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Abstract—This paper presents a novel technique for automatic
edge enhancement and detection in synthetic aperture radar
(SAR) images. The characteristics of SAR images justify the im-
portance of an edge enhancement step prior to edge detection.
Therefore, this paper presents a robust and unsupervised edge
enhancement algorithm based on a combination of wavelet co-
efficients at different scales. The performance of the method is
first tested on simulated images. Then, in order to complete the
automatic detection chain, among the different options for the
decision stage, the use of geodesic active contour is proposed.
The second part of this paper suggests the extraction of the
coastline in SAR images as a particular case of edge detection.
Hence, after highlighting its practical interest, the technique that
is theoretically presented in the first part of this paper is applied
to real scenarios. Finally, the chances of its operational capability
are assessed.

Index Terms—Edge detection, geodesic active contour, synthetic
aperture radar (SAR), wavelet transform.

I. INTRODUCTION

SATELLITE-BORNE synthetic aperture radars (SARs) al-
low the observation of broad expanses during the day as

well as during the night and as independent from weather
effects. These characteristics, added to a high-resolution capa-
bility, make them particularly helpful for the global observation
of the Earth for environmental and security issues. Neverthe-
less, at first sight, a SAR image which represents the complex
reflectivity map of a scene is not meaningful for an inexperi-
enced observer since, unlike optical images, the interpretation
of the radar images is not consistent with a common visual
perception. Furthermore, the direct application of conventional
image processing tools, conceived from an optical point of
view, usually gives suboptimum results on SAR data. Hence,
specific data analysis algorithms are still to be provided in order
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to assure unsupervised and robust means for the intensive and
operational exploitation of SAR data.

Robust edge detection techniques are essentially based on the
following two steps: edge enhancement and decision. Unlike
optical images, in SAR data, which is highly heterogeneous, a
robust edge enhancement phase is critical in providing accept-
able detection rates. This phase is usually performed through
techniques that are related to derivation, namely, simple differ-
ences, Sobel filter [1], Prewitt filter [2], morphological gradi-
ents, etc., possibly combined with smoothing. These methods
provide a limited efficiency in SAR applications due to the
presence of a speckle which is a multiplicative noiselike pattern
[3]. This paper aims at presenting a novel method for edge
enhancement in SAR images based on the exploitation of the
information provided by the wavelet coefficients.

In the past, several multiscale approaches, relying on the
analysis of the information contained in the wavelet domain,
have been proposed [4]–[7]. The method proposed in this
paper is based on a different way of managing multiscale data.
Moreover, it does not assume any statistical distribution of
the input data nor any particular type of edge, and it works
exclusively in the transformed domain. Further differences of
operation between these methods and the proposed technique
will be highlighted throughout the paper. In the scope of SAR
images, the study in [8] proposes an interesting review of
existing edge detection algorithms. A group of techniques is
based on the evaluation of the ratio of averages over a sliding
window [9]–[12]. These methods present a low computational
load, but they are highly dependent on the dimensions of the
window and are not robust in noisy scenes. Several algorithms
are based on the wavelet theory. For instance, the study in
[13] or [14] proposes an edge detector based on a threshold
operation of wavelet coefficients. Despite a low computational
cost and a good contrast, detected edges are too thick. The
approach proposed in this paper will tackle at the same time
the robustness and the precision issues of edge enhancement
and detection.

In Section II, we will discuss the overview of the charac-
teristics of SAR images and especially those that make their
processing through conventional methods inefficient. Then, the
use of a multiscale framework will be justified in Section III.
The multiscale algorithm proposed for edge enhancement in
SAR images will be presented in Section IV. The chain for an
unsupervised edge detection will be completed with a geodesic
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Fig. 1. Same coastal urban scene (Barcelona, Spain) as observed (a) by an
optical spaceborne sensor (source: GoogleEarth) and (b) by SAR (source:
ERS). (c) and (d) show the zoomed image of a small area.

active contour technique [30] in Section V. Finally, Section VI
will draw the conclusion of this paper.

II. SAR IMAGES

Complex radar data are proportional to the scattering prop-
erties of the observed scene at the corresponding microwave
frequency. Thus, a radar image consists of a mapping of elec-
tromagnetic measurements, characterized by a large dynamic
range that may even reach 40 dBs. Hence, it does not corre-
spond to a representation that is fully comprehensible through
a common visual perception. The image in Fig. 1(a) has been
acquired by the QuickBird optical spaceborne sensor. A human
observer, assisted by his experience of aerial pictures, may
easily identify a coastal urban scenario, clearly distinguishing
streets and buildings. Moreover, this interpretation is valid
when confronted of the overall scene, and it persists when
zooming into smaller fragments of it [see Fig. 1(c)]. In contrast,
the SAR intensity image [Fig. 1(b)] represents the same coastal
scenario, as imaged by a spaceborne SAR sensor that is onboard
the ERS-1 satellite. This type of data is hardly attractive for an
inexperienced user even if a specialist would be able to discrim-
inate not only the presence of buildings, streets, and squares
but also additional information such as, for example, quarters
occupied by higher buildings or a rough qualitative estimation
of a wind field in the sea surface. In addition, the SAR images
are even less explicit when considering a small portion of them
[see the detailed image in Fig. 1(d)] as, at small scales, the SAR
images reveal the presence of the speckle noise [15].

Specifically, a complex SAR image may be represented as
the convolution of the local complex reflectivity of the observed
area γ(τ, η) with the impulse response of the SAR system
u0(τ, η) [15]

u(τ, η) = γ(τ, η) ∗ u0(τ, η) (1)

where ∗ stands for the convolution and τ and η are the azimuth
and the range coordinates, respectively, employed to define the
coordinate system of a SAR image. The SAR system impulse
response u0(τ, η) may be interpreted as a bidimensional low-
pass filter [16], in such a way that the finite local support of
this filter determines the spatial resolution of the SAR system.
The spatial area embraced by this impulse response is known
as the resolution cell. Hence, the SAR data pixels are the low-
pass-filtered version of the complex local scattering properties
of the observed scene. These values may be quantitatively
interpreted, considering the use of electromagnetic scattering
models, making possible the retrieval of geo- and biophysical
information [17], [18].

The SAR imaging process indicated by (1) admits a simple
mathematical model that considers linearity and Born approxi-
mation, i.e., the imaged scene is modeled as a set of N individ-
ual scatterers whose scattered fields superpose linearly [19]

u(τ, η) =
N∑

k=1

γk(τ, η) ∗ u0(τ, η) (2)

where γk(τ, η) is the complex reflectivity of the kth individual
scatterer within the resolution cell. The total imaged signal
may also be rewritten for an easier interpretation

u(τ, η) =
N∑

k=1

akejφk (3)

where ak and φk are the amplitude and the phase of the
contribution of the kth scatterer. The interpretation of (3) must
be done according to N . When the resolution cell presents
a single individual scatterer or when the total returned wave
is dominated by one individual scatterer, the pixel is said to
represent a point or deterministic target. In this situation, the
complex value of the pixel must be interpreted in terms of the
physical properties and geometry of the imaged scatterer [20].
When the number of scatterers N increases, the complex value
of the pixel results from the coherent addition of N complex
quantities that may be interpreted as a bidimensional random
walk process. When N is low, the characterization of u(τ, η)
is complex [21]. Nevertheless, if N is large enough, assuming
that the individual scatterers are independent, that |ak| and
φk are also unrelated, and that the phases φk are uniformly
distributed in [−π, π), according to the central limit theorem,
it may be proved that the real and imaginary parts u(τ, η)
may be modeled as independent, zero-mean, and equally
distributed Gaussian random variables [3]. At this stage, the
classical random walk problem in the complex plane becomes
complete. Consequently, the intensity of a SAR image (i.e.,
I = |u(τ, η)|2) follows a negative exponential distribution

pI(I) =
{

1
σ e−

I
σ , I ≥ 0

0 otherwise
(4)

with the mean value and standard deviation both equal to σ. The
phase of u(τ, η) is uniformly distributed in [−π, π), and hence,
it contains no information concerning the imaged scene. Under
these hypotheses, the imaged target is said to be distributed,
where the value of a given pixel u(τ, η) represents a true
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Fig. 2. Example of the application of the Lee filter with a window size of 11 ×
11 pixels in a SAR image of the area of Barcelona. (a) Detail of a SAR image.
(b) Result of the Lee filter.

electromagnetic measurement. Nevertheless, the complexity
of (3) makes it only possible to interpret the value of the
pixel in statistical terms, characterizing it by its mean value σ.
Consequently, the intensity I(τ, η) may be written as

I = σn. (5)

In the following, the dependence on τ and η shall be assumed.
The useful information is determined by the parameter σ,
as it represents the radar cross section of the scene that is
normalized to the resolution cell area [15], whereas n is a
multiplicative noise component characterized by a negative
exponential distribution with a mean value that is equal to
one (i.e., pn(n) = e−n). The term n is referred to as speckle.
Despite being a true electromagnetic measurement, the speckle
must be considered as a noise component due to the complexity
associated with the scattering process.

The speckle represents one of the major drawbacks in SAR
image interpretation. Consequently, this component is usually
filtered in order to grant access to the useful information. In
terms of SAR image postprocessing, the speckle leads to over
segmentations, and filters are often employed to reduce its
effects. However, even if they are able to effectively smooth
the speckle, they inevitably affect the information, and its
application results in a degradation of the spatial resolution.
Among the speckle filters proposed in the literature, the most
relevant ones are the Lee filter [22], the Kuan filter [23], the
gamma filter [24], and the Frost filter [25]. In the scope of this
paper, the Lee filter will be employed later on for comparison
purposes. Fig. 2 shows the effect of Lee filtering through an
example of the application over a SAR image of a coastal area.

III. MULTISCALE FRAMEWORK FOR THE

EXPLOITATION OF SAR DATA

A. SAR Data Product Model

A multiscale framework is proposed for the exploitation of
SAR data since SAR images present themselves a multiscale
nature. For instance, as shown in the previous section, the
speckle is produced by the combination of scatterers within
a resolution cell, and thus, it can be considered as a pixel-
to-pixel, equivalently a small scale, spatial variability charac-
teristic. Moreover, a multiplicative model for the speckle has

been presented in (5). Nevertheless, the validity of this model is
restricted to homogeneous areas and results that are insufficient
in describing more complex scenarios that are present in true
SAR data as, for instance, textured areas. In these cases, it is
necessary to increase the complexity of the statistical model
describing the imaged area: variations that correspond to an
intrinsic texture in a nonhomogeneous area tend to be appre-
ciable at larger scales. The product model [26] formalizes this
multiresolution notion stating intensity I

I = μITF (6)

where μI is the mean intensity, T is the texture random variable
and the representation of the natural within-field spatial vari-
ability, and F corresponds to the speckle which is also a random
process. T and F are considered statistically independent. This
decomposition enables the identification of different ranges of
scales. As a consequence, in order to analyze properly the SAR
data, the consideration of a multiscale approach is the most
suitable.

This multiscale notion can be translated intuitively by con-
sidering the example that is shown in Fig. 1. The observa-
tion of a small area of pixels of a SAR image [Fig. 1(d)]
exhibits a noiselike pattern that is meaningless in appearance.
Nevertheless, even if the speckle affects all scales due to its
multiplicative nature, when confronted by a larger scene [see,
for example, Fig. 1(b)], an observer is able to manage it and
is able to distinguish the most relevant features, focusing its
multiscale observation capability to higher scales, i.e., lower
frequencies or larger areas. In Fig. 1(b), a coastal scene with
different characteristic elements (the sea, the land, the harbor,
and an urban area) can easily be discriminated.

B. Multiscale Analysis by Means of the Wavelet Transform

Among the different tools of multiscale signal processing,
this paper is focused on time-frequency analysis with wavelets
[27]. For the purpose of edge enhancement, it is useful to inter-
pret the wavelet transform as a multiscale differential operator.
More specifically, if a wavelet ψ has a compact support and n
vanishing moments, i.e.,

+∞∫
−∞

tkψ(t) dt = 0, for 0 ≤ k < n (7)

there exists a function θ with a fast decay such that

ψ(t) = (−1)n dnθ(t)
dtn

. (8)

Then, the wavelet transform of a signal f can be expressed as

Wf(u, s) = sn dn

dun
(f ∗ θs)(u) (9)

where θs(t) = s−1/2θ(−t/s), u is the time or space coordinate,
and s is the scale. As a consequence, under these conditions,
the wavelet transform Wf(u, s) is an nth-order derivative of
an averaging of f , with θs over a domain proportional to s.
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When using wavelet tools for signal processing purposes, it
is critical to choose conveniently the type of transform as well
as the mother wavelet according to the nature of the signal
to be analyzed and according to the type of characteristic to
be highlighted. On the one hand, in the framework of this
paper, a discrete stationary wavelet transform (SWT) will be
employed. It is an inherently redundant scheme that is similar
to the discrete wavelet transform without subsampling [27].
As a consequence, if using a 1-D wavelet transform, two
frequency bands are obtained at each iteration. In the case
of a 2-D transform, it is four subbands. The first three bands
(i.e., {H,V,D}) refer to the horizontal, vertical, and diagonal
details of the image, respectively. The fourth band contains the
low-pass-filtered component of the image. In both cases, each
component has the same size as that of the input signal. For
instance, the algorithm for edge enhancement that is proposed
in this paper is based on the combination of wavelet coefficients
at different scales, and it is thus necessary for the coefficients to
be combined to generate an image of the same size as the input
image. This justifies the choice of the SWT.

On the other hand, in order to select the appropriate mother
wavelet, the size of its support both in time and in frequency, as
well as its number of vanishing moments, has to be taken into
account. In the application concerning this paper, it is important
to preserve as precisely as possible the location of the edge, and
hence, a short spatial support is preferred. Furthermore, it has
been seen previously that SAR images tend to be irregular, pre-
senting a lot of discontinuities due to the multiplicative nature
of the speckle. As a consequence, a large number of vanishing
moments are not necessary for their analysis. Moreover, the
proposed algorithm relies on enhancing edges, taking benefit of
the spatial coincidence of the local maxima at different scales
due to the presence of discontinuities: the maxima produced by
the presence of a frontier tend to persist over scales, resulting
in a higher interscale spatial correlation in the presence of an
edge than in the background [27]. In order to effectively have
this spatial co-occurrence, the mother wavelet used must exhibit
a linear phase and a small number of coefficients. For all of
these reasons, the Haar wavelet with two coefficients, a single
vanishing moment, and a linear phase has been selected for the
addressed application.

IV. EDGE ENHANCEMENT ALGORITHM

A. Theoretical Principles

The algorithm for edge enhancement in SAR images, which
is proposed in this paper, relies on the difference of behavior
along the wavelet scales of the speckle in front of the edges. On
the one hand, the discontinuities are highlighted by the wavelet
transform, and they tend to persist over scales (see Fig. 3).

On the other hand, the speckle is progressively smoothen,
and moreover, it is almost spatially uncorrelated between scales
(see Fig. 4).

The wavelet transform can be expressed as

Wf(u, s) =

∞∫
−∞

f(x)
1√
s
ψ∗

(
x − u

s

)
dx. (10)

Fig. 3. (a) Simulated step signal and (b) its scale/space representation, ob-
tained through the SWT with a Haar mother wavelet.

The Haar wavelet can be expressed as

ψ(t) =

⎧⎨
⎩

1, 0 ≤ t < 1
2

−1, 1
2 ≤ t < 1

0, otherwise.
(11)

With this

Wf(u, s) =
1√
s

s/2+u∫
u

f(x) dx − 1√
s

s+u∫
s/2+u

f(x) dx. (12)

In the framework of SAR processing, it is useful to take
the logarithm of the original signal in order to manage the
multiplicative speckle [28]. Then, we can suppose

f(τ) = log (σ(τ)n(τ)) = log (σ(τ)) + log (n(τ)) (13)

where n stands for the speckle and σ stands for the useful in-
formation content of the radar signal. The speckle that is trans-
formed in this way is not only additive and signal independent,
but its probability density distribution is also approximately
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Fig. 4. (a) Simulated 1-D speckle signal and (b) its scale/space representation,
obtained through the SWT with a Haar mother wavelet.

Gaussian [28]. Moreover, the logarithm operation is helpful in
reducing the large dynamic range of SAR data. With this, (12)
turns into

Wf(u, s)=
1√
s

s/2+u∫
u

[log (σ(x)) + log (n(x))] dx

− 1√
s

s+u∫
s/2+u

[log (σ(x)) + log (n(x))] dx (14)

Wf(u, s)=
1√
s

⎡
⎢⎣

s/2+u∫
u

log (σ(x)) dx −
s+u∫

s/2+u

log (σ(x)) dx

⎤
⎥⎦

+
1√
s

⎡
⎢⎣

s/2+u∫
u

log (n(x)) dx

−
s+u∫

s/2+u

log (n(x)) dx

⎤
⎥⎦ . (15)

As a consequence, the wavelet transform may be seen as
the difference between the averaging of the curves over two
adjacent intervals of the same duration. If the function is
homogeneous along both intervals, the absolute value of the
difference will be low. On the contrary, if there is a discontinuity
in the trend of the curve, it will increase. Moreover, the maxi-
mum of this difference occurs when the discontinuity happens
just in the frontier between the intervals. Hence, in the wavelet
transform of the logarithm of the SAR signal, the influence of
the speckle is low since its contribution in each of the semi-
intervals counteracts with the other. More specifically, if we
assume the homogeneity of the speckle

s/2+u∫
u

log (n(x)) dx ≈
s+u∫

s/2+u

log (n(x)) dx. (16)

Hence

s/2+u∫
u

log (n(x)) dx −
s+u∫

s/2+u

log (n(x)) dx ≈ 0. (17)

It is worth noting that this value is especially low when the
interval is large since it permits having a sample that sufficiently
represents the stochastic speckle process. On the other hand,
the absolute value of the transform accounts for the difference
of homogeneity of the useful part of the speckle-free signal
between both subintervals.

When considering a single scale of the wavelet transform,
it may be observed in (15) that the size of the interval, directly
determined by the scale, influences the capability of the wavelet
transform both to localize the precise position of the edge and
to be unaffected by the speckle. For a large interval size, the
effect of the averaging is more important, and the presence of
the speckle is, thus, better cancelled through the counteraction
of both integrals. Nevertheless, in that case, the higher sensi-
tivity in the detection of the discontinuity is obtained at the
expense of a lower precision in the estimation of its location.
Since this tradeoff is inherent to a time-frequency decompo-
sition, it is unavoidable if a single scale is taken into account
(see Fig. 5).

We propose, instead, a combination of several scales in order
to take benefit of the good performance in the resolution of the
lower ones and in order to take benefit of the sensitivity to the
presence of discontinuities of the higher ones. The combination
is performed through an interscale pointwise product which
permits taking advantage simultaneously of the benefits of the
span of the considered scales. Low values of the speckle that
are achieved with intervals of large lengths are reduced through
the multiplication of the higher values present in higher scales.
Moreover, due to their spatial co-occurrence, the local maxima
that are due to a discontinuity contribute constructively when
multiplying the scales. Since the energy that is due to the
irregularity of the signal is mainly located at low scales, the
resolution of the fine scales is preserved. Furthermore, while
discontinuities that are due to the speckle do not persist, the
ones produced by the presence of a meaningful edge propagate
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Fig. 5. (a) Logarithm transform of a simulated 1-D step signal and (b) its
scale/space representation, obtained through the SWT with a Haar mother
wavelet.

over the scales. As a consequence, the interscale pointwise
product neglects the small isolated discontinuities. In [4], the
statistical characteristics of the multiscale product are analyzed.
It is shown that the additive Gaussian noise is uncorrelated be-
tween scales and that the resulting distribution of probabilities
is generally non-Gaussian heavy tailed.

Based on these observations, we propose the algorithm that
is shown in Fig. 6. At each iteration of the SWT in two
dimensions, three bandpass components are obtained, where
each one enhances the discontinuities in a different direction.
After normalizing each of these subbands to their maximum
and taking their absolute value, the pointwise maximum across
all of the three subbands is evaluated. A correct implementation
of the algorithm proposed here must also deal with situations
where a subband does not contain a vessel, as the proposed
normalization may lead to noise amplification. In order to deal
with this effect, an improved normalization step performs first
an evaluation of the relative level of the noise floor with respect
to the maximum in each wavelet subband. If a feature (i.e.,

Fig. 6. Flowchart of the proposed algorithm for edge enhancement.

a vessel) is present in a particular subband, the histogram
shall be heavy tailed, and the normalization is performed as
usual using the maximum of the corresponding subband. If
not, the normalization factor is a number of times (usually
three) the standard deviation in order to ensure low values
on this subband. Since, the components in the same scale
are uncorrelated, taking the maximum value pixel per pixel
permits avoiding as much as possible the speckle, which is
contrary to an intrascale combination with the sum such as
in [6]. The same operation is carried out with different scales.
Then, the different intermediate maxima previously calculated
are combined through pointwise multiplication: For each pixel,
the output value corresponds to the product of the values for
that pixel of the intermediate maxima matrices obtained in the
previous step.

If necessary and if some kind of a priori information is
available, the number of iterations can be adjusted accordingly.
Otherwise, in common situations, five iterations suffice to
provide satisfactory results regarding the usual range of the
resolutions of SAR images.
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Fig. 7. Logarithm transform of a simulated image constituted by a square
embedded in (left) a speckle matrix and (right) a horizontal cut.

Fig. 8. Pointwise maxima of the wavelet coefficients at two scales.
(a) Interscale pointwise maxima at the third scale of the SWT. (b) Interscale
pointwise maxima at the fifth scale of the SWT. (c) Horizontal cut of (a).
(d) Horizontal cut of (b).

B. Detailed Example of an Operation in a Simulated Image

A detailed example of the application of the algorithm pro-
posed for edge enhancement in a simple simulated image is
shown hereafter. The image is a speckle matrix n(τ, η) in which
a square with an increased intensity has been embedded (see
Fig. 7). The intensity in the square has been augmented through
multiplication with a constant value m

I(τ, η) = m · n(τ, η), with m ∈ R. (18)

In the example treated in this section, m = 5. The speckle
amplitude matrix has been generated as the modulus of a matrix
whose both real and imaginary parts are random elements,
normally distributed with zero mean and variance equal to 0.5.
A horizontal cut of the image has been included, which is par-
tially superimposed. From its observation, the inefficiency of
performing edge enhancement by means of gradient evaluation
can be deduced. Furthermore, the multiplicative nature of the
speckle is appreciable: The intensity of the noiselike pattern
increases with the intensity of the information.

At each iteration, the pointwise maxima of the absolute value
of the normalized subbands are evaluated. Two of these inter-
mediate components are shown in Fig. 8. We can observe the ef-
fect of the previously discussed tradeoff between resolution and

Fig. 9. Edge enhancement of the simulated image as obtained (a) with the
Sobel filter and (b) with the proposed approach. (c) Horizontal cut of (a).
(d) Horizontal cut of (b).

signal-to-noise ratio. In both images, the presence of the square
contours has been effectively enhanced. Nevertheless, at the
fifth scale, the contrast between the edge and the background
is noticeably higher than that obtained at the lower scale. On
the other way, frontiers appear blurred and thick in the higher
scale.

The multiscale pointwise product conciliates these two ben-
efits, aiming to overcome the time-frequency tradeoff that is
inherent to wavelet decomposition. Fig. 9 shows the result
of the application of the proposed approach on the simulated
image in Fig. 7, compared to the result obtained by means of
the Sobel filter. The contour of the square appears neatly in
the output of the proposed algorithm. The horizontal cut that
is superimposed to the output image reflects the enhancement
of the contrast achieved between the edge and the surrounding
background.

The square shape presented in the previous examples is
useful for illustrative purposes, but it may be thought as too
simple. Hence, a more complicated shape has been simulated
by drawing a coast by means of random +1/ − 1 displacements
along the vertical direction. The results are shown in Fig. 10.

C. Main Properties of the Algorithm

This section is devoted to the review of the main properties
of the algorithm proposed for automatic edge enhancement in
SAR images.

The first consideration concerns simplicity. The proposed
technique is simple, and its computational cost is low. It is an
iterative process just requiring the following two operations per
iteration: the application of a single iteration of the SWT and the
evaluation of the pointwise maxima. No previous radiometric
calibration is required [29] since this application is not con-
cerned with a precise retrieval of radar cross section values but
just with contrast in intensity. Moreover, no prefiltering step is
added, and the method is not dependent on the statistics of the
input image.
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One of the main interests of the algorithm is that it provides
a result directly in the wavelet domain. As a consequence,
contrary to conventional filters, it does not require any inversion
step, such as in [7], which is usually an awkward process, often
introducing artifacts when wavelet coefficients are processed.
On the other hand, working on the transformed domain im-
plies considering differential values rather than absolute ones.
Hence, the dependence on the overall power of the input image
is not so tight and problematic.

Nevertheless, at first sight, the most noticeable effect of the
proposed technique is the contrast achieved between edges and
background, which is, in fact, the main objective of any edge
enhancement algorithm. In order to evaluate the performance
of the proposed method, a contrast parameter CP will be
considered. It accounts for the contrast obtained in the result
between the intensity of the edge and that of the surrounding
area as a function of the contrast between the two regions
delimiting the edge in the input image. More specifically,
the contrast in the result is defined as the difference between the
mean value of the intensity of the pixels that correspond to the
edge Ie and that of the pixels that correspond to the background
Ib, divided by the mean of the background. Similarly, the
contrast between the regions in the input image is defined as the
difference between the mean intensity of the brightest region at
one side of the edge Ir1 and that of the other one Ir2, divided
by the mean of the latter

CP =

∣∣∣∣∣
Ie−Ib

Ib

Ir1−Ir2
Ir2

∣∣∣∣∣ . (19)

The graph in Fig. 11 shows the evolution of the CP parame-
ter for the simulated images as a function of the constant multi-
plicative value m [see (18)]. It can be deduced that the gain in
contrast can be considered as having a linear behavior. The CP
parameter cannot be estimated reliably in nonsimulated images.
Nevertheless, just as an example, for quantitative comparison
purposes, in the simulated situation shown in Fig. 9, the CP
that is obtained with the Sobel algorithm after the application
of the Lee filter is 1.5, while the one reached by the proposed
technique is 250.

D. Application to Coastline Enhancement in SAR Images

In the framework of this paper, the proposed method has been
essentially employed for automatic coastline detection in SAR
images. A set of SAR images has been taken into consideration
for validation purposes. RADARSAT, ENVISAT, and ERS 1
data with different characteristics (acquisition mode and reso-
lution) have been tested. They correspond to maritime scenarios
in which the main objective is to enhance the shoreline.

The interest of performing an automatic extraction of the
coastline from remote-sensing data is meaningful. It is some-
times challenging to obtain a precise map of the coastline in
particular regions and circumstances with other conventional
tools. Moreover, the coastline is subject to a temporal evolution:
slow and natural due to erosion, abrupt and natural due to
an environmental disaster such as a tsunami, and abrupt and
artificial due to a man-made alteration of the coastline. The

Fig. 10. Edge enhancement of the simulated image in (a). (b) Result of the
application of the Sobel filter. (c) Result of the application of the proposed
approach.

monitoring of the coast provides useful information about the
behavior of the ocean currents or a wide variety of patterns
related to climate change. From an economical point of view,
for coastal management and planning, it is crucial to monitor
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Fig. 11. Contrast enhancement as a function of the input contrast.

the zones that are subject to long-term erosion or to evaluate
the affected zones in case of a natural disaster, through the
evaluation of the deformations in the coastline. Furthermore,
the automatic extraction of the coastline in remote-sensing
images is extremely useful as a segmentation tool in other
applications. For example, when performing automatic ship
detection, a previous land mask step has to be included in
any algorithm. It consists of eliminating the land areas, which
have to be neglected when looking for vessels. Due to the
speckle, automatic land masking in SAR images is an awkward
process. Up to now, it is usually performed by using auxil-
iary external data such as maps available from other sources.
Nevertheless, on the one hand, geopositioning of the satellite
image has a limited accuracy, and this can lead to image
shifts in the azimuth direction, together with a consequent
displacement with respect to the land mask. On the other hand,
available land masks are of limited accuracy, and there are
problems with small islands and coastal man-made construc-
tions. Hence, to overcome this issue, it would be extremely
beneficial to perform land mask directly on the remote-sensing
image through an efficient technique of segmentation. General
difficulties associated with image processing in SAR data have
already been overviewed. In the particular framework of the
automatic extraction of the coastline, several obstacles have
to be considered. The most remarkable one is the diversity of
the images. In some images, the energy that is backscattered
by the land is higher than that returned by the sea surface,
and thus, land areas tend to appear brighter than the ocean
ones. Nevertheless, this situation is reverted in other cases,
even between two acquisitions that belong to the same area of
observation. Moreover, nonstationarity, both in time and space,
of the multiple involved processes often results in images that
exhibit, at different areas, opposite situations: a sea surface
that is brighter than the inland zone and vice versa. Even in
some situations, there is absolutely no contrast between regions
that are to be segmented. As a consequence, a detection that is
exclusively based on the intensity value is not viable.

The test set is composed of neat situations (homogeneous,
with a considerable contrast between the land and the sea,

together with the awkward ones, and heterogeneous, with the
land and sea areas almost undistinguishable). For comparison
purposes, the same examples have been processed with the
application of a Sobel filter after smoothing with a Lee filter
with a window size of 11 × 11 pixels and after applying the
homomorphic transform in order to transform the multiplicative
nature of the speckle noise in the additive one. This window size
has been chosen since it is empirically proven to be well suited
for the characteristics of the data considered. Some illustrative
results are shown in Fig. 12.

The first observation concerns computational efficiency. Ap-
plying a Lee filter prior to a Sobel method is drastically more
time consuming than performing edge enhancement with the
proposed technique. For example, for a 1024 × 1024 input ma-
trix, the first option lasts four times more than the second one.

On the other hand, even after filtering with the Lee method,
the Sobel operator, which is very sensitive to heterogeneities,
is affected by the speckle. Hence, edges appear even in homo-
geneous sea areas. In contrast, if the regions to be segmented
are sufficiently homogeneous, the proposed multiscale tech-
nique enhances efficiently the frontier between them, with a
large contrast between the coastline and the background: The
background is considered to be composed of both water and
inland areas. Moreover, the shoreline appears sufficiently thin
because the proposed algorithm degrades the resolution just
slightly when compared to other methods of smoothing. In
fact, as shown in Section IV, the combination of the scales
preserves the good localization capabilities of the finest scales,
and since the mother wavelet selected for this application is the
Haar function with two coefficients, the technique is affected
by the loss of the resolution due to the averaging of only
two pixels. Additionally, in similar homogeneous scenarios, the
operation of the algorithm is benefited if the contrast between
the regions is high, since the edge is more pronounced and
easily detectable.

In nonhomogeneous scenes, the proposed technique is sensi-
tive to edges produced by structures other than the coastline
such as, for example, patterns that are due to topography,
rivers, or urban areas. Nevertheless, it is worth noting that these
enhanced edges are to be understood as effective ones and not
as artifacts that are introduced by the algorithm.

V. EDGE DETECTION WITH THE

GEODESIC ACTIVE CONTOUR

A. Theoretical Principles

Once the transition estimation has been completed, a fi-
nal decision step is required to build an unsupervised edge
detection algorithm. It consists of the segmentation of the
input image in the following two classes: edges and no edges.
The following two options are to be considered: binariza-
tion through thresholding and use of an active contour. The
straightforward strategy for segmentation is gradient binariza-
tion through thresholding. This option is usually not robust
for several reasons. Mainly, the threshold is difficult to define
automatically. Furthermore, noise and artifacts may appear, and
contours may not be closed. As an alternative to thresholding,
the use of active contours, even if more computationally costly,
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Fig. 12. Examples of the operation of the multiscale algorithm proposed for edge enhancement in SAR images, compared to Lee + Sobel edge enhancement.
(Left column) Input SAR images. (a) ENVISAT ASAR (IM mode) acquired on July 24, 2003. (d) ERS1 (PRI image) acquired on July 19, 1993. (g) RADARSAT
1 acquired on September 26, 2003. (Middle column) Result of the application of the Sobel edge enhancement algorithm after Lee filtering with a window size of
11 × 11 pixels. (Right column) Result of the proposed algorithm for edge enhancement.

is preferred. Essentially, a geodesic active contour or snake
consists of forcing the evolution of a close curve toward the
points of high gradients. More specifically, let the geodesic
length (GL) be defined as GL =

∮
g(∇x) ds, where g is a

function of ∇x, which is the gradient estimated through the
edge enhancement algorithm

g(∇x) =
1

1 + ‖∇x‖p
, with p ∈ R. (20)

In the scope of the examples studied in this paper, p is set to one.
Hence, the objective of the snake is to find the curve C(s) such
that GL is minimum. This objective function can be minimized
by the steepest descent. If we consider C to be a function of
time t, the Euler–Lagrange equations yield the curve evolution
equation [30]

∂C

∂t
= gκ �N − 〈∇g, �N〉 �N (21)

where κ is the Euclidean curvature, �N is the unit inward
normal, 〈., .〉 stands for the scalar product, and ∇ stands for
the gradient operator. Nevertheless, from the point of view of
practical implementation, it is worth using level-set methods.

In that case, instead of evolving the 1-D curve C, we evolve a
2-D surface u. C is then the zero level set of u, and u is said to
be an implicit representation of C. It is shown in [31] that the
evolution of u can be expressed as

∂u

∂t
= g(κ + c)‖∇u‖ +

〈
∇g,

∇u

‖∇u‖

〉
‖∇u‖ (22)

where c is a constant erosion parameter and κ is defined as

κ = div

(
∇u

‖∇u‖

)
(23)

where div is the divergence operation. Hence, the minimization
is done by initially setting a default surface u0 (i.e., u at t = 0)
and then by actualizing it iteration after iteration (each iteration
represents a differential of time dt), according to

ut(x, y) = ut−1(x, y) + dt · β (24)

where

β = g(x, y) · (κ + c)‖∇u‖ +
〈
∇g,

∇u

‖∇u‖

〉
‖∇u‖. (25)
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Fig. 13. Flowchart of the geodesic active contour.

Fig. 13 summarizes the different steps for the implementation
of the geodesic active contour.

In this paper, the default surface u0 is calculated as the
distance of every point of the surface to the frame of the image.
Hence, the curve that is constituted by u0 evaluated at level 0
is the external contour of the input image. It must be noted
that this default initial contour often requires a large number of
iterations before convergence to the targeted edge. Therefore, in
order to save the computational cost, the initial contour should
be as close as possible to the final result. An easy way to handle
this issue is to consider the highest scales that provide a very
rough estimation of the contour. Taking this rough contour as
the initial contour of the geodesic active contour considerably
enhances the computational performance of the algorithm.

B. Results

1) Definition of the Quality Parameters: The estimation of
the goodness of the segmentation is difficult and application

dependent. Probably due to this fact, it is worth noting here the
lack in the literature of a consensus of the quality parameters
concerning edge detection. As a consequence, the compari-
son between different techniques usually relies exclusively on
mere appreciation factors. Nonetheless, in order to provide a
quantitative estimation of the goodness of the approach, three
parameters are proposed and defined in this section.

The first parameter concerns the capability of the localization
of the algorithm, which is the closeness of the detected edge to
the location of the real edge in the input image. Mathematically,
there are different parameters measuring the distance between
curves. The most extended one is the Hausdorff distance. The
Hausdorff distance H(A,B) between two sets of points on two
curves A and B is the maximum over each element a of A
of the minimum over each element b of B of the distance d,
according to the underlying metric in the plane, from a to b.
More concisely

H(A,B) = max
a∈A

(
min
b∈B

(d(a, b))
)

. (26)

By taking into account the characteristics of the application,
the objective here is to provide a measure of the error, which
is the distance between the real and retrieved edges. Hence, an
appropriate measure of the error in a discrete context can be
defined as

error =
1

card(A)

∑
a∈A

min
b∈B

(d(a, b)) . (27)

From a practical point of view, the evaluation of this parameter
has been implemented as follows. For every single point of
the longest curve, its distance to the closest point in the other
curve is computed. Then, the mean value of this set of distances
constitutes the error. This error makes sense only if the edge
is effectively detected but misplaced. Two additional rates are
estimated in order to account for misdetections.

Additionally, the following two values are estimated: the
probability of false positives pFP and the probability of false
negatives pFN. The probability of false negatives measures the
quantity of elements that belong to class edge and that are
misclassified as no edge, and similarly, the probability of false
positives reflects the quantity of individuals that are classified
as edge and that are contrarily being part of no edge. Let us
define the following four classes: Einput confirmed edges in the
input image, Eoutput detected edges (i.e., “edges in the output
image”), NEinput confirmed no edges in the input image,
and NEoutput detected no edges (i.e., no edges in the output
image). With this

pFP =
card{Eoutput ∩ NEinput}

card{Eoutput}

pFN =
card{Einput ∩ NEoutput}

card{Einput}
. (28)

It is worth noting that these values make sense only if an ex-
isting edge is not detected or if the algorithm finds nonexisting
edges. However, the rates pFP and pFN are to be understood as
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Fig. 14. Examples of the detection of the overall chain of coastline extraction on simulated images. (a) m = 2.5, error = 0.1125, pFP = 0, and pFN = 0.
(b) m = 1.5, error = 0.25, pFP = 0, and pFN = 0. (c) m = 1.2, error = 1.1625, pFP = 0.06, and pFN = 0.1.

Fig. 15. Examples of the detection of the overall chain of coastline extraction on SAR images.

complementary to the error parameter defined previously: If an
existing edge is detected but misplaced, pFP is considered null.
These quality parameters can be estimated precisely in simple
simulated images, but their evaluation is usually unfeasible in
real images with no available ground truth.

2) Analysis of the Results: This section presents the exam-
ples of the results of the whole chain of edge detection consti-
tuted by the edge enhancement algorithm before the application
of a geodesic active contour. An example of the operation
on simulated images will be first considered. The images are
synthesized, as previously specified, as speckle matrices with
squares embedded. Several examples are shown in Fig. 14. The
corresponding parameters as well as the evaluated errors are
included in the figure. Fig. 15 shows three examples of coast
detection by means of the method proposed in this paper in the
SAR images introduced in Fig. 12. Since the quality parameters
discussed in the previous section are not possible to evaluate
in real scenarios, a good way to have a visual evaluation of
the goodness of the method is to superimpose the shoreline
extracted to the input SAR image.

The observation of the results obtained in SAR images con-
firms a good match of the detected coastline to the shoreline that
is visually inferred. It is worth noting that the red line has been
highlighted for representation purposes, but the result is one
pixel wide. Moreover, the correct performance of the method is
also observed despite the diversity of scenarios.

VI. CONCLUSION

In this paper, a multiscale algorithm for the unsupervised ex-
traction of the most significant edges has been presented. It has

been designed specifically to deal with speckled SAR images.
The method proposes a robust edge enhancement directly in
the wavelet transformed domain, followed by a decision step
based on the application of a geodesic active contour algorithm.
The edge enhancement phase has been proven to be critical in
heterogeneous SAR images, and the original method proposed
in this paper constitutes a good solution that is used to deal with
this type of data. It does not require any type of prefiltering
of data, and it is independent of the statistics of the input
image. The adaptation capability of the method to very diverse
scenarios with no need of a priori knowledge or settings is
a useful feature in view of its integration in an unsupervised
chain.

After testing the performance of the technique proposed in
the simulated images, it has been applied to real data in the
framework of coastline extraction from SAR images. It has
been proven to be robust and effective for this application. The
extracted coastline, which is an entirely connected line of one
pixel wide, matches accurately the targeted frontier. Moreover,
this method could be effectively used for segmentation pur-
poses in SAR data.
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