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Abstract. Graph Database Management systems (GDBs) are gaining
popularity. They are used to analyze huge graph datasets that are nat-
urally appearing in many application areas to model interrelated data.
The objective of this paper is to raise a new topic of discussion in the
benchmarking community and allow practitioners having a set of basic
guidelines for GDB benchmarking. We strongly believe that GDBs will
become an important player in the market field of data analysis, and
with that, their performance and capabilities will also become impor-
tant. For this reason, we discuss those aspects that are important from
our perspective, i.e. the characteristics of the graphs to be included in
the benchmark, the characteristics of the queries that are important in
graph analysis applications and the evaluation workbench.

1 Introduction

The analysis and storage of data in the form of a graph has increased in the
recent years. Analyzing the characteristics of social networks, the use of the
Internet, or the interactions among proteins has put graph processing in the eye
of the storm. The amount of data managed in most of those cases is huge, and
the complexity of the algorithms needed for the analysis as well, leading to a
clear need in the market: the Graph Database Management System (GDB).

A GDB is a step forward in the management and analysis of data. As stated
by Angles and Gutierrez [1]: “Graph database models can be defined as those
in which data structures for the schema and instances are modeled as graphs or
generalizations of them, and data manipulation is expressed by graph-oriented
operations and type constructors”. Graph databases emphasize the queries that
compute results related to the structure of the links in the graphs rather than
on the entities themselves: for example detecting link patterns, path analysis,
authority relations, etc. However, managing large graphs is a complex issue, and
obtaining the best suited analysis algorithms is difficult.

There are a certainly growing number of initiatives to implement and com-
mercialize GDBs, like Neo4j [2], HyperGraphDB [3], Infogrid [4] or DEX [5] and
many RDF solutions such as Jena [6] or AllegroGraph [7]. There are other ini-
tiatives to create graph querying languages that allow for a simplified view of
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querying to the user like SPARQL [8] and Gremlin [9]. This shows that the com-
munity is very active proposing new technologies, and sets an adequate scenario
to reflect on which is the adequate benchmark for a GDB.

The main objective of this paper is to open the discussion on GDB bench-
marking. Thus, we describe and discuss important aspects to be considered for
benchmarking. We started describing and analyzing the type of applications
where it is necessary the use of GDBs. In particular, we review the application
of GDBs in Social Network Analysis (SNA), proteomics, recommendation sys-
tems, travel planning and routing, which gives a catalog of representative areas
where huge graph datasets are appearing.

We believe that the set of applications mentioned are representative of the
marketplace for GDBs. Thus, based on those, we discuss the characteristics of
the graphs that appear in such applications and how they could influence bench-
marking. We also survey different types of operations, why they are important
and how they can be categorized in order to produce a wide coverage of is-
sues within a benchmark. Finally, we discuss on the evaluation setup of the
benchmark, where issues like the experimental process to follow and the type
of measures to be taken are considered. Despite the diversity of applications,
we find that the different areas have common features, and we believe that the
design of a benchmark based on SNA would become a representative candidate
of general GDB applications.

The paper is organized as follows. We start by setting up the state of the art
in Section 2. Then, in Section 3, we analyze a broad spectrum of applications
demanding for massive graph management. From these scenarios, we extract
generic characteristics of graphs and queries, that will be important in order to
design a graph database benchmark. Also, we propose a query categorization
and we remark the relevant aspects that we should take into account for the
experimental settings of a benchmark. Finally, we draw some conclusions.

2 Graph oriented benchmarks

Popular database benchmarks, such as TPC-C or TPC-H [10], focus on evaluat-
ing relational database queries that are typical of a business application. These
benchmarks emphasize queries with joins, projections, selections, aggregations
and sorting operations. However, since GDBs aim at different types of queries,
these widespread benchmarks are not adequate for evaluating their performance.

Object oriented databases (OODB) share some similarities with GDBs. The
data of a OODB also conforms a graph structure, where the entities that are
represented as objects draw relationships among them. The OO1 benchmark [11],
one of the earliest proposals, is a very simple benchmark that emphasizes three
basic operations for OODB: (a) lookup, which finds the set of objects for a given
object identifier; (b) traversal, which performs a 7-hop operation starting from a
random node; and (c) insertion, which adds a set of objects and relations to the
database. OO1 defines a dataset that only contains one type of objects with a
fixed number of outgoing edges per object. Since the links mostly go to objects
with a similar document identifier, the graphs are very regular.



Another popular benchmark for OODB is the OO7 proposed by Carey et
al [12]. In OO7, the database contains three types of objects, which are organized
as a tree of depth seven. The connectivity of the database is also very regular
because objects have a fixed number of relations. The benchmark is made up by
a rich set of queries that can be clustered into two groups: (a) traversal queries,
which scan one type of objects and then access the nodes connected to them
in the tree, and (b) general queries, which mainly perform selections of objects
according to certain characteristics.

We observe that although OODB benchmarks create graphs, the graphs have
a very different structure from typical graphs in graph analysis applications. As
we review in detail in Section 3.2, graphs in GDBs are very irregular: the degree of
the nodes exhibit a large variance, nodes are clustered in communities and graphs
have small diameters. Furthermore, the applications that interact with GDBs
are mainly interested in analyzing the graph structure, i.e. the relationships,
instead of the attributes in the objects. For example, operations such as finding
the shortest path connecting two objects or finding patterns (e.g. a clique) are
common GDB operations that are not considered in OODB.

XML databases also follow a model which relates entities. An XML database
is a collection of typed data and attributes organized as a tree. One of the most
well known benchmarks for XML databases is XMARK [13], which models an
auction site. The queries in the benchmark cover many aspects: selections, sorted
access, tree path location, aggregation, etc. Nevertheless, XML only models trees,
which are a limited subclass of graphs.

In the recent years, the knowledge management community has made efforts
to design a standard for representing the relations between metadata elements,
which has derived in the introduction of the Resource Description Framework
(RDF). Along with RDF, the community has designed a query language called
SPARQL, which is an SQL extension to describe relationship patterns among
entities. In order to test the performance of these knowledge bases, Guo et al.
proposed a benchmark of 14 SPARQL queries in [14], which is known as LUBM.

To our knowledge, the only benchmark proposed for the evaluation of graph
libraries is the HPC Scalable Graph Analysis Benchmark v1.0 [15]. The bench-
mark is compound by four separated operations on a graph that follows a power
law distribution: (a) insert the graph database as a bulk load; (b) retrieve the
set of edges with maximum weight; (c) perform a k-hops operation; and (d)
calculate the betweenness centrality of a graph, whose performance is measured
as the number of edges traversed per second. However, this benchmark does
not evaluate some features expected from a GDB such as object labeling or at-
tribute management. For an implementation and a discussion of the benchmark
over different graph databases see [16].

3 Benchmark considerations

In this section, we discuss several aspects that may affect the design of a GDB
benchmark. First, we examine a set of motivating scenarios where graph databases



are useful. Second, we describe the most commonly used graph types. From this,
we explore common queries run in these scenarios and propose a categorization
depending on their interaction with the graph data. Finally, we review some
experimental considerations for the design of GDB benchmarks.

3.1 Analysis of Motivating Applications

Over the past years, there has been an increasing interest in multiple disciplines
on datasets that can be represented and analyzed as a network or graph. In
these networks, the nodes represent the entities and the edges the interaction
or relationships between them. For example, the use of Social Network Analysis
(SNA) has grown to currently become one of the most successful tools to inves-
tigate the structure of organizations and social groups, focusing on uncovering
the structure of the interactions between people [17]. SNA techniques have been
effectively used in several areas of interest like social interaction and network evo-
lution analysis, counter-terrorism and covert networks, or even viral marketing.
The Web 2.0 [18] and the increasing use of Internet applications that facilitate
interactive collaboration and information sharing has caused the appearance of
many social networks of different kinds, like Facebook and LinkedIn for social
interaction, or Flickr for multimedia sharing. Other web portals that contain
human interactions can also be considered social networks, like in bibliographic
catalogs such as Scopus, ACM or IEEE, where the scientific community is shar-
ing information and establishing de facto relationships. In all these cases, there
is an increasing interest in the analysis of the underlying networks, to obtain a
better knowledge of the patterns and the topological properties. This may be
used to improve service to users or even to provide more profit to the information
providers in the form of direct advertising or personalized services.

The rapid growth of the World Wide Web, has caused new graph struc-
tured data to be archived and analyzed, such as hypertext and semi-structured
data [19]. Also, with RDF, users are allowed to explicitly describe semantic re-
sources in the form of graphs [20]. In this context, and others such as finding
web service’s connection patterns, algorithms and applications for graph and
subgraph matching in data graphs are becoming increasingly important [21].
Pattern matching algorithms are also used to find relationships in social net-
works [22], find research collaboration partners, or mine the connections among
research paper publications in archived bibliography datasets.

The use of graph theory combined with computing analysis has attracted the
interest of the graph mining community [23]. Some of the classical analysis in this
area are the determination of an actor’s centrality, to identify key players, leaders
or relevant people in a community; the grouping of individuals in communities
or affinity groups, to provide specific services or to improve their connectivity;
the identification of weaknesses or singular points in the network, for security
or counter-terrorism; or the study of social roles and collaborations, to get the
position of an actor in the society or to connect people to others to improve their
relationships network in professional environments.



Another area of interest is in proteomics or genetic interactions, where the
large-scale study of proteins is considered the next step in the study of biological
systems. The fact that most proteins act in collaboration with other proteins is
the basis for proteomics to reveal which of those are potentially associated with
a certain disease. In protein-protein interaction networks, nodes represent pro-
teins, and edges between nodes represent physical interactions between proteins.
Several protein interaction databases are shared between hundreds of research
laboratories and companies around the world, such as BioGRID [24] or the Pro-
tein Data Bank (PDB) [25]. With this data, some of the most usual analysis
in genetic interactions are the study of the complexity of the network topology,
the node analysis of centrality and role, the identification of articulation points
or bridges between groups of proteins, or the clustering of proteins based on
their relationship or neighborhoods. Many scientific software tools are available
for the analysis and the visualization of data, like Navigator [26] for network
analysis, visualization and graphing.

Network analysis has also become essential for recommendation systems. In
this case, the goal is to present information that could be interesting to the users
based on previous knowledge extracted from their social environment. Recom-
mendation systems are prior to computers, but the Internet has exploded again
the use of recommendation for different purposes, such as on-line sales and cat-
alogs like Amazon, or digital music services in iTune. Even PageRank [27] in
Google can be considered a recommendation engine, and the analysis of hubs
and authorities to rate Web pages in HITS [28] is an exploration of the network
of relationships of a web page with its hyperlinks. Although relational databases
have been the storage system of choice in many commercial recommendation en-
gines for collaborative filtering, like Strands [29] for social networks and eCom-
merce, lately, new approaches have appeared using graph representation and
exploration like conceptual graphs [30] or more recently DirectedEdge [31]. An-
other area of network analysis where graphs may be large is travel planning
and routing, where the system tries to find the most efficient path between two
points according to some constraints or recommendations given by the user, like
in Amadeus [32], or real time analysis of traffic networks in large cities. In these
cases, the data is naturally represented as graphs where vertices stand for the
location and the edges are the routes with lengths and costs. Then, queries are
mainly navigational operations between neighbors or network topology analysis.

3.2 Graph Description

GDBs store entities as nodes, which have relations among them that are set as
edges. However, depending on the particular application, the graph model may
differ, showing a different degree of complexity. In addition to the plain storage
of nodes and edges, we detail the main features required by some applications:

Attributes: In addition to nodes and edges, graph databases store information
associated to these nodes and edges. The associated information is typically
string or numerical values, which indicate the features of the entity or relation.
For the particular case of edges, some graphs include numerical attributes that



quantify the relation, which is usually interpreted as the length, weight, cost or
intensity of the relation. Moreover, many applications set a unique identifier for
each node and edge of the graph that labels each graph element.

Directed: Depending on the problems the relation between two nodes may be
symmetric or not. If the relation is symmetric, the edge might be traversed from
any of the adjacent nodes to the opposite one. If the relation is not symmetric,
edges differentiate the head and the tail. The tail of the edge is the node from
which the edge starts, and the head of the edge is the node which the edge
points to. Undirected graphs are a particular case of directed graphs, since an
undirected edge can be represented as two directed edges, each one in a reverse
direction of the other.

Node and edge labeling: Some applications differentiate different labels (or
types) of nodes and edges. Labeling has an important impact because some
applications require distinguishing between different kinds of relations. For ex-
ample, a social network may accept either “positive” or “negative” friendship
relations [33].

Multigraphs: Multigraphs differ from graphs in that two nodes can be con-
nected by multiple edges. Multigraphs appear commonly when graphs have typed
edges because often two nodes are related by different categories. For example,
in a mobile telephone network that represents the cell phones as the nodes and
the telephone calls as the edges, two nodes will have multiple connections if they
have called more than once.

Hypergraphs: A hypergraph is a generalization of the concept of a graph, in
which the edges are substituted by hyperedges. In contrast to regular edges, an
hyperedge connects an arbitrary number of nodes. Hypergraphs are used, for
example, for building artificial intelligence models [34].

Graph Characterization: Real graphs are typically very different from
graphs following the Erdös-Renyi model (random graphs) [35]. Leskovec et al. an-
alyzed over 100 real-world networks in [36] in the following fields: social networks,
information/citation networks, collaboration networks, web graphs, Internet net-
works, bipartite networks, biological networks, low dimensional networks, actor
networks, and product-purchaser networks. The size of these networks varies
from a few hundred nodes to millions of nodes, and from hundreds of edges to
more than one hundred million. We note that although they might seem huge,
the graph data sets of some current applications are significantly larger: for ex-
ample Flickr accounts more than 4 billion photographs that can be tagged and
rated [37], and Facebook is publishing more than 25 billion pieces of content
each month. For these large graphs, one of the most interesting aspects is that
in general most graph metrics (such as the node degree or the edge weight) fol-
low power law distributions [36, 38, 39], and hence some areas of the graph are
significantly denser than others.

With respect to the characterization of graphs, we summarize some properties
that often appear in these huge graphs [23]: (a) they contain a large connected
component that accounts for a significant percentage of the nodes; (b) they are
sparse, which means that the number of edges is far away from the maximum



number of edges; (c) the degree distribution follows a power law distribution
(i.e scale-free networks), where a few nodes have a number of connections that
greatly exceeds the average, usually known as hubs; (d) the average diameter
of each connected components from the graph is small, in other words, from a
given node there is a short path to reach the majority of the remaining nodes in
the connected component (which is also called the small world property); and
(e) the nodes are grouped in communities where the density of edges among the
members of the community is larger than the edges going outside the community.

Discussion: In this section, we see that graph applications represent their
datasets following graphs with different degrees of complexity. Nevertheless, we
observe that the structure of the graphs datasets follow power law characteriza-
tions and properties, which makes it possible to create generic graphs represen-
tative of multiple applications for benchmarking purposes.

According to the previously described applications, we also identify three
aspects that a generic GDB should be able to compute (and thus be included in
a benchmark): (a) labeled graphs, which enable to identify the nodes and edges
of the graph; (b) directed graphs, which set the relation and its direction; (c)
attribute support, which are used by applications such as for setting the weight
of the edges.

3.3 Graph Operations

In this subsection, we present several types of operations used in the areas pre-
sented before. The analysis of this section will be useful to learn different aspects
that will be used to fix criteria, in the following subsection, to design relevant
operations for a future benchmark. Table 1 lists some of these graph operations,
organized by the type of access that is performed on the graph.

First, we define a set of generic operations. These operations are not typical
in a single specific domain, but common operations that may be necessary in
any context. This set of operations allows us to (i) get atomic information from
the graph such as getting a node, getting the value of an attribute of an edge, or
getting the neighbor nodes of a specific node, and (ii) create, delete and transform
any graph. Any complex query or transformation of the graph will necessarily
use these operations.

Afterwards, we extend these operations to other higher level actions typically
performed in the scenarios presented before. We group these operations into
different types:

Traversals . Traversals are operations that start from a single node and ex-
plore recursively the neighborhood until a final condition, such as the depth or
visiting a target node, is reached. For instance, we consider the operation of cal-
culating a shortest path, which is the shortest sequence of edges (or the smallest
addition of edge weights in the case of weighted graphs) that connects two nodes.
In a directed graph the direction is restricted to outgoing edges from the tail
to the head. Note that shortest paths may be constrained by the value of some
node or edge attributes, as in the case of finding the shortest route from two



Group Operation
Social Protein Recom-

Routing Analytical Cascaded Scale Attr. Result
Network Interaction mendation

Generic operations

General Atomic / Local

Information Extraction

Get node/edge + + + + Yes No Neigh. No Set
Get attribute of node/edge + + + + Yes No Neigh. No Set
Get neighborhood + + + + Yes No Neigh. No Set
Node degree + + + + Yes No Neigh. No Agr.

General Atomic
Transformations

Add/Delete node/edge + + + + No No Neigh. No Set
Add/Delete/Update attrib. + + + + No No Neigh. E/N Set

Application dependent operations

Traversals
(Constrained) Shortest Path + + + Yes Yes Glob. Edge Graph
k-hops + + + Yes Yes G/N No Graph

Graph Analysis

Hop-Plot + Yes No Glob. No Agr.
Diameter + + Yes Yes Glob. Edge Set
Eccentricity + Yes Yes Glob. Edge Agr.
Density + + Yes No Glob. No Agr.
Clustering coefficient + Yes Yes Glob. No Agr.

Components
Connected Components + + Yes Yes Glob. No Graph
Bridges + + + Yes Yes Glob. No Set
Cohesion + Yes Yes Glob. No Set

Communities
Dendrogram + Yes Yes Glob. No Graph
Max-flow min-cut + Yes Yes Glob. Edge Graph
Clustering + + + Yes Yes Glob. No Graph

Centrality Measures
Degree Centrality + + Yes No Glob. No Set
Closeness Centrality + + Yes Yes Glob. No Set
Betweenness Centrality + + Yes Yes Glob. No Set

Pattern Matching Graph/Subgraph Matching + + Yes Yes Neigh. No Graph

Graph Anonymization
k-degree Anonym. + + Yes No Glob. No Graph
k-neighborhood Anonym. + + Yes Yes Glob. No Graph

Other Operations

(Similarity, ranking,...)

Structural Equivalence + Yes Yes Glob. No Graph
PageRank + Yes No Glob. Node Set

Table 1. Graph Operations, Areas of Interest and Categorization



points, avoiding a certain type of road, for instance. This operation is also used
as a measure to calculate the information loss of graph anonymization methods.
Another typical operations is calculating k-hops, which returns all the nodes that
are at a distance of k edges from the root node. A particular case is when k = 1,
also known as the neighbors of the node. The particular case of 1-hops is widely
used as part of other operations. For example to calculate the nearest neighbor-
hood in recommender systems, to obtain a particular user’s neighborhood with
similar interest, or in web ranking using hubs and authorities.

Graph Analysis . Basic graph analysis includes the study of the topology
of graphs to analyze their complexity and to characterize graph objects. It is
basically used to verify some specific data distributions, to evaluate a potential
match of a specific pattern, or to get detailed information of the role of nodes
and edges. In several situations graph analysis is the first step of the analytical
process and it is widely used in SNA and protein interaction analysis. Among
this we may calculate the hop-plot (a metric to measure the rate of increase of
the neighborhood depending on the distance to a source node), the (effective)
diameter, the density, or the clustering coefficient (to measure the degree of
transitivity of the graph), to give some examples.

Components . A connected component is a subset of the nodes of the graph
where there exists a path between any pair of nodes. Thus, a node only belongs
to a single connected component of the graph. Finding connected components is
usually crucial in many operations, typically used in a preprocess phase. Also,
some operations are helpful to study the vulnerability of a graph, or the prob-
ability to separate a connected component into two other components. Finding
bridges, edges whose removal would imply separating a connected component, is
important in many applications. Going further, the cohesion of the graph can be
computed by finding the minimum number of nodes that disconnect the group
if removed.

Communities . A community is generally considered to be a set of nodes
where each node is closer to the other nodes within the community than to nodes
outside it. This effect has been found in many real-world graphs, especially social
networks. Operations related to the creation of a community may be building
dendograms (communities formed through hierarchical clustering), finding the
minimal-cut set of edges or other clustering techniques.

Centrality Measures . A centrality measure aims at giving a rough indication
of the social importance of a node based on how well this node connects the
network. The most well-known centrality measures are degree, closeness and
betweenness centrality.

Pattern matching. Pattern recognition deals with algorithms which aim at
recognizing or describing input patterns. Graph matchings are usually catego-
rized into exact or approximate. Exact matchings may include finding homo-
morphisms or (subgraph) isomorphisms. Approximate matchings may include
error-correcting (subgraph) isomorphisms, distance-based matching, etc.

Graph Anonymization. The anonymization process generates a new graph
with properties similar to the original one, avoiding potential intruders to reiden-



tify nodes or edges. This problem gets more complex when the nodes and edges
contain attributes and the problem goes beyond the anonymization of the pure
graph structure. The anonymization of graphs becomes important when several
actors exchange datasets that include personal information. To give a couple of
examples, two anonymization procedures are the the k-degree anonymity of ver-
tices, or the k-neighborhood anonymity, which guarantees that each node must
have k others with the same (one step) neighborhood characteristics.

Other operations . There are other operations related to the applications pre-
sented in Subsection 3.1. For instance, finding similarity between nodes in a
graph has shown to be very important in SNA. An example of this is structural
equivalence, which refers to the extent to which nodes have a common set of link-
ages to other nodes in the system. Also, specially for recommendation systems,
ranking the nodes of a graph is an important issue (for instance PageRank).

Discussion: We observe that over a small set of generic operations that are
shared by all scenarios, applications compute a rich set of more specific graph
operations. Moreover, according to Table 1, SNA provides one of the most rich
set of graph operations, which makes social networks a candidate scenario for
designing benchmarks that are representative of applications that use GDBs.

3.4 Query Categorization

The computational requirements of graph queries is not homogeneous. For ex-
ample, some queries may traverse the full graph, while others may request the
outdegree of a single node. In order to build a balanced benchmark it must be
representative of the different types of operations that can be issued by an ap-
plication to the graph database. In this section, we build up a set of categories
to classify the different operations that are issued to a graph database:

Transformation/Analysis: We distinguish between two types of operations
to access the database: transformations and analysis operations. The first group
comprise operations that alter the graph database: bulk loads of a graph, add/re-
move nodes or edges to the graphs, create new types of nodes/edges/attributes
or modify the value of an attribute. The rest of queries are considered analysis
queries. Although an analysis query does not modify the graph, it may need to
access to secondary storage because the graph or the temporary results generated
during the query resolution are too large to fit in memory.

Cascaded access: We differentiate two access patterns to the graph: cascaded
and not cascaded. We say that an operation follows a cascaded pattern if the
query performs neighbor operations with a depth at least two. For example, a
3-hops operation follows a cascaded pattern. Thus, a non cascaded operation
may access a node, an edge or the neighbours of a node. Besides, an operation
that does not request the neighbours of a node, though it may access the full
graph, is a non cascaded operation. For instance, an operation that returns the
node with the largest value of an attribute accesses all nodes, but since it does
not follow the graph structure is a non-cascaded operation.

Scale: We classify the queries depending on the number of nodes accessed. We
distinguish two types of queries: global and neighbourhood queries. The former



type corresponds to queries that access the complete graph structure. In other
words, we consider as global queries those that access to all the nodes or the
edges of the graph. The latter queries only access to a portion of the graph.

Attributes: Graph databases do not only have to manage the structural in-
formation of the graph, but also the data associated to the entities of the graph.
Here, we classify the queries according to the attribute set that it accesses: edge
attribute set, node attribute set, mixed attribute set or no attributes accessed.

Result: We differentiate three different types of results: graphs, aggregated
results, and sets. The most typical output for a graph database query is another
graph, which is ordinarily a transformation, a selection or a projection of the
original graph, which includes nodes and edges. An example of this type of result
is getting the minimum spanning tree of a graph, or finding the minimum length
path that connects two nodes. The second type of results build up aggregates,
whose most common application is to summarize properties of the graph. For
instance, a histogram of the degree distribution of the nodes, or a histogram of
the community size are computed as aggregations. Finally, a set is an output that
contains either atomic entities or result sets that are not structured as graphs.
For example, the selection of one node of a graph or finding the edges with the
greatest weight are set results.

Discussion: Queries in a benchmark must represent the workload of the real
environment where the application is going to be executed, and thus should be
adapted to the particular application profile to be tested. We have seen that
graph operations are diverse, but many operations share similar operational
patterns. In Table 1, we summarize these patterns categorizing the catalog of
popular operations. In this table, we find that although the most basic operations
are neither structured nor affect large fractions of the graph, many applications
use large scale operations that traverse the graph. Furthermore, we find that
most graph operations are accessing the information stored in the edges since
the attributes in the edges (and weights in particular) are modeling the relations
between entities, which is the main objective of a graph. We also observe that
generic GDB must be able to store temporal objects because they are necessary
for most operations (e.g: storing a boolean to decide whether a node has been
visited or counting the number of paths through a node). Finally, we see that
generic GDB must be able to manage different types of result sets because we find
operations in many different applications that return sets, aggregates and graphs.
We note that although most operations analyze the graph, many applications
may store the results as attributes. In other words, although the results of a
complex operation such as community detection are analytical, they may be
stored as attributes that may be updated periodically.

In general, operations with a complexity larger than linear (over the number
of nodes or edges) should be included with care in a GDB benchmark because
they may become unfeasible to compute for large graphs. If these operations
are very representative of a certain workload, then one possible approach is to
accept approximate results. For example, the betweenness centrality measure is
very appreciated in the analysis of social networks, but in practice it is seldom



computed with an exact algorithm because of its high computational costs [40].
Therefore, if large graphs are considered, benchmarks may also consider approx-
imated implementations though metrics about quality of the result and precise
descriptions of the approximated algorithm are recommended.

3.5 Experimental setting

Experimental setup and measurement is one of the most important parts of a
benchmark and it must be clearly defined and configured to allow a fair com-
parison between multiple solutions in different environments. Early database
benchmarks only focused in the response time of the queries. As the bench-
marks have evolved and platforms are more complex, the measurements have
become more sophisticated and, in consequence, the experimental setup and the
testing process is more expensive and complicated. For example, early bench-
marks like Wisconsin only considered the response time using very simple scale
factors [41]. Later, TPC-C or TPC-H introduced a metric with the relationship
of the pricing with respect the maximum throughput [42], and more recently
LUBM [14], for the benchmarking of RDF graphs, defined a combined metric
between the query response time and the answer completeness and soundness in
the case of partial results and pattern matching.

The different concepts related to the experimental setup and configuration of
a graph database benchmark can be grouped in the following areas: configuration
and setup, experimental process, and measures.

Configuration and setup: Modern benchmarks allow for the definition of the
dataset size by means of a scale factor, which fixes the dataset size generated
following precise data distributions. For graphs, the scale factor defines the num-
ber of nodes and edges. Additionally, the graph must conform to scale the graph
structural properties for different scales such as the vertex degree and hop-plot
distributions, the diameter or the community structure [43].

A second set of parameters defines the allowed capabilities to preprocess the
dataset. Some of the most important factors to define are: (a) data partition-
ing, which usually allows for a flexible graph partitioning using either horizontal
partitioning, (each structure partitioned), vertical partitioning (structures are
grouped following some criteria), or hybrid; (b) indexing, that allows the GDB
to build freely indexes that speedup queries at the expense of slower loads; (c) re-
dundancy, that specifies if data may be replicated; and if (d) data reorganization
procedures that optimize the internal data structures of the GDB are allowed.
In order to have precise measures, benchmarks usually distinguish between two
parts: (a) a load phase where the data is preprocessed, and (b) a query phase
where the ingested data cannot be reindexed or reorganized.

Finally, another aspect is the definition of the data consistency requirements
that the database must support during the benchmark. In transactional bench-
marks, ACID properties are usually the standard. However, since many graph
operations are analytical, more relaxed approaches can be taken, like eventual
consistency or simply requiring concurrence for multiple readers.



Experimental process: The experimental process definition minimizes the
side-effects produced by the way the experiments are executed, or by some influ-
ences that may appear between experiments, like the the processor caches or the
execution order of the queries. (a) The warm-up sets the state of the computer
before the benchmark is executed. It usually allows to populate the memory
with a fraction of the graph (or indexes) as a result of some warm up queries.
On the other hand, if the benchmarks aims at measuring the I/O overhead, it
is necessary to ensure that the operating system’s cache is emptied. (b) The
query generation sets in which order the queries are executed (e.g. in sequential
order). For non sequential benchmarks, it also sets the probability distribution
that incoming queries fit. (c) The observational sampling procedure describes the
number of executions for each query and how they are summarized. The obser-
vations are collected once a condition happens, which is typically once a query
(or set of queries) finishes or a period of time lapses. Optionally, outliers or the
fastest and slowest results might be discarded. It should be taken into consider-
ation that when data is modified by a query it is also important to include into
the measure the flush of the graph updates to disk.

Measures: Measures are closely related to the benchmark capabilities and
to the audience. Some general measures that can be applied to graphs are the
following: (a) the load time, which measures the elapsed time for loading and
preprocess the dataset; (b) the size of the graph; (c) the query response time
that accounts for the time elapsed between the query is issued until the results
are output; (d) the throughput that measures the number of queries completed
in an interval of time; (e) the price of the computing site including hardware,
license and maintenance costs if applicable; or (f) the power consumption that
measures the energy requirements of the computing equipment and gives an
indirect measure of its cooling requirements. In order to compare such metrics
among different platforms, it is common to introduce normalized metrics such as
the price/throughput or the power/throughput that enable an easier comparison
of benchmarking results between, for example, a supercomputer and a laptop
hardware setup.

In the area of graph benchmarking, some specialized metrics have been pro-
posed. The HPC benchmark [15] defines the number of traversals per second
(TEPS) as the average number of edges explored during a traversal per second.
The TEPS gives a measure of the average effort to navigate through the rela-
tionships with respect to the size of the graph. For pattern matching, when it
is difficult to find all the results in a deterministic way like in knowledge bases,
Guo et al. have proposed to measure the query completeness (or recall) or how
far is the result respect to all the possible answers [14]. If the GDB is able to
return results as soon as they appear, it might be interesting to obtain a plot of
the GDB’s recall with respect to time.

Discussion: There are many experimental settings and measures that can be
selected for a GDB benchmark. The final selection depends on the benchmark
characteristics, the goals and the audience. Thus, an industrial-oriented bench-
mark will probably focus on the throughput and cost of complex queries on very



large graphs. However, research oriented benchmarking may be interested in the
performance of more specific operations for different hardware configurations.
In contrast to other scenarios where ACID properties are mandatory, we believe
that many applications of GDB benchmarks allow for more relaxed consistency
behaviors.

4 Conclusions

In this paper, we have analyzed important aspects for the design of a GDB
benchmark. First of all, there is a significant core of applications that benefit
significantly from their management as a graph, like social network analysis, pro-
tein interaction, recommendation and routing among others. These applications
justify by themselves the existence and evolution of GDBs, and at the same time,
justify the existence and evolution of a GDB benchmark. Its correct design and
implementation implies the following aspects to be considered:

– The characteristics of the graph to be used in a benchmark are important.
Considering the inclusion of directed graphs with attributes, with different
node and edge types in the context of multigraphs would be important.

– The characteristics of the graph like the distribution of edges per node, at-
tribute values per edge, etc. depend on the application and should be applied
based on the different studies appeared in the literature. Nevertheless, most
huge graph datasets follow power law distributions.

– Although not necessarily all the operations appearing in our analysis need
to be considered for a benchmark, both analytical and transformation oper-
ations should be present.

– The cascaded nature of many graph operations is important, and a bench-
mark should include a good selection of operations with and without this
cascaded nature.

– While there are operations that cover a traversal of all the database, others
just affect a few of their components. Such feature should be evaluated taking
into consideration the metrics to be used, in order to balance the importance
of each case.

– Depending on the application, some operations just evaluate the structure
of the graph, while others take the attributes in the nodes and specially in
the edges, to be evaluated. A good combination of queries with both char-
acteristics would be of interest for the proper deployment of a benchmark.

– The nature of the result is important because GDBs are capable of offer-
ing a good assortment of answers. In particular, operations returning sets
of nodes, graphs or aggregational answers would be recommended for a bal-
anced benchmark.

– There are other aspects that influence the fairness of a benchmark. Those
are the configuration of the GDB (partitioning, indexing of attributes, data
redundancy and reorganization), the way the experimental process is un-
dertaken (warm-up of the database, query generation and the observational



procedure) and the metrics to be considered (load time, repository size,
query response time, throughput obtained and the cost of the deployment).
However, those aspects are not totally influenced by the GDB environment.

Just to finalize, it would be very important to find an application covering
as many of the aspects that we have evaluated in this paper as possible. We
believe that social network analysis is very significant because it covers almost
all the operation types in graph databases, it is easy to understand by the final
user and carries a lot of natural queries with answers that can be conceptually
understandable. Any other application with such characteristics would be of use
and beneficial for a GDB benchmark.
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