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Abstract

Ubiquitous environment’s research has evolved
considerably over the last years. The wide
range of mobile devices, their high diver-
sity and mobility have raised a variety of
challenges being resource management a pre-
dominant, and therefore attracting special
attention in the research community. The
Composable-Adaptive Resource Management
(CARM) middleware library provides a flexi-
ble infrastructure where personal devices cre-
ate seamlessly on-demand interconnections
links to share ubiquitous resources. In this pa-
per we present a CARM interesting use case,
consisting of an improved audio listening ex-
perience by sharing a high quality audio re-
source. A proof-of-concept implementation
is provided, and a testbed comprised of two
CARM enabled mobile phones with Bluetooth
connectivity making use of remote device’s
audio resource is described. Owur approach
demonstrates the importance and usability of
enhancing the dynamic resource sharing ex-
perience without altering the bandwidth effi-
ciency.

1 Introduction

As Mark Weiser envisioned [1], embedded and
mobile devices have become part of people’s
daily life. Most people are already carrying
mobile phones, portable music and game play-
ers or even wearing smart-jackets with small
sensors. All these heterogeneous devices are
highly diverse from software to hardware [2];

first, devices include different operating sys-
tems (e.g. Windows Mobile, Symbian, An-
droid, iPhone OS, etc.) and a great variety of
programming interfaces; second, devices may
include one or more sort of communication
technologies (new or improved ones like: NFC,
ZigBee, Bluetooth, or WiF1i), different displays
sizes and resolutions, and diverse sound qual-
ity systems. With this pool of assorted ubig-
uitous resources, devices have the opportunity
of i) dynamically use some of them to im-
prove their capabilities or i) dynamically add
new ones. For example, devices can aggregate
new better resources to improve sound quality
(e.g. with higher definition speakers), video
(e.g. higher resolution or bigger display), or
to augment its capacity (e.g. remote storage),
among others. However, the capabilities of
maintaining access to the available resources
while moving is a major challenge that yet
research activities have not fully addressed.
There exist numerous projects [3], [4], and [5]
that address remote resource’s management,
but they are limited to specific environments
(e.g. home or office). Other projects such as
[6] consider additional environments but they
rely on a fixed infrastructure or central servers
to manage resources. Therefore to maintain
the information about availability and allo-
cation of resources in a moving environment
a mobility-enable solution is still required, to
overcome these issues we propose the use of
the Composable-Adaptive Resource Manage-
ment (CARM) [7] middleware which takes ad-
vantage of device’s mobility and dynamically
manages the set of available resources to ex-



ploit it. With CARM, applications are able
to use resources by opportunistically annex-
ing friendly devices they encounter and man-
aging its available resources in a seamlessly
and transparent manner. CARM contains a
Core module that interacts directly with ubig-
uitous devices to provision shared resources
among applications, and provides a high-level
management of them. CARM also provides a
Resource Abstraction Layer which allows ac-
cess to a specific functionality of each device,
dealing in this way with the high diversity of
devices.

In this research work, the authors present a
specific use case in order to demonstrate the
effectiveness of CARM middleware. The use
case is based on the assumption that many
devices have high level capabilities and are
able to share them. Considering this, we have
chosen to share the high level sound quality
regardless of the audio source format (mp3,
phone call or multimedia file), i.e. the au-
dio is streamed directly to the high definition
speakers in real-time in the form of raw audio
packets. Hence, the contribution of this pa-
per can be summarized as follows: 7) we show
how to improve the sound quality between
two mobile phones by increasing the quality
of user’s listening experience, where the first
mobile phone has the minimal audio set to lis-
ten music with poor quality (mono audio), and
the second mobile phone has built-in medium
quality sound; and 75) we implement a proto-
type which uses the CARM API to develop
the audio use case.

The remainder of this paper is organized ac-
cording to the following structure: The basics
of the CARM middleware library are described
in Section 2. Section 3 proposes the study of
an audio use case scenario towards the imple-
mentation of a testbed and a CARM-based
audio resource sharing model. Implementa-
tion details and testbed considerations are ex-
plained in Section 4 and a proof-of-concept
test and preliminary results are outlined in
Section 5. Section 6 reviews the background
work related to our research. Finally the main
conclusions and future directions are drawn in
Section 7.

2 The CARM middleware library

CARM provides an integrated approach in
which operating systems and applications col-
laborate to manage seamlessly and transpar-
ently resources in ubiquitous environments
dealing with their hardware and software de-
pendencies properly. The middleware deals
with situations in which users usually need ad-
ditional or better resources than what is cur-
rently available, interacting directly with other
ubiquitous devices to provision shared hard-
ware resources, thus providing high-level man-
agement of such resources. Next, we will sum-
marize important benefits:

e Transparency: in CARM, the complexity
of management of ubiquitous resources re-
mains hidden to the applications.

e Portability: CARM was built in modules
to separate specific platform dependent
parts from the independent ones.

e Quality: the quality of service can be im-
proved in CARM by selecting the best
resources from the pool of available re-
sources (e.g. using external high quality
speakers to provide a better audio expe-
rience) .

o Extensibility: CARM can extend the de-
vices capabilities with other resources like
display, microphone, audio, etc.

2.1 CARM Features

The CARM middleware is basically comprised
of two main modules:

1. The CARM Core module is the manager
engine which orchestrates and coordinates
all tasks, its main goal is to manage the
available resources in the vicinity keeping
updated all runtime information regard-
ing availability, an example of this infor-
mation is outlined in Table 1. To accom-
plish the resource management, the Core
module provides a scheduler with simple
allocation policies and available resources
monitoring. This information will be up-
dated in various situations: (i) when a



Table 1: Related runtime information

Device Data Address,
descriptor related to capabilities,
the remote etc.
devices
Resource Data Device
descriptor related to owner,
the remote state,
resources availability,
capability,
etc.
Context Other Proximity,
descriptor useful position,
context battery
information level, etc.

new resource is requested, (i7) when the
managed resources finish their assigned
tasks or (%) every certain period of time.

The communications are done through an
independent layer which is configurable
according to user needs and availability.
From the local pool of communication
technologies, CARM selects a suitable
one, according to the current situation,
taking into account user preferences and
system restrictions. Once a communica-
tion technology is selected, CARM mes-
sages are sent to the collaborative group;
as the group changes fast (due to the
high mobility of devices) the communi-
cation protocol demands a light-weighted
protocol to avoid communication delays,
therefore in CARM, we have designed
a light-weighted protocol basically using
two communication channels; one to ex-
change signaling messages and another
one to transfer specific data such as au-
dio packets. Since we are working with
heterogeneous environments, the CARM
middleware also includes a Resource Ab-
straction Layer on a higher operating sys-
tem level and will be introduced next.

2. The Resource Abstraction layer (RAL)
module is responsible of mapping a re-
source request from partners to the ac-
tual underlying platform. This layer ex-
ploits the specific access to the restricted

low level OS’s set of native functions when
required, and makes it available to the li-
brary. Basically, the RAL creates a full-
duplex (two-way) access channel to con-
figure and control the associated resource
through the CARM Core module. If re-
quired, RAL can also configure additional
channels to communicate to the OS and
partners.

2.2 CARM Communications Protocol

To support the orchestration and maintenance
of local and remote resources, CARM com-
munications protocol considers two different
channels to exchange messages:

1. A signaling channel used to exchange con-
trol information messages among devices,
this information may include configura-
tions, availability, changing states, and
other control related details.

2. A data channel used to transmit substan-
tive data information relevant to a shared
resource (e.g. audio packets).

When initial communication is established,
devices exchange synchronization and coordi-
nation messages through the dedicated signal-
ing channel which provides a request type of
notification to the server device. When the
request signal is detected, the server device
could receive additional requester’s device in-
formation in order to process and respond the
received request. After synchronization and
coordination processes are done, for resource
information sharing (a device making use of
a shared resource) both devices make use of
the data channel to send and receive the cor-
responding data; the Figure 1 shows the se-
quence diagram for a client requesting a re-
source. For the initial testbed implementation,
CARM’s communication protocol considers a
basic packet format comprised of a header and
a payload.

The header implementation mainly contains
the packet type information; when used in the
resource exchange process other fields for con-
trolling source and resource destination might
be added.



update status
and initialize

Sequence Notation

user_req: User request

user_res: User response

res_req: Resource request
res_available: Availability of resources
res_denied: Resource denied to the user
res_granted: Resource granted to the
user

Messaging Core RAL
USEr_req res_req bl
ree_ Coyes
no
res_denied :\'
res_denied
ted "
USer res s EI yes
[ CARM |

Figure 1: Resource request communication sequence.

The payload data consists of a sequence
of bytes representing the expected data in
correspondence to the packet type and the
current process. In the resource exchange
process, this byte sequence represents specific
resource shared information (e.g. audio
streams), and in the signaling process this
sequence represents other information like
security related information or additional
requested information (e.g. list of available
shared resources). Finally, it is worth to
mention that, both security and resource
discovery processes are beyond the scope of
this paper.

2.3 CARM API

The management of the local resources is done
in the CARM Core (for convenience we will
call it “Core”). The Core keeps track of lo-
cal resources and, the information related to
each resource is stored in memory using hash
tables which are updated every time a change
occurs. Then, resources are published to make
them available to other devices, when these de-
vices want additional resources, the Core cap-
tures all requests and depending on the avail-
ability it assigns the corresponding resource
to the requester in turn. The Core applies a
FIFO policy to assign each resource and it is
hold until the assigned device relinquishes it,
providing also a standard API for sharing and

controlling ubiquitous resources (e.g. audio or
video). The API was designed to be flexible
with respect to protocols, resources and fea-
tures supported by various devices. Table 2
list the functions supported by the API imple-
mentation, note that not all CARM functions
are documented here.

3 An Audio Use Case

To show the effectiveness of CARM, we have
developed a prototype which uses the CARM
middleware library. Since granted audio re-
sources on mobile phones are at the moment
extremely tight due to size and power con-
straints, we have considered for the initial
CARM testbed implementation, sharing the
high quality audio resource. Next we present
the audio use case which involves communi-
cation and collaboration between distinct de-
vices:

The group of friends has just sat down
at its favorite restaurant and Claire de-
cides she wants to play her last favorite
song to the group. As Bob owns a high
quality sound device and after they push
a few buttons on their phones and en-
gage their built-in micro-speakers they are
ready to play the music on Bob’s phone.

Our scenario comnsists of a Personal Area
Network (PAN) with a group of users and



Table 2: CARM API

Function

Description

void Core();

void initialize(type);

void configureLocalResource(type, configuration);

void finalize();
void requestResource(type, configuration);

void resourceRelinquish(type);

Creates all internal instances:
repositories and communication module.
Initializes with a specific
configuration. The type parameter
specifies which role to apply as server
or client.

Configures the local resource with
appropriate parameters.

Close the current connection.

Realizes the request call to a

server when a device needs additional
resources.

Relinquishes the assigned resource when
the task is already finished.

a set of known components (e.g. mobile
phones). With CARM it is possible to extend
the audio capabilities and have real time
control of multiple sound channels positioned
and moving dynamically around the user,
providing an immersive 3-dimensional sound
environment, allowing amazing effects, and
optimizing user’s audio listening experience.
Of course, other possibilities exist, but for
simplicity in this paper we will focus on just
one shared resource.

The proposed prototype works in two ways:
(i) a server device exposing the high defini-
tion audio speakers resource to the environ-
ment using the CARM API, and (%) a client
device willing to improve its limited audio re-
source, benefits from the audio sharing pro-
cess by making use of the available resource,
as shown in the Figure 2. For the proposed
use case implementation different considera-
tions should be taken into account just as pre-
sented in the next section.

4 Implementation Details

This section describes the basics of a testbed
implementation and the considerations taken
towards developing the above mentioned audio
use case.

Client Server
Nokia 6600 Nokia E65

Sound
streaming

Low definition High definition
speakers speakers

Figure 2: Example of and audio session sequence
between two devices.

4.1 Testbed and tools

The CARM middleware library works with
well-known devices for the sake of simplic-
ity (resource discovery is not our main topic),
even though adding devices and services are
not dynamically allowed, these could be re-
solved through a variety of plug-in technolo-
gies. To evaluate our CARM proof-of-concept
we use two mobile phones: a Nokia E65 that
runs a 220MHz Dual CPU ARMS9 processor,
and a Nokia 6600 that runs a 104MHz ARM9
processor. Both devices are based on Symbian
OS and the interaction is done through Blue-
tooth connectivity as shown in Table 3.

The initial Core system prototype was de-
signed on Java 2 Micro Edition (JavaME)
because of its wide manufacturers sup-



Table 3: Device Specifications

Device 0s Audio
Nokia Symbian 0S Audio speakers
6600 v7.0s Series (low quality)

60 2nd Edition

Nokia Symbian 0S Audio speakers
E65 v9.1 Series 60 (medium
3rd Edition quality)

port, and open standards adoption. Even
though JavaME provides the facilities nec-
essary to target many platforms simultane-
ously, currently its standards lack the abil-
ity to access devices specific functionality [14].
To overcome this platform dependency, the
RAL approach provides device-specific ser-
vices through its abstraction layer and it is
written in the native development environ-
ment (Symbian C++) because of the needed
libraries that are only accessible from the na-
tive domain.

We have considered this configuration because
of the great variety of devices that include
these capabilities, however we are aware that
this solution is not applicable to those with
specific requirements such as iPhone or An-
droid based mobile devices.

4.2 CARM API usage

The CARM API is able to create new vir-
tual resources and connect devices together
through the importation of the library. The
core of the middleware is the Core class, where
an application must create the Core instance,
and it is advisable to store this instance as
a singleton or some other handy location.
The listing 1 shows a common pseudocode se-
quence to execute CARM in devices.

Once a Core is created (line 1), we need to
initialize the middleware as a client (resource
consumer). Then resources within it can be
created and initialized also. Local resource
initialization allows configuring resources be-
havior once the sharing has been started. For
example, if we are going to use better speakers
from other device, it would be nice to put the
sound in silent mode of local resource to enjoy
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Listing 1: Calls to put CARM in action

CARMCore carm = new CARMCore();
carm.initialize (asClient );
carm.configureLocalResource
(CRESOURCE_AUDIO, conf);
carm.start ();
carm.requestResource
(CRESOURCE_AUDIO) ;
relinquishResource
(CRESOURCE AUDIO) ;

carm.

carm. finalize ();

the new feature (lines 2-4). In order to al-
low coordination between the several nodes of
the system the application must start the mid-
dleware instance. Internally, the middleware
create the links between the available devices
to allow the resource sharing (line 5). In this
state, applications are ready to request addi-
tional resources to other devices if needed. In
case no devices were found, an exception is
thrown and no additional actions are taken.
To request and relinquish a remote resource
methods in lines 7 and 9 should be called.
The function parameter denotes the resource
in order to request or relinquish. Also, if not
available resources are found an exception is
thrown. Finally, once remote resources are
used, the middleware needs to release all in-
stances created (line 12).

5 Proof-of-concept Testing

5.1 Execution flow overview

In our audio use case, CARM can have two
roles: as a server or client. These roles are
hidden in the middleware but it is possible to
configure the role with the initialization pa-
rameter described in the API above. In the
prototype, the device environment configura-
tion is to put the first device (Nokia 6600) as
client, and the second device (Nokia E65) as
the server. With this configuration, the server
device is the central console in which the ac-
tion of playing music takes place, taking ad-
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Figure 3: Composable-Adaptive Resource Management internals overview. Example of and audio session

sequence between two devices.

vantage of the better sound quality of speak-
ers. The client should be aware of this situ-
ation and will read decoded audio streams to
redirect the stream flow to the server device.
In turn, the server receives these streams and
put them to the local audio queue. The server
must prepare the local audio system to play
the available queue buffer. Note that for the
sake of simplicity and despite its importance,
our example considers an audio file with raw
audio content (PCM16 format) which acts as
a real hardware audio stream. However con-
sidering a more advanced configuration, audio
packets will be taken directly from the audio
device hardware. Following the Figure 3, the
audio sharing in the client side consists on the
next steps:

1. Device recognition: at the beginning, de-
vices exchange credentials in order to
gather information about each other. De-
vice information would consist of battery
level, computational power, and the list
of shared resources. Once devices are
bounded', the client device requests for
an audio resource. During this process,
devices use the signaling channel to ex-
change communication information.

LAt this point we will assume that the two devices
were previously identified and connected.

2. The client management sends an internal
ready signal to prepare the local resource.

In parallel to the client management, the
server management sets ready its corre-
sponding resource. In this state, the RAL
listens for incoming audio stream.

When the RAL client is ready, it begins
the execution of its assigned task. In this
case, starts to read decoded (PCM16 for-
mat) stream data from file. Each data
chunk is 4Kb size. However, the data size
will depend on the complexity of the au-
dio file. When one chunk has been already
read, the RAL module sends the data to
the server using the data channel. This
process repeats until the end of the file.

The RAL server starts the reception of
the audio stream. Every chunk of data is
copied into a buffer and once the buffer
is filled, a “playback” event is launched to
start playing the received audio.

When processes are already done, CARM
releases the corresponding resources.
5.2 Preliminary Results

The Core middleware library is approximately
3500 lines of Java code for a 71Kb of library



size, and 848 lines of Symbian C++ code for
the resource abstraction layer component with
a size of 28Kb. Initial results demonstrate
the viability of the CARM middleware and
how CARM is able to effectively stream audio
data between two mobile devices.

The experimental setup environment con-
sisted of a small piconet? comprised of two
mobile devices and a L2CAP counnection
between them with a data transmission rate
of 721 kbit/s (typical on mobile devices). As
showed in Figure 4, we have measure the
time consumption considering the following
processes: 1) connecting the two devices, i)
requesting a resource, 1) relinquishing a
resource, and iv) disconnecting. For a more
accurate measurement we have taken into
account statistical variations by performing
the tests 100 times.

Preliminary measurements indicates that
the connection process is the most time con-
suming process but acceptable for a session.
Transmission of audio packets present a minor
packet loss ratio due to environmental condi-
tions affecting the sound quality (noisy sound).
It seems that due to the small library size,
power consumption cannot be considered as
a major drawback, however we are looking for
effective methods in order to have more real-
istic and accurate measurements.

6 Related Work

The interest in ubiquitous computing environ-
ments has given rise to a proliferation of sys-
tems that allow resources to be dynamically
discovered and utilized.

So far, research directions in this area can
be classified into two distinct types of works,
one based on standards and specifications, and
another based on projects with similar goals.

To dynamically manage resources, stan-
dards and specifications research groups such

2A piconet is a computer network consisting of
devices using the Bluetooth technology protocols to
allow one master device to interconnect with up to
seven active slave devices
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Figure 4: Processes time consumption.

as DLNA [8], OSGi [9] and UPnP [10] allow
devices to control multimedia contents and
other devices (smart-home) using certified
devices. The main difference with CARM is
that we can manage resources on the go, i.e.
in ubiquitous environments, and we use com-
mercial off-the-shelf (COTS) devices without
any special library or server infrastructure.
The Dynamic Composable Computing from
Intel Research (DCC) [11] share similar
directions as CARM in the sense that allows
users to easily and seamlessly extend the
capabilities of their mobile device with the
nearby resources in their environment, and
furthermore allows its resources to augment
other devices in the locality. However the
main drawback is that DCC was designed to
run on more powerful devices like UMPCS
and MIDs, while CARM has the capability
to work with mobile devices with scarce or
constraint resources. Another important
aspect is that CARM communicates with typ-
ical device communication technologies like
Bluetooth and DCC uses a proprietary UWB
radio prototype thus limiting its usability.

There exist other projects that deal with
resource hungry operations (discovery, mem-
ory, or computational) like MobiGo [12], which
consists of a middleware system that migrates
service states to achieve seamless mobility.
Such services are saved and resumed in other
environments with adaptation of available re-
sources; and Kimberly [13] which enables fixed
infrastructure rapid software provisioning for



transient mobile device use. Moreover to aug-
ment the capabilities of a mobile device Kim-
berly uses virtual machine technology. These
projects among others share a common char-
acteristic, they rely on fixed infrastructure.

7 Conclusions and Future Work

Due to the increasing complexity of soft-
ware and the high diversity of embedded de-
vices, middleware technologies have become
paramount in current mobile systems, thus
playing a fundamental role in pervasive envi-
ronments. In this paper we have demonstrated
the benefits of using the CARM middleware li-
brary to share mobile resources in ubiquitous
environments. An audio use case involving
sound quality improvement between two mo-
bile phones was presented in order to show the
effectiveness and usability of CARM. CARM
provides an integrated approach in which op-
erating systems and applications collaborate
to manage seamlessly and transparently re-
sources by properly dealing with their hard-
ware and software dependencies.

Although there are still a number of open
issues like security, scalability, reliability and
power consumption, we believe that this paper
gives an important contribution to the area by
presenting CARM architecture usage for dy-
namic resource management in ubiquitous en-
vironments. Currently we are working on the
integration of a rigorous authentication and
authorization mechanism based on the use of
Attribute Certificates (AC) to guarantee re-
source protection and to prevent unauthorized
access.

Naturally, future research directions point
out to the inherent privacy challenges of ubiq-
uitous environments, also to new communica-
tion strategies between CARM'’s server and
client (to improve bandwidth efficiency) and
clearly an extension of the middleware API
considering a new set of technologies and
mechanisms able to support other systems
such as iPhone or Adroid-based mobile de-
vices.
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