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{porta,ljaillet}@iri.upc.edu

Abstract: Despite the significant advances in path planning methods, problems
involving highly constrained spaces are still challenging. In particular, in many sit-
uations the configuration space is a non-parametrizable variety implicitly defined
by constraints, which complicates the successful generalization of sampling-based
path planners. In this paper, we present a new path planning algorithm specially
tailored for highly constrained systems. It builds on recently developed tools for
Higher-dimensional Continuation, which provide numerical procedures to describe
an implicitly defined variety using a set of local charts. We propose to extend these
methods to obtain an efficient path planner on varieties, handling highly constrained
problems. The advantage of this planner comes from that it directly operates into
the configuration space and not into the higher-dimensional ambient space, as most
of the existing methods do.

1 Introduction

Many problems require to determine a path between two points, fulfilling a
given set of constraints. In Robotics, this appears for instance in parallel ma-
nipulators [33], robot grasping [23], constraint-based object positioning [22],
surgery robots [1], and humanoid robots [18]. This situation also appears in
Biochemistry when searching for low energy paths between different molecu-
lar conformations [37]. In all these cases, the constraints expressed as a set
of equations reduce the configuration space to a variety composed by one or
more manifolds embedded in a higher-dimensional ambient space, defined by
the variables involved in the equations. Approaches that try to directly de-
scribe these manifolds exist, but they are either too complex to be applied
in practice [4], or limited to particular architectures [26]. The adaptation of
sampling-based planning methods is also cumbersome since, sampling in the
ambient space, the probability of the samples to lay on the configuration space
is null. Consequently, several methods have been devised to find points of the
configuration space from points of the ambient space.
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Fig. 1. RRTs with 500 samples. Blue crosses represent the tree nodes and red
lines the connections between them. (a) When the ambient space is a box tightly
enveloping the sphere, the exploration is relatively homogeneous. (b) When the box
is elongated along the vertical axis, an unwanted bias penalize the exploration.

Kinematics-PRM [10] samples a subset of variables and uses inverse kine-
matics to find all the possible values for the remaining ones. This strategy is
only valid for particular mechanisms, and although some improvements have
been proposed [6], the probability of generating invalid samples is significant.
Moreover, the presence of singularities in the subset of variables solved via
inverse kinematics complicates the approach [9].

An alternative strategy to get a valid configuration is to use numerical
iterative techniques, either implementing random walks [38], or the more ef-
ficient Jacobian pseudo inverse method [2, 7, 28]. All these approaches only
perform properly when the ambient and the configuration spaces are similar.
If the constraints define one or several complex surfaces with many folds, a
uniform distribution of samples in the ambient space will not translate to a
uniform distribution in the configuration space and this heavily reduces the
efficiency of the sampling approaches. This problem may appear even in sim-
ple cases such as the one described in Fig. 1, where a RRT is build on a sphere
from points sampled in a 3D ambient space. If the sphere is not centered in,
and tightly enveloped by the ambient space, the sampling process is biased
and the result is a poor exploration of the solution variety. The lack of prior
knowledge on the variety structure makes it hard to forecast whether or not
a sampling-based approach would be successful.

One way to limit the problems of mismatching between the two spaces is to
focus the sampling in a subset of the ambient space around the configuration
space [41]. However, even in the case where the ambient and the configuration
spaces are somehow similar, samples are thrown in the ambient space that can
be of much higher dimensionality than the configuration space. Ideally, one
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Fig. 2. (a) Atlas of the sphere obtained by Higher-dimensional Continuation. Each
polytope is a chart that locally parametrizes the sphere. The atlas includes about
500 charts. (b) Part of the atlas explored with our approach for connecting the two
poles. Only about 30 charts are generated. The solution path is shown as a yellow
line.

would like to sample directly on the lower-dimensional configuration space.
A uniform sampling over the configuration space typically relies on a global
parametrization of this space. In some families of mechanism distance-based
formulations provide this parametrization [11, 29], some approaches try to
infer it from large sets of samples [12], and task-space planners assume that a
subset of variables related with the end-effector are enough to parametrize the
configuration space [39, 25]. However, it is in general not possible to obtain a
global isometric parametrization of the configuration space.

From differential geometry, it is well known that a variety can be de-
scribed by an atlas containing a collection of charts, each chart providing a
local parametrization of the variety [20]. In this context, Um et al [34] sketch
a RRT scheme where the exploration is done in the tangent space and the
samples are projected to the configuration space using the Jacobian pseudo
inverse. However, the overlap between charts can lead to an inappropriate sam-
pling bias and the potential presence of singularities and branching inside the
variety is not considered. Higher-dimensional Continuation techniques provide
principled numerical tools to compute the atlas of an implicitly defined variety
departing from a point, avoiding overlap between neighboring charts [15]. For
instance, Fig. 2(a) shows the atlas obtained with one of these methods [13] in
the toy problem of the sphere. One-dimensional continuation methods (also
known as path following, homotopy or bootstrap methods), have been strongly
developed in the context of Dynamical Systems [17], whereas in Robotics, they
have been mainly used for solving problems related to Kinematics [24, 27]. To
our knowledge, Higher-dimensional Continuation tools have not been used in
Robotics.
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In this paper, we extend the tools developed for Higher-dimensional Con-
tinuation to the context of path planning. We define the concept of partial
atlas connecting two configurations, dealing with the presence of obstacles.
We also introduce the random exploration of a variety focused towards a tar-
get configuration. As a result, we obtain a Higher-dimensional Continuation
planner (HC-planner) for highly constrained systems that clearly outperforms
existing approaches. Fig. 2(b) shows an example of path found with our ap-
proach for the sphere toy problem. Note how a small subset of all the atlas
charts is needed to find a path connecting the two given samples.

Next section provides a description of the tools for High-dimensional Con-
tinuation. Section 3 presents an extension these tools to the context of path
planning. Section 4 compares the performance of the planner with respect to
existing methods for several benchmarks. Finally, Section 5 summarizes the
contributions of this work and indicates points that deserve further attention.

2 Higher-dimensional Continuation

Next, we describe the main algorithmic tools appearing in [13]. By general-
izing the one-dimensional pseudo-arclenght procedure, these tools allow the
generation of an atlas for describing a k-dimensional variety implicitly defined
by a system of equations

F(x) = 0, (1)

with F : Rn → Rn−k, n > k > 0. Fig 3 illustrates the main idea on which
relies the approach. Given a point xi on the variety, we can define Φi, an
orthonormal basis of the tangent space of the variety at this point. This is the
n × k matrix satisfying

(

J(xi)
Φ⊤

i

)

Φi =

(

0

I

)

, (2)

with J(xi) the Jacobian of F evaluated at xi and I the identity matrix. The
pair (xi,Φi) defines a chart, Ci, that locally approximates the variety. The
root point, xj , of a new chart, Cj , can be obtained by first generating a point,
x̂j , on the tangent space of Ci

x̂j = xi + Φi u
j
i , (3)

with u
j
i a k-dimensional parameter vector. Then xj is the orthogonal pro-

jection of x̂j into the variety. This projection is obtained by solving the sys-
tem [21]

F(xj) = 0,
Φ⊤ (xj − x̂j) = 0,

(4)

using a Newton procedure where xj is initialized to x̂j and where at each
iteration xj is updated with the increment ∆xj fulfilling
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Fig. 3. Higher-dimensional Continuation method applied to a two-dimensional man-
ifold. (a) A chart is defined from the tangent space at a given start point xi. The
area of applicability of the chart is denoted as Pi. A point x̂j from the tangent space
at xi is orthogonally projected to the manifold to determine xj , the root point of
the next chart. (b) The new chart locally parametrizes a new region of the manifold.
The area of applicability of the new chart is Pj that does not overlap with Pi.

(

J(xi)
Φ⊤

i

)

∆xj = −

(

F(xi)
Φ⊤ (xj − x̂j)

)

. (5)

This is repeated until the norm of the right-hand side of the previous system
becomes negligible or for a maximum number of iterations. When a valid xj is
determined, we can define a new chart Cj (Fig. 3(b)). The intersection between
tangent spaces marks the boundaries of applicability of the corresponding
charts, denoted as Pi and Pj , respectively. When Ci is fully surrounded by
other charts, Pi becomes a convex polytope.

The algorithm proposed in [13] gives a systematic way to define new charts
and to generate the associated polytopes. In this work, Pi is initialized as an
hypercube enclosing a ball, Bi, of radius r (see Fig. 4(a)). The polytope is
represented using a set of faces that intersect defining a set of vertices [5]. A
vertex v of Pi external to Bi, can then be used to generate a new chart. From
this vertex, a point x̂j on the surface of Bi is defined using Eq. 3 and

u
j
i =

r

‖v‖
v. (6)

If Ci and the new Cj generated from u
j
i are too far or too different, i.e., if

‖xj − x̂j‖ > σ, (7)

‖Φ⊤

i Φj‖ < 1 − σ, (8)

the new chart is discarded and a new attempt of chart generation is performed
from a set of parameters u

j
i closer to xi. When Cj is valid, it is used to refine Pi

from the intersection between Bi and Ĉj , the projection into the tangent space
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Fig. 4. (a) Polytope-based chart construction by higher continuation methods. The
initial polytope is a box including a ball of radius r around xi. (b) The polytope
is progressively refined using balls (dashed line) that approximate the projection of
balls from nearby charts into the tangent space of the chart of interest (dotted line).

of Ci of the part of the variety covered by Cj . This projection is approximated

by a ball, B̃j , included in Ĉj , as shown in Fig. 4(b). For this approximation to

be conservative, the radius of B̃j is scaled by a factor α, 0 < α < 1, depending
on the angle between sub-spaces spanned by Φi and Φj .

The hyperplane defined by the intersection of Bi and B̃j can be computed
by subtracting the equations for the two balls. As shown in Fig. 4(b), this
plane defines a new face of Pi that eliminates some of the vertices of Pi (in
particular the one used to generate Bj) and generates new vertices. Pj , the
polytope associated to Bj , is cropped using the projection of Ci into Cj .

When all the vertices of the polytope of a chart are inside the associated
ball, the chart cannot be further expanded as the domain for this chart is
fully bounded. This process of chart expansion continues as far as there are
open charts. At the end, the final atlas is made of charts fully recovering the
variety, whose area of validity is bounded by the corresponding polytopes (see
Fig. 2(a)). To fully characterize the variety, higher-dimensional continuation
tools also need to consider singular points of the variety. This is addressed
in [14], but details are omitted here for conciseness.

The cost of the algorithm at each step is dominated by the cost of two
searches among the set of charts: one to find an open chart and another to
find the potential neighbors of a new chart. The first search can be saved
keeping the open charts in a list. The performance of the second search can
be increased using a kd-tree storing the root points of the charts.
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3 Path-Planning on Manifolds

Using the tools described in previous section, it is possible to characterize the
connected component of a variety containing a starting point. A graph can
be build where nodes are the charts and edges represent their neighboring
relations. Thus, the shortest path in the graph to a given sample can be easily
computed using a standard graph search method such as A* considering only
the collision free transitions between the chart roots. This procedure defines
an optimal, resolution complete path planner, but it is only practical for low
dimensional varieties, specially if we have to use small charts.

If we define charts with large radius, the presence of obstacles becomes an
issue. The procedure described in Section 2 can deal with boundaries in the
configuration space, but obstacles are not defined in this space. Moreover, the
procedure used to extend charts is based on selecting a finite set of points
that are the vertices of the charts polytopes and the presence of obstacles can
block those predefined expansion directions.

Herein, we propose modifications to the Higher-order Continuation proce-
dures to deal with the curse of dimensionality and the presence of obstacles.
First, we take advantage of that path planning is only concerned with the path
between two given configurations and not with the full atlas generation, which
allows to save the construction of many unnecessary charts. Second, to deal
with the presence of obstacles, we randomize the process of atlas extension.

3.1 Chart selection: focusing in the path to the goal

As aforementioned, the atlas structure can be represented by a graph where
nodes are the charts and edges are the neighboring relations between charts.
To guide the search toward the goal, we use a Greedy Best-First search where
the chart to expand is the one with minimum expected cost to reach the goal.
The cost for a chart Ci is heuristically evaluated as

h(i) = βni ‖xi − xg‖, (9)

where xg is the goal configuration, β > 1 a fixed parameter, and ni is the
number of times a chart failed to expand. Thus, the term βni prevents the
search to get stuck in dead ends. As soon as the goal is connected to the rest
of the atlas, the search is stopped.

Observe that using a Greedy Best-First search, we do not necessary gener-
ate all the neighbors of the chart under expansion. The generation of children
charts proceeds only while the children have higher cost than the parent. This
largely reduces the generation of charts.

Finally, note that due to the use of a Greedy Best-First algorithm the final
path is not necessarily optimal. The generation of a (resolution) optimal path
would require the use of an A* algorithm and the generation of all the neigh-
bors of the node/chart under expansion. In general, this implies to generate
too many charts, hindering the practical applicability of the approach.
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3.2 Chart expansion: Generating random directions

When the chart to be expanded is selected, the expansion point for the atlas
is selected at random. This is achieved by sampling a point uniformly on
the surface of the ball associated with the atlas and checking if this point is
inside the associated polytope. If it is the case, the generation of the new atlas
proceeds as detailed in Section 2.

The uniform generation of random point u
j
i on a the surface of a k-

dimensional ball is done by generating the point elements according to a
normalized one-dimensional Gaussian and scaling the resulting vector to
norm r [8].

To verify if the point is inside the associated chart’s polytope, we exploit
the fact that polytopes are defined as the intersection of k-dimensional hy-
perplanes. Thus, for a point u

j
i = {u1, . . . , uk} to be inside the polytope Pi

made of mi faces, it must fulfill

γt
0

+

k
∑

s=1

γt
s us ≥ 0, (10)

for all the faces f t = (γt
0
, . . . , γt

k), t = 1, . . . ,mi defining Pi.
If the point is inside the polytope, it is approached through small incre-

mental steps of size δ. The intermediate points are successively projected on
the manifold (using Eqs. 4 and 5) and then checked for collision. If no progress
can be done towards the target point, the expansion is declared as failure and
the chart under expansion is penalized by increasing ni.

Observe that while the chart to extend is selected greedily, the exact ex-
panding direction is selected randomly, favoring the exploration of alternative
paths in the presence of obstacles.

3.3 Algorithm

Algorithm 1 corresponds to the HC-Planner, implementing the path planning
approach introduced in this paper. The algorithm takes xs and xg as start
and a goal configurations respectively, and tries to connect them with a path
on the variety implicitly defined by a given set of constraints F, as expressed
in Eq. 1. The process begins by initializing two charts associated to the two
query configurations (lines 1-2). Each chart includes the initial point x, the
base of the tangent space Φ, the ball B and the polytope P limiting the area
of influence of the chart. The two charts are then included in the initial atlas
(line 3). To efficiently determine the chart with the minimum expected cost,
charts are organized into a binary heap. Thus, the cost-to-goal of the start
configuration is evaluated (line 4) and used to initialize the heap (line 5). In
lines 6 to 16, a greedy search is performed as described in Section 3.1, while
the two query configurations are disconnected. At each iteration, we extract
Ci, the most promising chart from the heap (line 7) and if the polytope Pi
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Algorithm 1: High-dimensional Continuation path planner.

HC-Planer(xs,xg,F)
input : A couple of samples to connect xs, xg, and a set of constraints F.
output: A path connecting the two samples
Cs ← InitChart(xs,F) // Cs = {xs,Φs,Bs,Ps}1

Cg ← InitChart(xg,F) // Cg = {xg,Φg,Bg,Pg}2

A← {Cs, Cg}3

h(s)← ‖xs − xg‖4

H ←InitHeap(Cs, h(s))5

while not Connected(A, Cs, Cg) do6

Ci ←ExtractMin(H) // Ci = {xi,Φi,Bi,Pi}7

if Pi * Bi then8

Cj ←GenerateNewChart(Ci,F)9

if Cj = ∅ then10

h(i)← β h(i)11

H ←AddToHeap(Ci, h(i))12

else13

A← A ∪ {Cj} ∪ SingularChart(Ci, Cj)14

h(i)← ‖xj − xg‖15

H ←AddToHeap(Cj , h(j))16

Return(Path(A, Cs, Cg))17

of this chart still has vertices outside the ball Bi, we try to extend the atlas
with a new chart (line 9). If the extension fails (line 10), the current chart
is penalized so that its chance to be selected for future extension decreases
(line 11), and the chart is added to the heap with the updated cost (line 12).
If the atlas extension succeeds, the new chart is added to the atlas, updating
the neighboring relations between charts (line 14). Next, the heuristic-to-goal
is initialized for the new chart (line 15) and added to the atlas (line 16).
When the goal is reached, a graph search procedure can be used to extract
the path linking the query configurations. Every time a new chart is added
to the atlas, we check whether the line connecting the roots of the parent
and the child charts crosses a singularity. If so, the singular point is located
and a chart is defined such that its root is at the singularity and its tangent
space is aligned with the branch of the variety that does not contain Ci and
Cj . Function SingularChart (line 14) returns this chart or and empty set
if there is no singularity between Ci and Cj .

The generation of a new chart from a previous one is presented in Algo-
rithm 2. We select a point u

j
i on the ball defined on the tangent space of the

input chart as described in Section 3.2 (line 2). If the point is inside the poly-
tope, the point is not in the area of influence of a neighboring chart, and thus,
we proceed to determine a point, xj , adequate to generate a new chart. This
point is searched from the root of the chart under expansion, progressively
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Algorithm 2: Generation of a new chart.

GenerateNewChart(Ci,F)
input : A chart to expand Ci = {xi,Φi,Bi,Pi}, and a set of constraints F.
output: A new chart Cj

Cj ← ∅1

u
j

i ←RandomInBall(Bi)2

if u
j

i ∈ Pi then3

e←True // Small error with respect to Ci4

c←True // Collision free5

t←True // Tangent space similar to Ci6

s← δ7

while s ≤ r and e and c and t do8

x̂j ← xi + Φi s u
j

i/r9

xj ← Project(Ci, x̂j ,F)10

if ‖x̂j − xj‖ > σ then11

e←False12

else13

if Collision(xj) then14

c←False15

else16

Φj ←TangentSpace(xj ,F)17

if ‖Φ⊤

i Φj‖ < 1− σ then18

t←False19

else20

Cj ← InitMap(xj ,F) // Cj = {xj ,Φj ,Bj ,Pj}21

s← s + δ22

Return(Cj)23

moving to the target point with incremental steps of size δ. At each step, we
project the point from the tangent space to the manifold (lines 9-10), imple-
menting Eqs. 4 and 5. If the projection converges to a point in the manifold,
we check whether the obtained point is not too far away from the tangent
space (line 11), whether it is collision free (line 14), and whether the tangent
space at the new point (computed using Eq. 2) and that of Ci are too different
(line 17). In any of these cases, the progress towards the new point is stopped
(lines 12, 15, and 19) and we return the chart for the last valid point (line 23),
if any.

The main operations of the HC-planner scale as follows. The initialization
of a chart scales with O(n3 + 2k), with n the dimensionality of the ambient
space and k the dimensionality of the configuration space, since we use a QR
decomposition to identify a base of the kernel of the Jacobian of F and we have
to define a box with 2k vertices. Both the initialization and the extraction of
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an element from a heap are O(1). The atlas expansion scales with O(n3) since
it includes the 5 following steps: 1) the generation of a random number on
a k-dimensional ball (O(k)); 2) the check to determine if a point is inside a
k-dimensional polytope (also O(k) assuming a bounded number of faces per
polygon); 3) the projection of a point from the tangent space to the manifold (a
Newton process with a bounded number of iterations where at each iteration
we use a LU decomposition that is O(n3)); 4) the determinant of a matrix of
size k (O(k3)) that comes from the product of n×k matrices (O(k2n)); and 5)
the initialization of a map (O(n3)). When adding a chart to the atlas, we have
to look for neighboring charts. This can be done in O(k) since it is logarithmic
with the number of charts that, in the worst case scales exponentially with
k. For the neighboring charts, we have to crop the corresponding polytopes.
This operation scales with the number of vertices of those polytope which is
O(2k). Finally, the addition of an element in the heap is O(k), in agreement
with the cost of determining the neighboring relations between charts.

Summarizing, if l is the number of charts needed to connect the start
and the goal the overall algorithm scales with O(l (n3 + 2k)). In the worst
case, the final atlas might include all the possible charts for a given manifold.
However, as we show in next Section, many problems require in practice a
limited number of charts to connect the start and goal configurations.

Note that the planner is resolution complete, in the sense that by taking
a radius r small enough for the balls controlling the size of the charts, we can
ensure to find a solution path if it exists. In particular, in a problem involving
a narrow passage of size υ, charts build from a setting r < υ/2 would ensure
a solution. However, in practice, much larger radius can be used safely.

4 Experiments

We implemented in C the higher dimensional continuation tools1 described
in Section 2 and the HC-planner described in Section 3, both including the
treatment of singularities inside the manifold. They were integrated as mod-
ules of our position analysis toolbox [30] using SOLID [35, 32] as a collision
detector and the GNU Scientific Library for the lineal algebra operations.
Our position analysis toolbox is based on a formulation that yields a system
of simple equations only containing linear, bilinear, and quadratic monomials,
and trivial trigonometric terms for the helical pair only [19]. The simplicity
of the final system of equations makes it advantageous for continuation meth-
ods [36]. For the purpose of comparison, we also implemented the RRT for
constrained spaces presented in [7], which is very similar to the planner in [2].
In this RRT, points are sampled in the ambient space and the nearest sam-
ple on the variety is progressively extended towards the random sample. At

1 An implementation of these tools tailored for dynamical systems is available
in [31].
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Fig. 5. The four benchmarks used (a) A star-shaped planar manipulator with three
fixed extremities. (b) Two arms collaborating to move an object from one gap to
another. (c) A rotational-only parallel manipulator. (d) A cyclooctane molecule.

each extension step the points are projected to the variety using the Jacobian
pseudo inverse method. In our implementation, the nearest-neighbor queries
use the kd-tree described in [40]. Experiments were executed on a Intel Core
2 at 2.4 Ghz running Linux. Finally, the algorithm parameters were set to
r = 0.4, δ = 0.04, σ = 0.1, and β = 1.1 for all the experiments.

Fig. 5 shows the four benchmarks used in this paper. The first one is
a planar star-shaped manipulator also used in [26]. In this case, obstacles
are not considered. The second problem involves a system where two arms
have to cooperate to move an object from one gap to another. This problem
previously appears in [9]. The movement between the start and goal configu-
rations require to traverse singularities, which makes the problem unsolvable
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Table 1. Dimensionality of the ambient and configuration spaces, execution times
and number of samples/charts used by a RRT and the HC-planner.

HC RRT HC/RRT

Benchmarks k n Time Charts Time Samples T/T C/S

Star-shaped 5 18 1.22 174 1.77 2020 0.69 0.09
Two Arms 3 10 1.26 494 24.04 26697 0.05 0.02
Parallel 3 27 2.45 286 24.38 9454 0.1 0.03
Cyclooctane 2 17 1.13 174 12.1 9814 0.09 0.02

by inverse-kinematic PRM approaches [6, 10]. The third example, kindly pro-
vided by Juan Cortés, is a parallel platform with rotation motion only. The
task here is to move a stick attached to the robot across some obstacles. The
last benchmark is the cyclooctane, a molecule whose kinematics is a 8-revolute
chain. Here, we have to find a path between two conformations that avoids
self-collisions involving carbon and hydrogen atoms (depicted in cyan and
white in the figure, respectively).

Table 1 shows the performance comparison, averaged over 10 runs, between
the HC-planner and RRT. For each of the four benchmarks, the table gives
the dimensionality of the configuration space (k), the dimensionality of the
ambient space (n), the execution times and the number of charts or samples
used for each method. The table also shows execution time ratios (T/T) and
the ratio between the number charts used in the HC-planner and the number
of sampled used with RRT (C/S). Note that the RRT in the Two Arms test
case is unable to find a solution with less than 50000 samples for 30% of the
cases. In Table 1, the RRT results for this problem correspond to averages for
the successful tests only.

The results show how the larger the difference between the ambient and
the configuration spaces the higher the advantage of using the HC-planner.
Actually, the execution time of the HC-planner is an order of magnitude
smaller than that of the RRT except for the Star-shaped problem where the
HC-planner is only about a 40% faster. This tendency is true despite the
generation of samples being much faster than the generation of charts. This
is so because charts are more powerful since they do not only describe the
variety on a single point but on a local neighborhood of a point. Thus, the
HC-algorithm uses in average only about a 4% of the number of samples used
by RRT.

5 Conclusions

In this paper, we extended the use of High-dimensional Continuation algo-
rithmic tools for path planning applications. Using these tools, we defined a
randomized path planner for highly constrained systems. The presented plan-
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ner directly works on the configuration space, trying to connect any pair of
query configurations with a small collection of local charts. The algorithm
performance is highly independent of the relation between the configuration
space and the ambient space. This is in contrast with existing sampling algo-
rithms for constrained problems that generate samples in the ambient space.
The experiments show that our approach can be up to one order of magnitude
faster than existing algorithms.

The cost of the algorithm introduced in this paper is exponential with
the dimension of the configuration space, which is in agreement with the cost
of the best complete path planners [4]. Thus, the algorithm would not scale
gracefully to high-dimensional problems. Despite this, the use of a greedy
search strategy together with the randomization allow to solve problems with
moderate complexity (at least up to dimension 5 in the examples) embedded
in even higher-dimensional spaces. Problems slightly more complexes than
this are also likely to be addressable with the presented planner and this
includes many interesting problems in Robotics and in Molecular Biology [3].
To scale to problems with even larger dimensionality we could rely on charts
with larger area of influence. However this is likely to be valid only in almost
lineal problems, where the error between the tangent space and the solution
variety remains small over large areas. Another possibility is to define a cost
function over the configuration space so that the exploration could be limited
to areas with low cost [16]. All these points deserve a more careful evaluation.
It is also our future endeavor to perform a more thorough experimental and
theoretical analysis of the proposed algorithm.
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