)n = (A/q)m. Therefore, (A/q)m is a finite

(B/q ∩ B)n-module.
Moreover, in A/I, xc2

2 = xa1
1 xb3

3 and xc3
3 = xb1

1 xa2
2 . Write m(I) = (m1, m2, m3). Since

m2 = a1c3 + b1b3 and m3 = a1a2 + b1c2, xm3
2 = xa1a2

2 xb1c2
2 = xa1b1

1 xa1a2
2 xb1b3

3 and
xm2

3 = xa1c3
3 xb1b3

3 = xa1b1
1 xa1a2

2 xb1b3
3 . Thus, xm3

2 = xm2
3 in A/I and xm3

2 − xm2
3 ∈ I. In

particular, xm3
2 −xm2

3 ∈ I∩B ⊆ q∩B. Thus, (x2, x
m2
3 ) ⊆ x2B+(q∩B) and x2 ·Bn/(q∩B)n

is nBn/(q ∩ B)n-primary. Therefore, by [18, Corollary 11.2.6],

e(x2; Am/qm) = e(x2; Bn/(q ∩ B)n) · rankBn/(q∩B)n
(Am/qm) � e(x2; Bn/(q ∩ B)n).

Since B/q∩B ↪→ A/q is an integral extension, q∩B is a prime ideal of height 1 of B (thus
principal) and Bn/(q ∩ B)n is a one-dimensional Noetherian local domain, thus Cohen–
Macaulay. By [18, Proposition 11.1.10], e(x2; Bn/(q∩B)n) = length(Bn/x2Bn+(q∩B)n).
Since x2B + q ∩ B is n-primary, the latter length is equal to length(B/x2B + q ∩ B).

But q ∩ B = (f) for some irreducible polynomial f ∈ B and xm3
2 − xm2

3 ∈ q ∩ B = (f).
Thus, xm3

2 − xm2
3 = fg for some g ∈ B. By Lemma 8.2, and following its notation,

f is a polynomial in xp3
2 and xp2

3 with pure non-zero terms in each of xp3
2 and xp2

3 ,
where gcd(m2, m3) = e and m2 = ep2 and m3 = ep3, with gcd(p2, p3) = 1. Thus,
q∩B ⊆ (x2, x

p2
3 ). Hence, e(x2; Am/qm) � length(B/x2B+q∩B) � length(B/(x2, x

p2
3 )) =

p2 = m2/e.
By Remark 8.1 and Lemma 7.5,

m2 � e(x2; Am/(pm(I))m) +
∑

q∈Min(A/I)\{pm(I)}
e(x2; Am/qm)

� (m2/d) + (m2/e) · (cardinal Min(A/I) − 1).

So cardinal Min(A/I) � 1 + (e · (d − 1)/d). �

Example 8.4. Let I = (x15
1 −x8

2x
3
3, x

10
2 −x5

1x
6
3, x

9
3 −x10

1 x2
2) be the HN ideal associated

to

Mr =

(
x5

1 x2
2 x3

3

x8
2 x6

3 x10
1

)
.
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Then m(I) = (78, 105, 110), whose greatest common divisor is 1, thus I = pm(I) is prime
by Theorem 7.8. Note that for HN ideals which are prime, the bound given in Theorem 8.3
is precisely 1. However, it may be that s = min{gcd(mi(I), mj(I)) | 1 � i < j � 3} �= 1.
For instance, in this case, s = 2.

Example 8.5. Let I = (x5
1 − x2

2x3, x
4
2 − x1x

3
3, x

4
3 − x4

1x
2
2) be the HN ideal associated

to

M =

(
x1 x2

2 x3

x2
2 x3

3 x4
1

)
.

Then m(I) = (10, 16, 18), whose greatest common divisor d equals 2. Therefore, by
Theorem 7.8, I is not prime. Moreover, min{gcd(mi(I), mj(I)) | 1 � i < j � 3} = 2.
Thus, by Theorem 8.3, I has at most two minimal primes. By Lemma 7.7, the Herzog
ideal pn associated to n = m(I)/d = (5, 8, 9) is a minimal prime of I. To calculate pn, we
use [14, pp. 137–139]: since 5 is the least integer number c1 such that c1n1 ∈ Nn2 + Nn3

(5 · 5 = 2 · 8 + 1 · 9), 3 is the least integer number c2 such that c2n2 ∈ Nn1 + Nn3

(3 · 8 = 3 · 5 + 1 · 9) and 2 is the least integer number c3 such that c3n3 ∈ Nn1 + Nn2

(2 · 9 = 2 · 5 + 1 · 8), we have pn = (x5
1 − x2

2x3, x
3
2 − x3

1x3, x
2
3 − x2

1x2). Observe that pn is
the HN ideal associated to the matrix

M1 =

(
x3

1 x2 x3

x2
2 x3 x2

1

)
.

Moreover, if char(k) �= 2, the k-algebra automorphism ψ : A → A defined by ψ(x1) = x1,
ψ(x2) = −x2 and ψ(x3) = x3 leaves I invariant, whereas it takes pn to the prime ideal
q = (x5

1 − x2
2x3, x

3
2 + x3

1x3, x
2
3 + x2

1x2). In other words, I = ψ(I) ⊂ ψ(pn) = q, and
q is also a minimal prime of I. Thus, the bound in Theorem 8.3 is attained. In fact,
e(x1; Am/am) � m1(I)/gcd(m1(I), m2(I)) = 5 for any minimal prime a of I. Thus, by
Remark 8.1, length((A/I)a) = 1 for each such a, and I = pn ∩ q is radical. We will see in
the next section that this fact holds more generally.

Note that if char(k) = 2, then (x3
2 − x3

1x3)2 = −x1x
2
3(x

5
1 − x2

2x3) + x2
2(x

4
2 − x1x

3
3) and

(x2
3 − x2

1x2)2 = x4
3 − x4

1x
2
2. Therefore, p2

n ⊆ I � pn and rad(I) = pn. In particular, I has
only one minimal prime and is not radical (because it is not prime). Note that p2

n � I.

Remark 8.6. Let I be an HN ideal and let m(I) = m = (m1, m2, m3) ∈ N3 be its
associated integer vector. Let d = gcd(m) and n = m/d = (n1, n2, n3) ∈ N3, where
gcd(n) = 1. Then gcd(mi, mj) = d · gcd(ni, nj) for all 1 � i < j � 3. Thus,

s = min{gcd(mi, mj) | 1 � i < j � 3} = d · min{gcd(ni, nj) | 1 � i < j � 3} = d · r,

say. Therefore, 1 + (s(d − 1)/d) = 1 + r(d − 1). In particular, if some gcd(ni, nj) = 1,
then cardinal Min(A/I) � d. Does this bound hold in complete generality?

Remark 8.7. We have established two other estimates for the number of minimal
primes in A/I. In a number of cases that we have looked at, these estimates are weaker
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than the one given in the statement of Theorem 8.3. However, the methods used to
obtain them are of interest and the estimates themselves may prove to be of worth in
other situations. So we confine ourselves to sketching some brief details concerning them.

(1) By the comment right at the end of § 5, the number of minimal primes in A/I is
one less than the number of minimal primes in A/(v). Set n = m(I)/gcd(m(I)).
We can then use the argument of the proof of Remark 8.1, only this time applied
to e(xi · Am/(v)Am), i = 1, 2, 3, to get the following estimate:

cardinal Min(A/I) � min{cicj − nk | {i, j, k} = {1, 2, 3}}.

Here we have used symmetry and the fact that e(xi · Am/(pn)m) = ni (see
Lemma 7.5).

(2) A more delicate argument using minimal reductions and the criterion of multiplic-
ity 1 establishes the following result. Suppose, possibly after relabelling the suffixes,
that a3 � c1, and that b3 � c2. Then

cardinal Min(A/I) � (c1c2 − n3)/2.

9. HN ideals are usually radical

As in the previous section, A = k[x1, x2, x3] is the polynomial ring in three variables over
a field k. We start with the following result.

Theorem 9.1. Let I be an HN ideal. If k has characteristic zero (or large enough),
then rad(I) = I.

Proof. By Example 4.3, v1, v2 is a regular sequence. Thus, rad(v) = (v) : Jac(v),
where Jac(v) is the Jacobian ideal of (v), i.e. the ideal generated by the 2 × 2 minors
of the Jacobian matrix ∂(v1, v2)/∂(x1, x2, x3), provided that k has characteristic zero or
sufficiently large (see [21, Theorem 5.4.2, p. 131 and comments on p. 130]). Concretely,
setting

J1 = c1c2x
c1−1
1 xc2−1

2 − a1b2x
a1−1
1 xb2−1

2 xc3
3 ,

J2 = b3c1x
a1+c1−1
1 xb3−1

3 + a1a3x
a1−1
1 xb2

2 xc3−1
3 ,

J3 = b2b3x
a1
1 xb2−1

2 xc3−1
3 + a3c2x

b2+c2−1
2 xa3−1

3 ,

these being the three generators of Jac(v),

rad(v) = (v) : Jac(v) = (v) : (J1, J2, J3) = [(v) : J1] ∩ [(v) : J2] ∩ [(v) : J3] ⊆ (v) : J1.

Write J1 = xa1−1
1 xb2−1

2 h, with h = −a1b2D + sxb1
1 xa2

2 ∈ A, D = xc3
3 − xb1

1 xa2
2 and

s = c1c2 − a1b2 ∈ Z. Now, by Proposition 2.2 and Corollary 2.3, and using the general
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rule of quotient ideals that L : fg = (L : f) : g, we have

(v) : J1 = ((v) : xa1−1
1 xb2−1

2 ) : h

= [(I ∩ (u)) : xa1−1
1 xb2−1

2 ] : h

= [(I : xa1−1
1 xb2−1

2 ) ∩ ((u) : xa1−1
1 xb2−1

2 )] : h

= (I ∩ (x1, x2)) : h

= (I : h) ∩ ((x1, x2) : h)

= (I : xb1
1 xa2

2 ) ∩ ((x1, x2) : xc3
3 )

= I ∩ (x1, x2) ⊆ I.

Therefore, rad(v) ⊆ I. By Lemma 5.1,

rad(I) = rad((v) : u1) ⊆ rad(v) : u1 ⊆ I : u1 = I.

�

Remark 9.2. In particular,

rad(v) = rad(I) ∩ rad(u) = I ∩ (x1, x2) = (v1, v2, x1D, x2D).

Example 9.3. Let I be the HN ideal considered in Example 8.5. By Theorem 9.1, if
k has characteristic zero, I is radical. In fact, we have shown that, if char(k) �= 2, then
I is radical, whereas if char(k) = 2, then I is not radical.

This fact holds rather more generally (see the discussion in Example 9.7). Before
coming to this, we need the following two results.

Proposition 9.4. Let I be an HN ideal and let m(I) = (m1, m2, m3) ∈ N3 be its
associated integer vector. If a1 = 1, then (A/I)x2x3 is isomorphic to (k[x2, x3]/(xm3

2 −
xm2

3 ))x2x3 . In particular, their total quotient rings Q(A/I) and Q(k[x2, x3]/(xm3
2 −xm2

3 ))
are isomorphic. Furthermore, the cardinality of Min(A/I) is equal to the cardinality of
a maximal complete set of orthogonal idempotents of Q(k[x2, x3]/(xm3

2 − xm2
3 )).

Proof. One has I = (v1, v2, D), with v1 = xc1
1 − xb2

2 xa3
3 , v2 = xc2

2 − xa1
1 xb3

3 , D =
xc3

3 − xb1
1 xa2

2 . In Ax2x3 , since a1 = 1, x1 = xc2
2 x−b3

3 − v2x
−b3
3 . Thus, in Ax2x3 ,

v1 = (xc2
2 x−b3

3 − v2x
−b3
3 )c1 − xb2

2 xa3
3

= xc1c2
2 x−b3c1

3 − xb2
2 xa3

3 + v2p

= xb2
2 x−b3c1

3 (xc1c2−b2
2 − xa3+b3c1

3 ) + v2p

= xb2
2 x−b3c1

3 (xm3
2 − xm2

3 ) + v2p,

and

D = xc3
3 − (xc2

2 x−b3
3 − v2x

−b3
3 )b1xa2

2

= xc3
3 − xa2+b1c2

2 x−b1b3
3 + v2q

= x−b1b3
3 (xb1b3+c3

3 − xa2+b1c2
2 ) + v2q

= x−b1b3
3 (xm2

3 − xm3
2 ) + v2q,
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with p, q ∈ Ax2x3 . Therefore,

IAx2x3 = (xm3
2 − xm2

3 , v2)Ax2x3 = (xm3
2 − xm2

3 , x1 − xc2
2 x−b3

3 )Ax2x3 .

So
(A/I)x2x3

∼= (k[x2, x3]/(xm3
2 − xm2

3 ))x2x3 .

Since x2, x3 ∈ A are regular modulo I and each of x2, x3 ∈ k[x2, x3] is regular modulo
(xm3

2 − xm2
3 ), the total quotient ring of A/I is isomorphic to the total quotient ring of

k[x2, x3]/(xm3
2 − xm2

3 ).
Let V be the affine k-variety defined by I and let R(V ) be the ring of rational functions

of V , i.e. the total quotient ring Q(A/I) of A/I (see, for example, [14, Chapter III,
Proposition 3.4]). So

R(V ) ∼= Q(k[x2, x3]/(xm3
2 − xm2

3 )).

Let V = V1 ∪ · · · ∪ Vr be the decomposition of V into irreducible components, which
induces an isomorphism R(V ) ∼= R(V1)× · · ·×R(Vr) (see, for example, [14, Chapter III,
Proposition 2.8]). So the number of minimal primes of I is equal to the number of elements
in a maximal complete set of orthogonal idempotents of

R(V ) ∼= Q(k[x2, x3]/(xm3
2 − xm2

3 )).

�

Proposition 9.5. Let I be an HN ideal and let m(I) ∈ N3 be its associated integer
vector. If a1 = 1 and gcd(m2(I), m3(I)) = d is prime, then gcd(m(I)) = d as well and I

is not a prime ideal. Moreover, cardinal Min(A/I) � d. Furthermore, if char(k) = d, then
I is primary, is not radical and p

(d)
m(I) � I � pm(I).

Proof. Let us prove first that I is not a prime ideal. Note that, once this is established,
gcd(m(I)) �= 1 by Theorem 7.8; but, since gcd(m2(I), m3(I)) = d is prime, gcd(m(I))
must be equal to d as well. In particular, by Theorem 8.3, cardinal Min(A/I) � 1+(d(d−
1)/d) = d.

Write m(I) = m = (m1, m2, m3) ∈ N3 and m2 = dn2, m3 = dn3 with gcd(n2, n3) = 1.
Then

xm3
2 − xm2

3 = (xn3
2 − xn2

3 )(x(d−1)n3
2 + x

(d−2)n3
2 xn2

3 + · · · + xn3
2 x

(d−2)n2
3 + x

(d−1)n2
3 ),

where xn3
2 − xn2

3 is irreducible (by, for example, [6, Lemma 10.15] or Lemma 8.2 above).
Set

B = k[x2, x3], a = (xn3
2 − xn2

3 ), b = (x(d−1)n3
2 + · · · + x

(d−1)n2
3 )

(the corresponding ideals generated in B) and C = B/a. In C, xn3
2 = xn2

3 so that, in C,

x
(d−1)n3
2 + · · · + x

(d−1)n2
3 = dx

(d−1)n3
2 .



Ideals of Herzog–Northcott type 183

Hence, if char(k) �= d, a + b contains the element x
(d−1)n3
2 and so (B/(a + b))x2 becomes

the zero ring. In other words, aBx2 and bBx2 are relatively prime ideals of Bx2 . By the
Chinese Remainder Theorem (see, for example, [14, Chapter II, Proposition 1.7]),

Bx2/(xm3
2 − xm2

3 )Bx2
∼= (Bx2/aBx2) × (Bx2/bBx2).

In particular, by Proposition 9.4,

(A/I)x2x3
∼= (k[x2, x3]/(xm3

2 − xm2
3 ))x2x3

∼= (B/a)x2x3 × (B/b)x2x3 ,

which is not a domain. In particular, I is not prime.
If char(k) = d, then xm3

2 − xm2
3 = (xn3

2 − xn2
3 )d. Keeping the same notation as above,

by Proposition 9.4 again,

(A/I)x2x3
∼= (k[x2, x3]/(xm3

2 − xm2
3 ))x2x3

∼= (B/ad)x2x3 ,

where a is a prime ideal in B and a complete intersection (in fact principal), so ad = a(d),
the dth symbolic power, and ad is a-primary. Hence, the nilradical of B/ad is the (non-
zero) prime ideal a/ad, whose dth power is zero; in fact the co-length of ad at a is precisely
d. Since x2x3 lies outside a, this structure is preserved when we localize at the element
x2x3. In the light of the isomorphism established above, we deduce that (A/I)x2x3 has
a (non-zero) prime nilradical with dth power equal to zero, so this prime radical must
therefore be (pm/I)x2x3 . Since I is unmixed and x2x3 is regular modulo I, we must have
that I is pm-primary and pd

m ⊆ I � pm. In particular, p
(d)
m ⊆ I. Furthermore, p

(d)
m equals

I if and only if they have the same local co-length at pm. Now Apm is a regular local ring
of dimension 2, so the local co-length of A/p

(d)
m at pm is d(d+1)/2. Hence, the co-lengths

agree if and only if d(d + 1)/2 = d, i.e. d = 1. So for d > 1, I properly contains p
(d)
m . �

For the concrete case d = 2, we obtain the following result.

Corollary 9.6. Let I be an HN ideal and let m(I) ∈ N3 be its associated integer
vector. Suppose that a1 = 1 and gcd(m2(I), m3(I)) = 2. In this case, if char(k) �= 2, then
I is radical and equal to the intersection of exactly two prime ideals; on the other hand,
if char(k) = 2, then I is primary, is not radical and p

(2)
m(I) � I � pm(I).

Proof. By Proposition 9.5, we have only to show that I is radical whenever char(k) �=
2. Thus, suppose that char(k) �= 2. Write m(I) = (m1, m2, m3) ∈ N3 and m2 = 2n2,
m3 = 2n3 with gcd(n2, n3) = 1. Then xm3

2 − xm2
3 = (xn3

2 − xn2
3 )(xn3

2 + xn2
3 ) is a decom-

position into prime factors in B = k[x2, x3] (see, for example, [6, Lemma 10.15] or
Lemma 8.2 above). Let a1 = (xn3

2 − xn2
3 ) and a2 = (xn3

2 + xn2
3 ) be the corresponding

prime ideals generated in B. Then a1 �= a2 and, localizing at x2, a1Bx2 and a2Bx2 are
two relatively prime ideals of Bx2 . By the Chinese Remainder Theorem (see, for exam-
ple, [14, Chapter II, Proposition 1.7]),

Bx2/(xm3
2 − xm2

3 )Bx2
∼= (Bx2/(xn3

2 − xn2
3 )Bx2) × (Bx2/(xn3

2 + xn2
3 )Bx2).



184 L. O’Carroll and F. Planas-Vilanova

In particular, by Proposition 9.4,

(A/I)x2x3
∼= (k[x2, x3]/(xm3

2 − xm2
3 ))x2x3

∼= (B/a1)x2x3 × (B/a2)x2x3 ,

which is a reduced ring. Since x2x3 is regular modulo I, A/I is reduced and I is radical.
�

Example 9.7. Consider (again) the HN ideal I of Example 8.5, which satisfies the
hypotheses of Corollary 9.6, i.e. a1 = 1 and gcd(m2(I), m3(I)) = 2. Thus, one can
conclude that if char(k) �= 2, I is radical and equal to the intersection of two primes,
whereas if char(k) = 2, then I is primary, is not radical and p

(2)
m(I) � I � pm(I).

For the concrete case d = 3, we have the following result.

Corollary 9.8. Let I be an HN ideal and let m(I) ∈ N3 be its associated integer
vector. Suppose that a1 = 1 and gcd(m2(I), m3(I)) = 3. In this case, if char(k) �= 2, 3
and k contains a square root of −3, then I is radical and equal to the intersection of
exactly three prime ideals; if char(k) �= 3 and either char(k) = 2 or else k does not contain
a square root of −3, then I is radical and equal to the intersection of exactly two prime
ideals; finally, if char(k) = 3, then I is primary, is not radical and p

(3)
m(I) � I � pm(I).

Proof. Write m(I) = (m1, m2, m3) ∈ N3 and m2 = 3n2, m3 = 3n3 with gcd(n2, n3) =
1. Then xm3

2 − xm2
3 decomposes as (xn3

2 − xn2
3 )(x2n3

2 + xn3
2 xn2

3 + x2n2
3 ), where xn3

2 − xn2
3

is irreducible (by, for example, [6, Lemma 10.15] or Lemma 8.2 above). On the other
hand, any proper factor of x2n3

2 + xn3
2 xn2

3 + x2n2
3 is a proper factor of xm3

2 − xm2
3 . Hence,

by Lemma 8.2 again, any decomposition of x2n3
2 + xn3

2 xn2
3 + x2n2

3 must be of the form
(xn3

2 +λxn2
3 )(xn3

2 +λ−1xn2
3 ), λ ∈ k\{0}. Therefore, λ+λ−1 = 1 and hence λ2 −λ+1 = 0.

Suppose now that char(k) �= 2, 3 and that k contains a square root of −3. Take λ0 ∈ k

a solution of λ2 − λ + 1 = 0. Set B = k[x2, x3] and a1 = (xn3
2 − xn2

3 ), a2 = (xn3
2 + λ0x

n2
3 )

and a3 = (xn3
2 + λ−1

0 xn2
3 ) the distinct prime ideals generated in B. Localizing at x2,

a1Bx2 , a2Bx2 and a3Bx2 become three pairwise relatively prime ideals of Bx2 . By the
Chinese Remainder Theorem (see, for example, [14, Chapter II, Proposition 1.7]),

Bx2/(xm3
2 − xm2

3 )Bx2
∼= (Bx2/a1Bx2) × (Bx2/a2Bx2) × (Bx2/a2Bx3).

In particular, by Proposition 9.4,

(A/I)x2x3
∼= (k[x2, x3]/(xm3

2 − xm2
3 ))x2x3

∼= (B/a1)x2x3 × (B/a2)x2x3 × (B/a3)x2x3 ,

which is a reduced ring. By [14, Chapter III, Proposition 4.23], Q(A/I) is the product of
three fields. So I has exactly three minimal primes. Moreover, since (A/I)x2x3 is reduced
and x2x3 is regular modulo I, A/I is reduced and I is radical. Thus, I is the intersection
of exactly three prime ideals.

If char(k) �= 3 and either char(k) = 2 or else k does not contain a square root of
−3, then a = (xn3

2 − xn2
3 ) and b = (x2n3

2 + xn3
2 xn2

3 + x2n2
3 ) are two distinct prime ideals

of B = k[x2, x3]. Note that 3x2n3
2 = (2xn3

2 + xn2
3 )(xn3

2 − xn2
3 ) + (x2n3

2 + xn3
2 xn2

3 + x2n2
3 ).



Ideals of Herzog–Northcott type 185

Thus, localizing at x2, aBx2 and bBx2 become two relatively prime ideals of Bx2 . Pro-
ceeding as before, one deduces that (A/I)x2x3 is reduced and that Q(A/I) is the product
of two fields. So I is radical and equal to the intersection of exactly two prime ideals.

If char(k) = 3, then finish by applying Proposition 9.5. �

Example 9.9. Let I = (x4
1 − x2

2x
3
3, x

5
2 − x1x

3
3, x

6
3 − x3

1x
3
2) be the HN ideal associated

to

M =

(
x1 x3

2 x3
3

x2
2 x3

3 x3
1

)
.

Here a1 = 1 and m(I) = m = (21, 15, 18), so gcd(m2, m3) = 3. Thus, one can apply
Corollary 9.8. For instance, if k = C, I is radical and equal to the intersection of three
prime ideals, whereas if k = Q, I is radical and equal to the intersection of two prime
ideals. On the other hand, if char(k) = 3, I is primary, is not radical and p

(3)
m � I � pm.

In any case, the Herzog ideal pm associated to m = (21, 15, 18) is a minimal prime of
I. A simple computation shows that pm = (x3

1 − x3
2x3, x

4
2 − x2

1x3, x
2
3 − x1x2).

If k = Q, Singular [8] gives for the minimal prime of I other than pm the ideal

(x4
1 − x2

2x
3
3, x

5
2 − x1x

3
3, x

3
1x3 + x1x

4
2 + x3

2x
2
3, x

2
1x

2
2 + x1x2x

2
3 + x4

3, x
3
1x2 + x2

1x
2
3 + x4

2x3),

which is not a binomial ideal. We recall that, according to the work of Eisenbud and
Sturmfels [5], if k = C, all the associated primes of I must be binomial.

In this connection, we remark that the results of [5], and the rich combinatorial and
algorithmic theory of binomial ideals that grew from them, could well throw light on the
questions left open in this paper. We intend to pursue this line of enquiry in future work.
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