
Eurographics/ IEEE-VGTC Symposium on Visualization 2010
G. Melançon, T. Munzner, and D. Weiskopf
(Guest Editors)

Volume 29 (2010), Number 3

Topographic Map Visualization from
Adaptively Compressed Textures

C. Andujar1

1MOVING research group, Universitat Politècnica de Catalunya

Abstract

Raster-based topographic maps are commonly used in geoinformation systems to overlay geographic entities on
top of digital terrain models. Using compressed texture formats for encoding topographic maps allows reducing
latency times while visualizing large geographic datasets. Topographic maps encompass high-frequency content
with large uniform regions, making current compressed texture formats inappropriate for encoding them. In this
paper we present a method for locally-adaptive compression of topographic maps. Key elements include a Hilbert
scan to maximize spatial coherence, efficient encoding of homogeneous image regions through arbitrarily-sized
texel runs, a cumulative run-length encoding supporting fast random-access, and a compression algorithm sup-
porting lossless and lossy compression. Our scheme can be easily implemented on current programmable graphics
hardware allowing real-time GPU decompression and rendering of bilinear-filtered topographic maps.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: 3D Graphics and
Realism—Texture

1 Introduction

Topographic maps are a valuable tool for representing and
conveying geographic entities such as political borders,
roads, rivers, buildings and cadastral information. Recent
user studies have shown that regular map users often pre-
fer to overlay digital terrain models with topographic maps
rather than alternative representations such as orthopho-
tos [PM05]. Although vector-based GIS data provides a
more flexible representation of geographic features, raster-
based topographic maps such as those published by gov-
ernments and mapping companies are ubiquitous in current
geoinformation systems. These maps are carefully designed
by professionals following well-known cartographic princi-
ples and aesthetic rules which facilitate object recognition
and transfer of contextual meaning, features often lacking in
vector data layers selected and composited in real-time.

Storing and accessing large texture maps is still a chal-
lenging problem in computer graphics and visualization.
Since dedicated texture memory is a limited resource, a
common approach is to load texture tiles on-demand, using

caching and speculative prefetching techniques [CGG∗03]
so as to minimize latency times while navigating through
the digital model. Using compressed textures might greatly
reduce latency times on such systems, either by allowing the
full texture set to fit in dedicated memory, or by minimizing
cache faults and texture swaps.

Current graphics hardware supports a number of com-
pressed texture formats, but none of them works well with
typical topographic maps. On the one hand, topographic
maps contain a large amount of high-frequency content
(such as text characters) which has to be preserved to ensure
proper readability. On the other hand, typical topographic
maps make use of a limited number of colors and thus
exhibit large uniform areas (Figure 4). Block-based com-
pressed texture formats such as S3TC DXT1, 3Dfx FXT1
and ATI 3Dc use a uniform bitrate across the image, los-
ing information in high-detail regions while over-allocating
space in low-detail regions. This lack of adaptivity often re-
sults in visible artifacts all over the texture, which are par-
ticularly noticeable around sharp image features. The avail-
ability of programmable shaders in low-cost graphics hard-

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

C. Andujar / Topographic Map Visualization from Adaptively Compressed Textures

ware provides new solutions for texture compression. To-
day’s programmable graphics hardware allows the integra-
tion of texture decoders into the rasterization pipeline. Thus,
only compressed data needs to be stored in dedicated tex-
ture memory provided that each texture lookup includes a
decoding step. Texture compression schemes exhibit special
requirements which distinguish them from general image
compression systems:

Decoding Speed. In order to render directly from the com-
pressed representation, the scheme must support fast de-
compression so that the time necessary to access a sin-
gle texel is not severely impacted. A transform coding
scheme such as JPEG is too expensive because extract-
ing the value of a single texel would require an expensive
inverse Discrete Cosine Transform computation.

Random Access. Texture compression formats must pro-
vide fast random access to texels. Compression schemes
based on entropy encoding (e.g. JPEG 2000) and deflate
encoding (e.g. PNG) produce variable rate codes requir-
ing decompressing a large portion of the texture to extract
a single texel.

There is a large body of work on compressing coher-
ent data, particularly in the context of images. However,
most compression schemes involve a sequential traversal
of the data for entropy coding, and therefore lack efficient
fine-grain random access. Compression techniques that re-
tain random access are more rare. Adaptive hierarchies such
as wavelets and quadtrees offer spatial adaptivity, but com-
pressed tree schemes generally require a sequential traversal
and do not support random access.

Contributions In this paper we present a locally-adaptive
texture compression scheme suitable for both lossless and
lossy encoding of topographic maps. Novel elements in-
clude:

• Use of space-coherent scans such as the Hilbert scan to
exploit texel correlation.
• Efficient encoding of homogeneous regions through

arbitrarily-sized texel runs which provide a more flexible
approach to segment coherent data from fine detail.
• A cumulative run-length encoding of coherent texel runs

supporting fast random-access. Cumulative RLE allows
for texel recovery using binary search.
• Compression algorithms for lossless and lossy encoding.
• A new approach for computing bilinear-filtered samples

from the compressed texture representation.
• A benchmarking with widespread compressed texture for-

mats and quadtree-based approaches.

Limitations Our approach is not intended to compress to-
pographic maps with large color gradients (e.g. those using
hypsometric tints or shaded reliefs), as these would suffer
from color depth reduction and also limit the detection of
homogeneous regions.

2 Previous work

Topographic maps Analytical vector data is one of the
main categories managed by geoinformation systems. Meth-
ods for the visualization of vector data on a digital terrain
model can be broadly divided into two different classes:
texture-based and geometry-based techniques. The first
group of methods rasterizes the vector data into a texture
and projects it onto the terrain geometry by applying texture
mapping techniques [KD02,SGK05]. Methods belonging to
the second class create geometry from the vector data and
render them as separate geometry with an additional off-
set. Since most terrain representations are based on view-
dependent multiresolution meshes, geometry from the vec-
tor data has to be adapted to each LoD [WKW∗03] or ex-
truded along the nadir direction [SK07]. A few papers ad-
dress the rendering of antialiased vector graphics encoded
as procedural textures (see [NH08] for a review). Recent
approaches [QMK08, NH08] support general vector graph-
ics defined as layers of filled and stroked primitives. These
methods put the emphasis on high-quality anti-alising when
zooming rather than on image compression, and require vec-
tor data as input. Unfortunately, many topographic maps are
distributed only in raster format. Raster-based topographic
maps, such as those published by governments, lack the
flexibility and customization potential of their vector-based
counterparts, but offer a professional design where selec-
tion, symbolization, overlay, and layout of geographic en-
tities (such as text location, flow and size) have been opti-
mized to a particular scale taking into account a number of
factors. Digital topographic maps created with the help of
cartographic expert systems and manually-edited by cartog-
raphers offer superior quality which can be hardly achieved
by real-time rendering of GIS vector data.

General image compression The reasons why conven-
tional image compression schemes such as PNG, JPEG
and JPEG2000 are not suitable as compressed texture for-
mats have been extensively reported in the literature, see
e.g. [BAC96, LH07]. Most compression strategies, includ-
ing entropy coding, deflate, and run-length encoding, lead to
variable-rate encodings which lack efficient fine-grain ran-
dom access.

Vector quantization and block-based methods Vector
quantization (VQ) has been largely adopted for texture com-
pression [NH92,BAC96]. When using VQ, the texture is di-
vided into a set of blocks. VQ attempts to characterize this
set of blocks by a small set of representative blocks called a
codebook. The image is encoded as a set of indices into this
codebook, with one index per block of texels [BAC96]. VQ
can also be applied hierarchically [VG88].

Block-based data compression has been a very active area
of research [MB98, Fen03, SAM05]. S3TC DXT1 [BA,
KKZ99] stores a 4× 4 texel block using 64 bits, consist-
ing of two 16-bit RGB 5:6:5 color values and a 4×4 two-bit

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

C. Andujar / Topographic Map Visualization from Adaptively Compressed Textures

lookup table. ETC [SAM05, SP07] also stores a 4×4 texel
block using 64 bits, but luminance is allowed to vary per
texel. All these fixed-rate schemes are non-adaptive and thus
they over-allocate space in low-detail regions while losing
quality in detailed parts. Since topographic maps use a lim-
ited set of distinct colors, replacing the color of some texels
with an interpolation of the color of neighboring texels pro-
duces visible artifacts in regions with high-frequency detail.

Adaptive compression Hierarchical structures such as
wavelets and quadtrees offer spatial adaptivity and support
multi-resolution compression. However, most compressed
tree structures require sequential traversals and therefore
give up random access [LH07]. Kraus and Ertl [KE02] pro-
pose a two-level hierarchy to represent a restricted form of
adaptive texture maps. The hierarchical representation con-
sists of a coarse, uniform grid where each cell contains the
origin and scale of a varying-size texture data block. In-
ada and McCool [IM06] propose a variable-rate, lossless
compression scheme exploiting image sparsity. The texture
is divided into tiles of 4× 4 pixels which are encoded us-
ing a B-tree indexing structure. Internal nodes of the B-
tree store key-pointer pairs (Morton codes are used as tile
keys), whereas leaf nodes encode a variable number of tiles
compressed using a color differencing scheme. Our work
also uses space-filling curves and key search, but differs
from [IM06] in that our space-filling curve traverses the pix-
els inside each tile, instead of the tiles of the whole image. As
a consequence, our Hilbert curve keys (and the correspond-
ing search process) are local to each tile. This allows cumu-
lative run length encoding to exploit texel correlation along
the curve at the finest-grain level. Other adaptive repre-
sentations include page tables [LKS∗06] and random-access
quadtrees [LH07]. Our approach differs from prior adaptive
schemes in that coherent regions are allowed to have any size
(they do not have the power-of-two size restriction) and al-
lows a larger class of shapes (not just squares), thus allowing
a better adjustment to the boundary of coherent regions.

Data order and compression Data orders such as Hilbert
scans have been extensively explored in the compression lit-
erature, especially in the database community. A few pa-
pers discuss color image compression using Hilbert scans
(see e.g. [Col87, KNB98]), but they lack random-access and
therefore cannot be used for texture compression.

3 Locally-adaptive compression

3.1 Overview

The input of our algorithm is a digital topographic map
Im containing w× h color tuples. Our compressed repre-
sentation operates on a one-dimensional sequence. There-
fore our representation is parameterized by a bijective func-
tion f : Z2 → Z which defines a scan traversal of the pix-
els in Im. The function f can be defined in a variety of
ways, including traversals based on space-filling curves,

line-by-line scans, and block-based scans. A desirable prop-
erty of the scan function f is locality-preservation, i.e.∥∥∥ f−1(k)− f−1(k +1)

∥∥∥ should be kept small.

The function f maps two-dimensional texel data into
a one-dimensional sequence L = (c0,c1 . . .cwh−1) where
ck = Im(f−1(k)). A simple example based on a Hilbert
scan is shown in Figure 1. Adaptive compression of L can
be achieved by grouping neighboring texels with similar
color into texel runs, and computing the run-length encod-
ing (RLE) of L. The grouping algorithm might collapse
only identical texels for lossless encoding, or approximately-
similar texels for lossy encoding. A simple grouping algo-
rithm is described in Section 3.4. The result after grouping
and RLE encoding is a collection of pairs (c,r) where c rep-
resents a color and r is the run length. The run sequence will
be referred to as R = ((c0,r0) . . .(cn−1,rn−1)). The recon-
struction of the original sequence from R is given simply by
R̃ = (c0,c0 . . .c0︸ ︷︷ ︸

r0

. . .cn−1,cn−1 . . .cn−1︸ ︷︷ ︸
rn−1

) .

Figure 1: Sample image and corresponding sequences L, R,
S obtained with a Hilbert scan.

This representation is not suitable as a compressed tex-
ture format, as the evaluation of R̃(k) for any given k
takes O(n) time, n being the number of runs. A better op-
tion for on-the-fly decompression is to replace run lengths
by cumulative run lengths. We denote this encoding as
S = ((c0,s0) . . .(cn−1,sn−1)) where sk = ∑

k
i=0 ri. Note that

sn−1 = ∑
n−1
i=0 ri = w · h, i.e. the number of pixels in the im-

age. The main advantage of S with respect to R is that the
computation of S̃(k) for any given k takes O(log2 n) time, as
it simply accounts for a binary search of (the interval con-
taining) k in the sorted sequence (s0 . . .sn−1), see Figure 1.

This new representation has two major limitations,
though. First, a fixed-length encoding of each cumulative
value sk requires log2(w · h) bits. On a 512× 512 input
image, each sk would require 2 log2 512 = 18 bits. This
would severely limit compression performance since no en-
tropy encoding can be applied without interfering with ran-
dom access. A second limitation is that worst-case O(log2 n)
time can still be a limiting speed factor for GPU decoding.
For instance, the 8:1 encoding of a 512× 512 image re-
sults in a search space of n = 5122/8 = 32,768 runs. Since
log2(32,768) = 15, the decompressor will have to perform
in the worst case 15 lookups to S in order to evaluate S̃(k).

A solution to the above problems is to decide a block size
B and uniformly subdivide L into b blocks of size B. This
uniform partition of L induces a non-uniform partition of S

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

C. Andujar / Topographic Map Visualization from Adaptively Compressed Textures

Figure 2: Partition of L into uniform blocks defining a non-
uniform partition on its compressed version S.

into another b blocks (see Figure 2). A first consequence is
that each cumulative run length is now upper-bounded by B,
i.e. each sk value requires only log2 B bits. For B = 64, this
accounts for 6 bits. Furthermore, the above subdivision can
be used to reduce the range of the binary search required to
decode a texel. The subdivision of L is uniform and hence
it is not required to be stored explicitly, provided that B is
known. The subdivision induced on S is non-uniform and
must be encoded explicitly. A simple option is to encode
each block as a pair (oi, li) where oi is an index to the origin
of the i-th block on S and li is its length. This results in a
collection of b pairs that will be referred to as index data,
I = ((o0,l0), . . .(ob−1, lb−1)). Storing I allows for perform-
ing binary search locally on each block in O(log2(B)) time.
For B = 64, at most 6 (dependent) texture accesses are re-
quired to decode a texel inside a block. Indeed, we show that
on average only about 3.0 texture lookups are needed; on
the test images this number was in the range 2.71 to 3.41,
including fetching index data (discussed in Section 4.2).

3.2 Compressed representation

Our compressed representation includes an encoding of the
texel runs S plus the index data I. We have control over sev-
eral parameters that can be used to tradeoff compression rate
and decoding speed:

Scan order. The function f defines a scan order to map
2D color data into a one-dimensional sequence. Locality-
preservation is critical for exploiting texel correlation.
We have tested several scan orders including raster
scans and scans defined by space-filling curves such as
Hilbert/Moore curves, and Z-order (Morton codes). It
turns out that Hilbert/Moore curves clearly outperform
other scans, as they provide much better locality preser-
vation [DCOM00]. We have adopted the Hilbert scan for
our test implementation.

Block size. Recall that parameter B determines exactly the
block size of uniform subdivisions on L, whereas it is only
an upper bound of the block size of the corresponding
subdivisions on S. The value of B has a varying effect on
compression ratio and decompression speed. In particular,
choosing a small value for B has the following positive (+)
and negative (-) effects:

• (+) Resulting blocks will be smaller, thus reducing the
range for the binary searches. This means a smaller

number of accesses for the worst-case scenario, which
occurs when the corresponding block in S has exactly
B unit-length runs.

• (+) Less bits (log2 B) are required to encode sk values,
thus reducing memory space.

• (-) Since B is an upper bound for run length, more runs
will be needed to encode large coherent areas. Encod-
ing more runs means consuming more space.

• (-) Smaller block size also means a larger number of
indices to encode, as |I|= b = w·h

B .

In our prototype implementation we use B = 64, which
gives a good balance between compression rate and de-
coding speed (Figure 3). Cumulative run lengths can be
encoded using 6 bits/run, binary searches require at most
6 textures accesses, and the length of index data is a 1

64 -th
of the image size.

2:1

4:1

6:1

8:1

10:1

32 64 128 256

Block size B

C
o
m
p
re
s
s
io
n
 r
a
ti
o

Image 1

Image 2

Image 3

Image 4

(a)

0

1

2

3

4

5

6

32 64 128 256

Block size B

T
e
x
tu
re
 l
o
o
k
u
p
s
 (
a
v
g
)

Image 1

Image 2

Image 3

Image 4

(b)

Figure 3: Impact of the block size on (a) final compression
ratio and (b) average number of texture lookups required to
decode a texel. Test images are shown in Figure 4.

Color encoding. In our experiments we tested two color en-
codings: RGB 8:8:8 for lossless compression, and 9-bit
indexed color with a 512 color palette P. Since typical to-
pographic maps make use of a limited number of colors,
color depth reduction mainly causes a slight color shift
while preserving all important image features. The deci-
sion of the palette size was taken after analyzing the mini-
mum PSNR of quantizing four 1:5000 2048×2048 topo-
graphic maps with different palette sizes. Resulting PSNR
values were 38.1 dB, 45.1 dB, 46.1 dB and 46.8 dB for 6,
7, 8 and 9-bit palettes, respectively. Quantization with 9-
bit palettes resulted in visually indistinguishable images,
preserving faithfully also colors from antialiased edges.

Cumulative run-length encoding. Since sk ∈ [1,B], a nat-
ural choice is to simply store sk−1 using 6 bit integers.

Index data encoding. Index data consists of b pairs (oi, li)
where oi is an index to the origin of the i-th block on S
and li is its length. Each index oi can be encoded with⌈

log2
w·h

c

⌉
bits, c being the average run length, whereas

livalues require log2 B bits. Thus encoding them sepa-

rately requires
⌈

log2
w·h

c

⌉
+ log2 B bits. The number of

bits required for encoding oi can be reduced by uniformly
subdividing the input image (or equivalently L) into equal-
sized clusters. For example, a 512×512 image can be sub-

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

C. Andujar / Topographic Map Visualization from Adaptively Compressed Textures

divided into 64 clusters, each cluster containing 64× 64
texels (i.e. 64 blocks). We can store separately the se-
quence M = {m0, . . .m63}, where each meta-index mk is
defined as mk = o64k−1, i.e. the beginning of (the first
block of) the k-th cluster on S. This allows encoding the
indices oi in I as cluster-relative offsets. Assuming an av-
erage run length of 4 texels, index data now requires only
16 bits/index (6 bits for li plus log2(642/4)=10 bits for
oi).

Data layout. Our complete compressed representation is a
tuple (I,S,M,P), where I is index data, S is the cumula-
tive run-length encoding, M are the meta-indices, and P
is the color palette (if indexed-color mode is used). Our
prototype implementation encodes I and S as a 8:8:8:8
RGBA texture, whereas M and P are shader variables: M
is just a uniform array of 64 unsigned integers (assuming
64 clusters per texture) and P is an array of 512 (r,g,b)
tuples. All compression rates reported include the whole
tuple (I,S,M,P).

3.3 Decompression algorithm

The decompression algorithm takes as input the compressed
texture representation C = (I, S, M, P) and integral texel co-
ordinates (i, j), and outputs the color of texel (i, j) through
the following steps:

1. Map (i, j) into the one-dimensional structure L using the
scan traversal defined by f , i.e. k← f (i, j).

2. Compute the block b in S containing texel k, i.e. b← k/B.
3. Access to Ib to compute the lower bound o and the upper

bound e for the binary search.
4. Compute the color c of the run containing texel (k modB)

by binary search on the ordered sequence so . . .se.

Note that the above code makes a single texture lookup to
retrieve index data, plus a maximum of 6 texture lookups to
retrieve color data. A last optimization consists in interleav-
ing index data (oi, li) with the texel run (c,s) that will re-
trieved first during binary search. This can be done by encod-
ing (oi, li) in R,G components and (c,s) in B,A components
(recall that each of these tuples fit in 16 bits). This allows re-
trieving the beginning of the block and the first run to search
for with a single texture lookup. As a consequence, texels in
completely coherent blocks are decoded with a single texture
lookup. Decompression speed is discussed in Section 4.

3.4 Compression algorithm

We now present two simple algorithms (for size-driven and
error-driven compression, resp.) to convert an input image
into a compressed representation C = (I, S, M, P). Both al-
gorithms share the same high-level structure and support true
color and indexed-color compression:

1. Create an initial RLE representation R of the input image
by scanning the input image in the order defined by func-
tion f (actually a Hilbert scan) and creating a unit-length
run (c,1) for each color c encountered in the image.

2. Compress R by iteratively grouping neighboring runs un-
til the compression goal is satisfied. For error-bounded
compression, grouping stops when no more run pairs can
be collapsed within a user-provided tolerance. For fixed-
rate encoding, grouping stops when a user-defined com-
pression ratio is reached. Runs from different blocks are
not grouped together, as discussed in Section 3.2.

3. Create a cumulative run-length encoding S by replacing
each run (ck,rk) ∈ R by (ck,sk) with sk = ∑

k
i=o ri.

4. Create the index data I by traversing S and adding an in-
dex k-1 for each pair (ck,sk) with sk = B. These indices
correspond to the position of the last run in each block.

5. Compute meta-index data M with mk = oB·k−1

Compression in indexed-color mode is similar, but a pre-
processing is applied to the input image to reduce the color
depth to 512 colors, replacing colors by indices to a color
palette P. In our experiments color depth reduction was im-
plemented using the Median Cut algorithm [Hec82]. Ac-
tual compression is performed in step 2, whose implementa-
tion differs depending on whether size-driven or error-driven
compression is required.

Size-driven compression For size-driven simplification,
the user provides a target compression ratio and run group-
ing stops when this compression ratio is reached. Our outer
optimization strategy of the grouping algorithm is similar to
that of greedy iterative simplification algorithms. The group-
ing algorithm (step 2) can be summarized as follows:

1. For each pair of neighboring runs (ci,ri), (ci+1,ri+1) in
R, compute the cost Ei of collapsing that pair.

2. Insert all the pairs in a heap keyed on cost with the
minimum-cost pair at the top.

3. Iteratively extract the pair (ci,ri), (ci+1,ri+1) of least cost
from the heap, group this pair in R, and update the cost of
the adjacent pairs.

During grouping, each run is represented as a triple
(Ci,C2

i ,ri) where Ci (resp. C2
i) is the sum of the (resp.

squared) colors of the ri texels in the run. Merging two
runs simply involves a component-wise addition of these
triples. The cost produced by joining two runs (Ci,C2

i ,ri)
and (Ci+1,C

2
i+1,ri+1) can be computed in the L2 error sense

as E =C2
i +C2

i+1−(Ci +Ci+1)2/(ri +ri+1). The average run
color is simply ci = Ci/ri. We used colors in RGB space. In
color-index mode, the color index resulting from joining two
runs is the most used index in the run texels.

Error-driven compression For error-driven simplification,
the user provides a maximum color error. In this case, com-
pression is much faster as no heap is used: runs are visited
in sequence and each run is grouped with his adjacent runs
as long as their collapse does not exceed the user-defined er-
ror. This algorithm runs in O(n) time, n being the number
of texels in the image. In the experiments discussed in next
section, we benchmarked the error-driven compression in
lossless mode (each color being represented as RGB 8:8:8),

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

C. Andujar / Topographic Map Visualization from Adaptively Compressed Textures

Image Lossless Quasi-lossless Lossy
CR CR PSNR CR PSNR

Image 1 4.5 9.5 47.6 11 39.1
Image 2 3.7 7.9 47.1 8.3 39.1
Image 3 4.1 8.7 47.6 10 38.3
Image 4 4.3 9.4 47.6 10.7 38.7

Table 1: Compression ratio (CR) and PSNR with our loss-
less, quasi-lossless and lossy compression.

in quasi-lossless mode (converting the image into indexed-
color in a preprocess, and allowing no color index change
during compression), and lossy mode (also indexed-color
but with varying error tolerances).

4 Results and discussion

We have implemented the compression and decompression
algorithms described above and tested them on four differ-
ent 1:5000 topographic maps covering urban, mountainous
and shoreline regions (Figure 4). Unless otherwise stated,
all compressed textures were created using the Hilbert scan,
RGB 8:8:8 color (lossless) or 9-bit indexed color (quasi-
lossless), block size B = 64, and cluster size 64.

4.1 Image quality and compression ratio

Figure 4 shows the test images compressed using our scheme
in lossless, quasi-lossless and lossy modes. Note the high
visual quality of resulting images, which preserve highly-
detailed features. Compression rates and PSNR values are
shown in Table 1. Quasi-lossless and lossy modes provide
much higher compression rates than lossless compression
because indexed-color is used. Note that standard 8-bit palet-
tized compressed formats only provide 3:1 compression,
whereas our compression rates are 2-3 times higher, depend-
ing on image coherence. Resulting PSNR values for quasi-
lossless compression were all above 47 dB (Table 1). From
now on we only show results in quasi-lossless mode.

Figure 5: Close-up views showing the ability of our scheme
to perform adaptive compression. Input image (left), detail
(middle), and color-coded runs (right).

Figure 5 illustrates the ability of our scheme to segment
coherent regions from detailed parts. The presence of fea-
tures in otherwise coherent areas does not produce overseg-
mentation. Note that the input images had antialiased lines.
Relative frequencies of run-lengths for a sample image are

shown on the left of Figure 6. Short-length runs clearly pre-
dominate (about 70% of the runs are unit-length), allowing
the preservation of detail on high-frequency regions, fol-
lowed by runs with the maximum allowed length B = 64,
with relative frequency varying from 8% to 10%, depend-
ing on spatial coherence in the image. Figure 6-right shows
the number of input texels represented by each run, grouped
by run length. Since longer runs represent a higher num-
ber of texels, about 60% of the input texels are encoded in
maximum-length runs. This has an important consequence
for decoding speed, as texels belonging to such runs can
be decoded with a single texture lookup (the corresponding
block contains a single run), thus significantly reducing av-
erage decoding times.

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 8 15 22 29 36 43 50 57 64

Run length
F
re
q
u
e
n
c
y

0%

20%

40%

60%

1 8 15 22 29 36 43 50 57 64

Run length

In
p
u
t
te
x
e
ls
 p
e
r
ru
n

Figure 6: Relative frequencies of run-lengths (left) and per-
centage of input texels per run (right) for image 1.

(a) (b) (c) (d) (e) (f)

Figure 7: Comparison with alternative compressed for-
mats: (a) our lossless compression, i.e. identical to the in-
put image; (b) our quasi-lossless compression; (c) DTX1 fast
compression; (d) DXT1 high quality; (e) DXT1 highest qual-
ity; (f) ETC. Images differences have been amplified 10×.

We also compared our scheme with the readily-available
compressed texture formats DXT1 and ETC. These fixed-
rate formats target general color images and do not take ad-
vantage of the reduced number of colors and spatial coher-
ence of typical topographic maps. Figure 7 compares our
approach (in quasi-lossless mode) with these formats. Com-
pressed textures in these formats were generated with ATI
Compressonator 1.50. DXT1 textures were generated with
the three quality settings available in the ATI tool (highest
quality, normal, and fast compression). Since only four dif-
ferent colors are possible for each 16-texel block, DXT1 and
ETC produce visible artifacts around sharp image features,
damaging the uniformity of some coherent regions. In some
regions the 4×4 blocks used by DXT1 and ETC are clearly

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

C. Andujar / Topographic Map Visualization from Adaptively Compressed Textures

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4: Compressed textures with increasing tolerance values: input image (a,e), and results with lossless compression (b,f),
quasi-lossless compression (c,g), and lossy compression (d,h). Compression rates are listed in Table 1.

DXT1 HQ DXT1 DXT1 Fast ETC Ours

CR 6:1 6:1 6:1 6:1 8:1
PSNR 33.22 33.27 34.72 33.02 47.1

Max error 15.3% 12.1% 11.1% 16.4% 1.6%

Table 2: Comparison of DXT1 and ETC compressed formats
with our quasi-lossless approach for test Image 2.

Filtering Lookups (avg) 10242 5122

Nearest-neighbor 3.0 376 fps 1325 fps
Bilinear 12.0 108 fps 363 fps

Pseudo-bilinear 4.8 221 fps 716 fps

Table 3: Decompression performance.

distinguishable. Compression rates and errors are reported in
Table 2. Note that our approach achieves significantly higher
compression rates with better PSNR and lower error. Maxi-
mum error values also reveal the poor behavior of DXT1 in
images with blocks with high variance.

4.2 Performance

Table 3 shows rendering times of our prototype shader run-
ning on NVidia GTX 280 hardware with different viewport
sizes. Note that for a typical 8:1 compression, only about 3.0
texture fetches are required, on average (Table 5). Although
our decompression rates are about 10× slower than natively
supported formats such as DXT1 and ETC, they still allow
high-speed, real-time rendering.

Our error-driven compression algorithm is able to com-
press large textures in a few milliseconds. Table 4 shows
compression times for varying texture sizes. Lossy compres-
sion slightly increases compression times as more run pairs
need to be collapsed. All times were measured on an In-
tel Core2 Quad Q9550 at 2.83GHz. For textures larger than
512× 512 we increased the number of clusters to force 16-
bit indices in I.

Texture size # texels Compression time (ms)
Lossless Quasi-lossless Lossy

256×256 65,536 12 10 12
512×512 262,144 55 52 61

1024×1024 1,048,576 218 200 225
2048×2048 4,194,304 830 816 841

Table 4: Compression performance

4.3 Comparison with tree-based methods

Our approach provides a number of advantages with respect
to tree-based methods. Our framework is not tied to a par-
ticular grid and thus provides a more flexible approach to
segment coherent data from fine detail. In particular, our
approach can encode regions with a variety of shapes and
sizes. Tree-based methods can only segment coherent data in
square regions whose size and boundaries are given by the
tree subdivision. Consider for example a 8×8 texel block.
A quadtree-based approach (Figure 8-a) can only detect co-
herent data on regions corresponding to quadtree nodes: one
8×8 root, four 4×4 nodes and sixteen 2×2 nodes. This ac-
counts for up to 21 potentially coherent regions with only
three possible sizes, {4,16,64} texels. Our run-based ap-
proach is able to extract coherent regions with any integer
size in {2,3, . . .64}. We support e.g. 3-texel, L-shaped runs.
Since for a run with length l we have 64− l + 1 choices for
its start position, this accounts for ∑

63
i=1 i = 2016 potentially-

coherent regions in a 8×8 block, i.e. two orders of mag-
nitude more regions than quadtree-based approaches. This
results in much more flexibility in adapting the subdivision
to the boundary of coherent data (see Figure 8). A further
consequence is that our approach is less sensitive to outlier
texels. A single outlier texel in an otherwise coherent region
can force several subdivisions of the quadtree (Figure 8-c),
whereas in our approach an outlier texel would split a single
run covering m texels into three runs covering (m−n), 1 and
n−1 texels, resp. (Figure 8-d).

We benchmarked our compression scheme with a
quadtree subdivision. We built a quadtree stopping re-

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

C. Andujar / Topographic Map Visualization from Adaptively Compressed Textures

(a) (b) (c) (d)

Figure 8: Our approach vs quadtree-based methods: (a)
Potentially-coherent regions supported by a quadtree on an
8×8 block; (b) Example of potentially-coherent regions with
a Hilbert scan; (c) A single outlier pixel causes the quadtree
to include 13 nodes (including internal nodes); (d) In the
same situation, our approach produces only 3 runs.

Quadtree-based Our approach
nodes pixels TL # runs pixels TL

Image 1 2.18M 2.56 10.1 701K 6.51 2.71
Image 2 2.30M 2.43 10.6 871K 5.13 3.41
Image 3 1.41M 3.96 9.9 768K 5.89 3.04
Image 4 1.14M 4.91 8.7 707K 6.44 2.67

Table 5: Quadtree subdivision vs our approach. Column
pixels shows the average number of pixels per leaf node
(quadtrees) or texel run (our approach). TL is the average
number of texture lookups required to decode a single texel.

finement at perfectly homogeneous nodes (again 9-bit in-
dexed color was used), and compared it with our compres-
sion scheme in quasi-lossless mode (both compressed for-
mats reproduce exactly the same image). All maps were
2048×2048. Table 5 compares the average number of tex-
els per leaf node in the quadtree against the average texel
length, and the average number of texel lookups required
to decode a texel. Our approach is able to detect larger re-
gions (with 5-6 texels/run) than the quadtree subdivision, re-
sulting is fewer items to encode (about 800K runs vs. more
than one million tree nodes). Even with state-of-the-art en-
codings of the tree structure [LH07], at least 8 bits/node
are required, resulting in lower compression rates. Our ap-
proach also wins in the average number of texture lookups.
It must be acknowledged though that quadtree-based meth-
ods would compress better than our approach on very sparse
images. An extreme case would be a solid blue map cor-
responding to a sea region, which would require a single
quadtree node vs. (wh)/B runs in our case. However, unifor-
mity in general topographic maps occurs more frequently at
small-scale (e.g. empty space between contour lines) rather
than at large-scale.

5 Bilinear filtering

A naive approach to implement bilinear filtering is to ex-
ecute four times the decompression algorithm proposed in
Section 3.3. This would multiply by 4 the number of de-
pendent texture lookups, resulting in 12 texture fetches, on
average (rendering performance though does not decrease by
this amount, as most memory reads to index data and the first

visited runs should be intercepted by memory caches). An
alternative approach is to apply deferred filtering [FAM∗05],
i.e. decoding a subset of the texture at its native resolution in
a first rendering pass, and rendering the decoded data using
the native GPU filtering in a second pass. Deferred filter-
ing has proven to be helpful for high-quality rendering of
compressed volume data, as it guarantees that the decoding
cost is incurred only once per texel. Instead, we propose a
single-pass approach which exploits data coherence. A first
straightforward optimization is to store the index and the
runs visited during the decoding of the first texel, and try to
re-use these values on the three remaining texels. The prob-
ability of a random sample (s, t) requiring a group of 2×2
texels in the same n× n block can be shown to be the area
ratio between a half-pixel offset of the block and the block
itself, i.e. (n− 1)2/n2. For 8× 8 blocks as in our case, this
means that index data can be re-used for about 76% of sam-
ples. This simple optimization decreases the average num-
ber of lookups for bilinear filtering from 12 to 9.7 . A more
drastic optimization, at the expense of a minimal visual qual-
ity loss, is based on the following observation: since topo-
graphic maps contain many uniform areas, many samples
fall in a 2×2 group of texels with identical color (Figure 9).
Since our decompression algorithm decodes a texel by re-
trieving information about a whole run containing the texel,
it should be possible to identify whether the texel belongs
to an homogeneous region or not, and apply bilinear filter-
ing or not accordingly. The decompression algorithm in Sec-
tion 3.3 obtains the run (c,s) containing the current texel.
Cumulative run length does not give, by itself, enough in-
formation to know the length of the run (unless the preced-
ing run is accessed, but we do not want to add more texture
lookups). So our approach is to use a bit to indicate whether
the length of the run is above some threshold L. Since we use
9-bit indexed-color and cumulative run lengths need 6 bits,
each run still fits in 2 bytes after adding this extra flag. All
compression rates reported so far already included this co-
herence flag. Therefore, the idea is to decode the first texel
as in nearest-neighbor sampling, and act accordingly to the
coherence flag.

Figure 9: We apply bilinear filtering only to highly-detailed
regions (shown in black). Homogeneous regions (with at
least L=16, 8 and 4 texels, respectively) can be recon-
structed without additional texture accesses.

In order to reproduce standard bilinear interpolation, we
should also identify whether the texel belongs to the inte-
rior of an homogeneous region (thus requiring no additional
texture lookups) or to its border (thus potentially requiring

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

C. Andujar / Topographic Map Visualization from Adaptively Compressed Textures

bilinear interpolation). Due to the large range of shapes pro-
duced by arbitrary cuts of a Hilbert curve (Figure 5), know-
ing whether a texel is in the interior or on the border of
a run is expensive to compute. Therefore, we followed a
slightly different approach which does not reproduce exactly
standard bilinear interpolation, but provides smooth output.
Given a (s, t) sample, we decode the texel containing point
(s, t) as in nearest-neighbor sampling. If the coherence flag
indicates that the texel belongs to a coherent region, then
the color returned for the sample is that of the texel (no addi-
tional texture accesses are required). Otherwise, we apply bi-
linear interpolation as described below. Note however that all
samples inside coherent texels are reconstructed with a uni-
form color, regardless of whether they are on the border or
not. To provide a smooth transition around border texels, we
slightly modify the way colors are interpolated for those tex-
els without the coherence flag. Figure 10 shows the six dif-
ferent cases that might appear (under rotations and symme-
tries) on a 2×2 texel group, depending on the coherent/non-
coherent property of each texel. Each image in the first row
shows a 2×2 group of texels; the bottom-left texel being the
one containing the (s, t) sample. Coherent texels are drawn
in red and with a thicker border. All samples inside these red
texels are reconstructed with no interpolation. We indicate,
for one of the quadrants of the nearest-neighbor texel, which
four colors must be interpolated so as to ensure a smooth
transition between non-coherent and coherent regions. Fig-
ure 11 compares standard bilinear filtering with our modi-
fied approach. Texels in coherent regions (runs longer than
L texels) need exactly the same number of texture lookups
than with nearest-neighbor filtering (3.0 on average). Texels
in non-coherent regions require bilinear interpolation, which
requires 9.7 texture lookups, on average. However, since to-
pographic maps are very coherent, most of the pixels need
no extra texture lookups. The map shown in Figure 9, for
example, contains 27.5% of non-coherent texels and 72.5%
of coherent texels, considering L = 4. These percentages
are quite representative of typical topographic maps. In sum-
mary, our modified bilinear interpolation algorithm requires,
on average, about 4.8 texture lookups.

Mipmapping can be trivially supported by compressing
each LOD image independently; this would incur approx-
imately a 33% memory overhead with respect to the non-
mipmapped version. Since a straightforward implementation
of trilinear filtering doubles the average number of texture
lookups, a more reasonable approach is to run-length encode
only the higher resolution levels (e.g. levels 0 and 1), and to
transition to uncompressed images for the coarser levels. As
the first two LOD levels represent 1+1/4

1+1/3 = 93.75% of the
texels, this would achieve a good trade-off between com-
pression rate and decoding speed and opens the possibility
of native anisotropic filtering at the coarser levels.

Figure 10: Bilinear interpolation inside a texel quadrant.

(a) (b) (c) (d) (e)

Figure 11: Interpolation using nearest-neighbor (a,d), bi-
linear filtering (b), and our modified bilinear filtering (c,e).

6 Conclusions

In this paper we have presented a locally-adaptive texture
compression scheme specifically tailored for encoding to-
pographic maps. Our approach achieves a good balance be-
tween compression of coherent regions and preservation of
high-frequency details. When compared with alternative ap-
proaches such as DXT1 and 8-bit palettized textures, our
compressed representation in quasi-lossless mode clearly
wins in compression ratio and visual quality but loses in de-
coding speed. Its practical use thus depends on the amount
of texture data the application has to handle in realtime. If
uncompressed topographic maps fit in available GPU mem-
ory, our compression scheme is worthless as it would in-
crease the GPU workload without any clear advantage. How-
ever, if topographic maps do not fit in GPU memory and
have to be loaded on-the-fly, typically using prefetching and
caching strategies, then our compressed representation al-
lows a significant reduction of latency times and memory
bandwidth, minimizing texture swaps and providing a virtual
cache about eight times larger than the GPU texture memory.

Our compression scheme can be adapted to encode other
types of graphics data encompassing spatial coherence and
highly-detailed regions. In particular, we plan to extend our
cumulative RLE approach to compress volume datasets for
pre-shaded direct volume rendering [MHB∗00] by group-
ing voxels according to pre-classified opacities, as proposed
in [LL94]. Other interesting avenues for further research are
to adapt our scheme for multi-resolution compression and to
implement anisotropic filtering directly from the compressed
representation by exploiting data coherence in homogeneous
regions.

Acknowledgments The author would like to thank the anony-
mous reviewers for their helpful comments. This work has been
funded by the Spanish Ministry of Science and Technology under
TIN2007-67982-C02. Test images courtesy of Institut Cartografic
de Catalunya.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

C. Andujar / Topographic Map Visualization from Adaptively Compressed Textures

References

[BA] BROWN P., AGOPIAN M.: EXT texture com-
pression DXT1. opengl extension registry. http://
opengl.org/registry/specs/EXT/texture_compression_dxt1.txt.

[BAC96] BEERS A. C., AGRAWALA M., CHADDHA N.: Ren-
dering from compressed textures. In Proceedings of ACM SIG-
GRAPH ’96 (1996), pp. 373–378.

[CGG∗03] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-
TON F., PONCHIO F., SCOPIGNO R.: Planet-sized batched dy-
namic adaptive meshes (P-BDAM). In Proceedings of the 14th
IEEE Visualization 2003 (VIS’03) (2003), IEEE Computer Soci-
ety, pp. 147–154.

[Col87] COLE A. J.: Compaction techniques for raster scan
graphics using space-filling curves. The Computer Journal 30,
1 (1987), 87–92.

[DCOM00] DAFNER R., COHEN-OR D., MATIAS Y.: Context-
based space filling curves. Computer Graphics Forum 19, 3
(2000), 209–218.

[FAM∗05] FOUT N., AKIBA H., MA K., LEFOHN A., KNISS
J.: High-quality rendering of compressed volume data formats.
In Proceedings of the 2005 Eurographics-IEEE Symposium on
Visualization (2005), pp. 77–84.

[Fen03] FENNEY S.: Texture compression using low-frequency
signal modulation. In HWWS ’03: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hard-
ware (Aire-la-Ville, Switzerland, Switzerland, 2003), Eurograph-
ics Association, pp. 84–91.

[Hec82] HECKBERT P.: Color image quantization for frame
buffer display. SIGGRAPH Computer Graphics 16, 3 (1982),
297–307.

[IM06] INADA T., MCCOOL M. D.: Compressed lossless tex-
ture representation and caching. In GH ’06: Proceedings of the
21st ACM SIGGRAPH/EUROGRAPHICS symposium on Graph-
ics hardware (2006), pp. 111–120.

[KD02] KERSTING O., DÖLLNER J.: Interactive 3d visualization
of vector data in gis. In GIS ’02: Proceedings of the 10th ACM
international symposium on Advances in geographic information
systems (2002), pp. 107–112.

[KE02] KRAUS M., ERTL T.: Adaptive texture maps. In HWWS
’02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware (2002), Eurographics Associ-
ation, pp. 7–15.

[KKZ99] KONSTANTINE I., KRISHNA N., ZHOU H.: Fixed-rate
block-based image compression with inferred pixel values, 1999.
US Patent no. 5956431.

[KNB98] KAMATA S., NISHI N., BANDOH Y.: Color image
compression using a hilbert scan. International Conference on
Pattern Recognition 2 (1998), 1575–1578.

[LH07] LEFEBVRE S., HOPPE H.: Compressed random-access
trees for spatially coherent data. In Proceedings of the
Eurographics Symposium on Rendering (2007), Eurographics,
pp. 339–349.

[LKS∗06] LEFOHN A., KNISS J., STRZODKA R., SENGUPTA
S., OWENS J.: Glift: Generic, efficient, random-access GPU data
structures. ACM TOG 25, 1 (2006), 60–99.

[LL94] LACROUTE P., LEVOY M.: Fast volume rendering us-
ing a shear-warp factorization of the viewing transformation. In
Proceedings of SIGGRAPH’94 (1994), ACM, pp. 451–458.

[MB98] MCCABE D., BROTHERS J.: Directx 6 texture map com-
pression. Game Developer Magazine 5, 8 (1998), 42–46.

[MHB∗00] MEISSNER M., HUANG J., BARTZ D., MUELLER
K., CRAWFIS R.: A practical evaluation of popular volume ren-
dering algorithms. In Proceedings of the 2000 IEEE symposium
on Volume visualization (2000), pp. 81–90.

[NH92] NING P., HESSELINK L.: Vector quantization for volume
rendering. In VVS’92: Workshop on Volume visualization (1992),
pp. 69–74.

[NH08] NEHAB D., HOPPE H.: Random-access rendering of
general vector graphics. ACM Transactions on Graphics (TOG)
27, 5 (2008), Article 135.

[PM05] PETROVIC D., MASERA P.: Analysis of user’s response
on 3d cartographic presentations. In Proc. of the 22nd Interna-
tional Cartographic Conference (A Coruña, Spain, 2005).

[QMK08] QIN Z., MCCOOL M., KAPLAN C.: Precise vec-
tor textures for real-time 3D rendering. In Proceedings of the
2008 symposium on Interactive 3D graphics and games (2008),
pp. 199–206.

[SAM05] STRÖM J., AKENINE-MÖLLER T.: iPACKMAN:
high-quality, low-complexity texture compression for mobile
phones. In HWWS ’05: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware
(New York, NY, USA, 2005), ACM, pp. 63–70.

[SGK05] SCHNEIDER M., GUTHE M., KLEIN R.: Real-time ren-
dering of complex vector data on 3d terrain models. In In Pro-
ceedings of the 11th International Conference on Virtual Systems
and Multimedia (2005), pp. 573–582.

[SK07] SCHNEIDER M., KLEIN R.: Efficient and accurate ren-
dering of vector data on virtual landscapes. Journal of WSCG 15
(2007), 59–64.

[SP07] STRÖM J., PETTERSSON M.: ETC2: texture compression
using invalid combinations. In GH ’07: Proceedings of sympo-
sium on Graphics hardware (2007), Eurographics Association,
pp. 49–54.

[VG88] VAISEY J., GERSHO A.: Signal Processing IV: Theories
and Applications. 1988, ch. Variable rate image coding using
quadtrees and vector quantization, pp. 1133–1136.

[WKW∗03] WARTELL Z., KANG E., WASILEWSKI T., RIB-
ARSKY W., FAUST N.: Rendering vector data over global, multi-
resolution 3d terrain. In VISSYM ’03: Joint Eurographics - IEEE
TCVG Symposium on Visualization (Aire-la-Ville, Switzerland,
Switzerland, 2003), Eurographics Association, pp. 213–222.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

