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Abstract—We show a novel integrating technique, the direct
evaluation method, that provides maximum accuracy in the
computation of the MFIE-interactions between neighboring non-
coplanar basis functions sharing an edge or a vertex of the
discretization. Unlike the previous techniques, this strategy re-
quires no extraction of quasi-singular terms from the Kernel and
accounts for both inner- and outer-integrals. We show that the
recently proposed discretization of the MFIE with orthogonal
facet-oriented basis functions provide best accuracy in the RCS
computation of objects with small electrical dimensions when
compared with other conventional basis functions sets.

I. INTRODUCTION

The discretization in Method of Moments (MoM) of the
Magnetic-Field Integral Equation (MFIE) with the RWG basis
functions [1], a constant-normal linear-tangential (CN/LT)
divergence-conforming set, shows some discrepancy in the
RCS computation when compared with the Electric-Field Inte-
gral Equation (EFIE). This discrepancy is especially evident in
the RCS computation of sharp-edged objects with moderately
small electrical dimensions. The numerical methods group of
Antennal.ab at UPC has proposed the monopolar RWG basis
functions [2] to mitigate such misbehavior. The Kernel of the
MFIE shows a quasi-singular R2-order dependence for adja-
cent non-coplanar facets that needs to be integrated carefully to
establish a fair assesment of the behavior of the basis functions
expanding the current. Conventional strategies either subtract
these quasi-singular terms of the Kernel and apply closed
analytical formulas of integration for the inner-integral of the
impedance element [3]-[7] or apply some variable changes to
cancel out the singularity [8]. The testing of the scattered fields
in the impedance elements requires an outer-integral that is
normally carried out numerically with a Gaussian Quadrature
rule. For edge-adjacent non-coplanar interactions, though, the
MEFIE results in weakly singular logarithmic contributions in
the field domain for which this numerical testing provides
limited accuracy in reasonable times.

In this paper, we adopt the recently proposed zero-order
and first-order orthogonal basis functions sets [9], [10] for
the MoM-discretization of the MFIE and we compare their
performance in the RCS computation with a traditional dis-
cretization, such as RWG. Up to now, it has been impossible
the fast and very accurate computation of the interactions
between adjacent non-coplanar basis functions. In this paper,
we implement a recently developed integrating technique, so-
called direct evaluation method [11]-[16], that computes with
machine-precision accuracy the 1/R? contributions arising in
the impedance elements of the MoM-MFIE discretization.
This technique directly deals with the 4D singular integrals,
and after removing the singularity with some proper vari-
able changes and performing a re-ordering of the resultant
integrals, it is possible to compute two integrals analytically.
Furthermore, the last two integrals contain a smooth integrand,
resulting in a very fast convergence with the number of
integration points, even being held numerically. We then obtain
a very fair assessment of the RCS improvement due to the
discretization of the MFIE with the orthogonal basis functions,
when compared with the RWG set, in the RCS computation
for sharp-edged objects.

II. ORTHOGONAL BASIS FUNCTIONS

A set of basis functions {f,,} is orthogonal when

t) = [EwE@ds=0 iz )

The zero-order orthogonal basis functions are piecewise con-
stant over the triangles arising from the discretization. Since
we use planar facets, two basis functions per facet are defined
with perpendicular directions (u-v) tangential to the surface
[9]. The O-order orthonormal basis functions (ORT-0), by,
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and by, stand for

i v
bo,. = i bg, = i
where A stands for the area of the facet and @, ¥ denote the
unit vectors along the perpendicular directions. The number
of unknowns is twice the number of facets.

To justify the definition of our first-order orthogonal basis
functions [10], we decompose the monopolar RWG [2] set of
basis functions into its orthogonal components, of zero and
first order. We adopt the monopolar RWG basis functions as
reference because they provide, in our experience, remarkable
accuracy improvement in the RCS computation of moderately
electrically small sharp-edged objects. The monopolar RWG
functions are defined as the RWG functions inside the facets
but do not impose continuity of the normal-component of
the current across the edge. Therefore, the monopolar RWG
set is facet-oriented, just like the zero-order orthogonal basis
functions ORT-0. The expansion of the current over a triangle
arising from the discretization relies on three monopolar-RWG
basis functions m; as
(r—ri)

1 3)
where r; stands for the vertices defining the triangle. We can
write the previous expression equivalently as

(re—ri)  (r—r)
T T “4)
where r. denotes the centroid or barycentre of the triangle. We
see that the first term in (4) is uniform over the triangle and
different for each monopolar-RWG basis function (see Fig. 1).
In contrast, the second term is the same for each monopolar-
RWG function m; and varies linearly over the triangle.

@)

m,; = 221,2,3

m; =

i=1,2,3

Fig. 1. Decomposition of the monopolar RWG basis functions in terms of its
zero-order and first-order orthogonal components.

Therefore, being the first term piecewise constant, it can
be expanded with generality by bg . and bg,, whereas the
second linearly-varying term rules the definition of our first-
order orthogonal basis function by ,
(r—r.)

T 5)
Note now that the three basis functions bg ,, bo . and by ,
accomplish

1
<b0,u7b0,'u> = Z /fl -vds=0

1 N
(bo,u;b1,p) = YO /u~ (r—r.)ds=0

1 .
(bo,w,b1,,) = Ve /v (r—r.)ds=0

bl,ﬂ =

(6)

which is a proof for their orthogonality.

Since the ORT-1 discretization for triangular facets repre-
sents an orthogonal rearrangement of the monopolar-RWG set,
they both lead to the same solution. Thanks to the property
of orthogonality, the ORT-1 MoM-discretization of the MFIE
leads to a Gram matrix that is diagonal.

III. INTEGRATION: DIRECT EVALUATION METHOD

A. Hyper-singular integrals

The hyper-singular integrals appearing in MFIE, and there-
fore in CFIE formulations, can be reduced to integrals of the
form

I ::/ g(r)~/ VG(r,r') x f(x') dS’'dS  (7)
Ep Eq

where the functions f(r) and g(r) are any of the previously
defined basis functions or their i x versions defined over the
triangles Eg and Ep, respectively. G(r,r’) corresponds to the
free space Green’s function G(R) = e~7%f' /R, depending on
the distance R = |r — r/|.

In particular, the case where the two triangles have a
common edge (see Fig. 2 on the left), which is actually the
most challenging one, is in order.

B. Theoretical description

The main idea of the direct evaluation method is to cancel
out the singularity 1/R? of the integrand, performing a set of
parameter transformations. Following the procedure described
in [15] and references therein, we start by moving to equilat-
eral parameter spaces {n, £} and {7, £’} in each triangle (see
Fig. 2):
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Subsequently, two further consecutive polar coordinates
changes are carried out:

p = Acos ()
& = Asin (7).

n' = pcos () —n

d
¢ = psin (0) "

©)

Considering that the distance function R becomes proportional
to A, the singularity, now placed at A = 0, is removed thanks
to the global Jacobian

A A

J = %AQ cos(W) (10)
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Fig. 2. Orientation of the triangular elements both in the original and the
equilateral triangle parameter space.

yielding after some manipulations:
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where the transformed integrand F' is smooth, with no singu-
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Fig. 3. Integration domains in eq. (11).

larities, and can be computed, in view of a symmetry at n = 0

in the equilateral parameter space, as

F(Aﬂ%‘ke) :F+(A777)‘1159) +F+(A7 _777\1/777_9)

Ft(A,n,¥,0) :AI,SA,] cos(T)
o~ IkAB(0,7) ‘
(W (14 jkAB(, x_v))>
g(Av , 9; \II) ! (f(Aa n, 97 \Il) X B(@, \II))
(12)

being B the proportionality constant, in terms of A, of the
distance vector function R = AB(6, ¥):

B = a., sin(¥) + a., cos(¥) cos(8) + a, cos(¥) sin(6).
13)
In the last expression, o, are constant vectors which only
depend on the triangles’ vertices:

ra —1;
Qe, = —
21‘3 — I — T2
oy = ——————
e2 /3 14)
21‘4 — I —I2
Oy = ——F——.
es 2\/5
The set of integration limits in expression (11) equal
m - Ui
O1(n) = = —tan™* (—)
2 V3 (15)

U,y =tan ! (sin () — V3 cos (9))
Up =tan~! (sin (0) + V3 cos (9))

Ve = tan~! (ﬂ (sin (6) + /3 cos (9)))

1+n
A, — V31— )
" cos (W) (sin(h) — v/3cos(0))
A, = S V31—m)
2 sin() sin(P)
V3(1+1n)

AL, = .
Fs ™ Cos (W) (sin(6) + v/3 cos(h))

Bringing the integration with respect to n right after the in-
tegration with respect to A, properly re-ordering the integrals,
it happens that both integrations, A first and 7 then, can be
carried out analytically, whilst the remaining integrations with
respect to 6 and ¥ are performed numerically, considering a
smooth integrand. Results have proven the excellent conver-
gence of this technique, leading to machine precision in less
than one second in a common PC.

IV. RESULTS

We present computed RCS results for a cube with side
of 0.1 m. The impinging planewave is x-polarized with +z-
propagation and the wavelength is 1m. In Fig. 4, we show
that the conventional strategy (cnv) to extract the 1/R? quasi-
singular contributions in the impedance elements of the MoM-
discretization of the MFIE [3], [5] with the ORTO basis
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functions, MFIE[ORTO], does not reach stable results even
after computing the outer integral and the inner integral of
the lower order contributions of the Kernel with 12 points.
In contrast, our new integrating technique (new) is perfectly
stable already with 6 points, which is a consequence of
its accuracy. Indeed, the conventional strategy requires more
integrating points to compute numerically the testing-integral
of the weak logarithmic field-contributions coming from the
analytical source-integral of the terms (p’ — p)/R> between
touching non-coplanar triangles.
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Fig. 4. yz-plane cut of the RCS for MoM-discretizations of the MFIE with
ORTO basis functions for a cube with side 0.1m meshed with 192 triangles and
A = 1m for an impinging x-polarized +z-propagating wave. Conventional and
new integrating strategies of the 1/R? impedance contributions are applied.

In Fig. 5, we show the backward bistatic RCS of the MoM-
discretizations of the MFIE with the zero- and first-order
orthogonal basis functions, MFIE[ORTO] and MFIE[ORT1]
with our new integrating technique and 6 quadrature points
for the numerical computation of the remaining integrals
(testing-integral and source-integral of the low-order Kernel
contributions). We compare it with the conventional RWG-
discretizations of the EFIE and MFIE; that is, EFIE[RWG]
and MFIE[RWG]. In view of the figure, it is clear that
MFIE[ORTO] and MFIE[ORT1] show a faster convergence
against the number of unknowns than MFIE[RWG]. Therefore,
the RCS-discrepancy between EFIE and MFIE with a RWG
discretization gets drastically reduced with the adoption of the
zero- and first-order orthogonal sets.

V. CONCLUSIONS

In this paper, the use of the zero-order and first-order
orthogonal basis functions in the MoM-MFIE computation
has been presented, along with a recently developed very
accurate integration technique, the direct evaluation method.
In this manner, we are able to completely remove the errors
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Fig. 5. Backscattered RCS for a cube with side 0.Im and A = 1m against
the number of unknowns for an impinging x-polarized +z-propagating wave.

coming from the integration of the singular kernels. We
compare the RCS results with traditional CN/LT divergence-
conforming discretizations of the MFIE and of the EFIE. We
test several electrically small sharp-edged objects, where the
traditional MoM-MFIE RCS-discrepancy is most evident and
the proposed set of basis functions present a much better
convergence.
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