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ABSTRACT

The contribution of various physical sources of uncertainty affecting radar rainfall estimates at the ground
is quantified toward deriving and understanding the error covariance matrix of these estimates. The focus
here is on stratiform precipitation at a resolution of 15 km, which is most relevant for data assimilation onto
mesoscale numerical models. In the characterization of the error structure, the following contributions are
considered: (i) the individual effect of the range-dependent error (associated with beam broadening and
increasing height of radar measurements with range), (ii) the error associated with the transformation from
reflectivity to rain rate due to the variability of drop size distributions, and (iii) the interaction of the first
two, that is, the term resulting from the cross correlation between the effects of the range-dependent error
and the uncertainty related to the variability of drop size distributions (DSDs).

For this purpose a large database of S-band radar observations at short range (where reflectivity near the
ground is measured and the beam is narrow) is used to characterize the range-dependent error within a
simulation framework, and disdrometric measurements collocated with the radar data are used to assess the
impact of the variability of DSDs. It is noted that these two sources of error are well correlated in the
vicinity of the melting layer as result of the physical processes that determine the density of snow (e.g.,
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riming), which affect both the DSD variability and the vertical profile of reflectivity.

1. Introduction

In recent years, an effort has been made to assimilate
radar observations (of both reflectivity and radial ve-
locity) into numerical weather prediction (NWP) mod-
els (see the reviews of Errico et al. 2000; MacPherson et
al. 2003; Sun and Wilson 2003; Sun 2005a). Moreover,
as the resolution of NWP models increases, denser ob-
servations are required for assimilation, and the reso-
lution and coverage of data from radar networks make
them very attractive for this purpose.

From the perspective of the assimilation of radar
rainfall observations in NWP models, two main lines of
work can be identified:

¢ schemes assimilating surface rainfall measurements,
mainly to constrain the profiles of temperature and
specific humidity at meso-a to synoptic scales
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(Zupanski and Mesinger 1995; Fillion and Errico
1997; Guo et al. 2000; Marecal and Mahfouf 2000;
MacPherson 2001; Deblonde et al. 2007), and

« schemes assimilating volumetric reflectivity observa-
tions to constrain the rainwater mixing ratio (Sun and
Crook 1997; Montmerle et al. 2001; Crook and Sun
2002; Caya et al. 2005; Sun 2005b; Chung et al. 2007,
Hu and Xue 2007; Xiao et al. 2007). These models
(which can include a complete description of the mi-
crophysics or simplified parameterizations) are typi-
cally run at convective scale, though some attempts
have been made at larger scales as well (Sun and
Wilson 2003).

The works mentioned above show the beneficial
effects of assimilating radar rainfall measurements
into NWP models using variational methods in any
of their configurations [one-dimensional variational
data assimilation (1IDVAR), 3DVAR, or 4DVAR] or
the ensemble Kalman filter (EnKF).

Variational methods are based on a least squares—
like approach, which consists of minimizing a cost func-
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tion of the following type (see, e.g., Daley 1991; Kalnay
2003):

J(x) = %(X - Xb)TBil(X — Xp)
1 TR—1
+5[HX) —y, 'R TH®X) — ¥, ], 1

where x, x,, and y, are the analysis, the background,
and the observation vectors, respectively, and H() is
the observation operator, which relates model variables
with observations. The accuracies of the background
term and observations are represented by B and R, that
is, the background and observation error covariance
matrices, respectively. The quality of the approxima-
tions of B and R used in the assimilation schemes have
a significant impact on their performance.

It has been pointed out (Errico et al. 2000; MacPher-
son et al. 2003; Sun 2005a; Xu et al. 2007) that one
important limitation of the schemes assimilating pre-
cipitation observations lies in the simplifications as-
sumed to describe observational errors (either using
variational methods or, similarly, the EnKF). Within
this framework, the present work focuses on the char-
acterization of the observation error covariance matrix
of radar rainfall estimates at the ground for assimilation
in mesoscale models. Given the large variability of pre-
cipitation processes, we emphasize the detailed under-
standing of the sources of these errors so that the error
covariance matrix can be made adaptive to precipita-
tion types.

Specifically, the main goal of this study is to charac-
terize the variability and correlation of the errors af-
fecting radar estimates of surface rainfall in stratiform
conditions by analyzing in detail the physical factors
affecting the error structure, and to test the validity of
assuming these errors homogeneous or uncorrelated,
which are the usual hypotheses in most of the current
assimilation schemes.

The different sources of uncertainty affecting radar
rainfall estimates have been discussed by several au-
thors (e.g., Wilson and Brandes 1979; Zawadzki 1984;
Austin 1987; Joss and Waldvogel 1990), and works
quantifying their impact can be found in the radar lit-
erature. However, the variability of these errors and
their spatial and temporal correlation (necessary to
fully characterize the error covariance matrix of radar
rainfall observations) had only recently been consid-
ered. In this sense, Germann et al. (2006) point out two
different approaches in the characterization of the error
covariance matrix of radar estimates of rain intensity at
the ground:
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» those based on comparing radar rainfall estimates
with reference measurements (typically, rain gauge
observations), considered to be free of error and as-
suming that the variability and structure of their re-
siduals are entirely attributable to radar errors (Ciach
et al. 2007; Germann et al. 2008, manuscript submit-
ted to Quart. J. Roy. Meteor. Soc., hereafter GBSTZ);
and

« those based on studying the individual impact of the
most relevant sources of error, by simulating the er-
rors with conceptual physical models and/or experi-
mental data [see the simplified approach of Jordan et
al. (2003), and the detailed analysis of individual er-
rors of Bellon et al. (2005) and Lee and Zawadzki
(2005)], and the interaction of these errors.

Even though the first option is a very convenient
shortcut and allows us to treat the overall effect of the
different errors affecting radar rainfall estimates, it is
subject to the errors in the reference measurement
[e.g., to the difference in sampling volumes in the case
of the radar-gauge comparisons; Zawadzki (1975);
Kitchen and Blackall (1992); Ciach and Krajewski
(1999)] and it requires interpolation of the results to
areas not covered by the reference (GBSTZ). More-
over, it is not clear how the results obtained in a par-
ticular region can be transposed to other regions and to
other types of precipitation in situations where a good
gauge network is not available.

Here, our aim is to characterize the error covariance
matrix using the second approach and, in particular, we
focus on the two main sources of error in radar quan-
titative precipitation estimation at the nonattenuating S
band and in stratiform conditions (Zawadzki 1984;
Austin 1987; Joss and Waldvogel 1990):

« the range-dependent error—under this name, we in-
clude the uncertainty in rainfall estimates introduced
by the following factors (see Zawadzki 1984): (i) the
increase of sampling volume (coupled with the non-
uniformity of the reflectivity field) and (ii) the in-
crease of measuring height with range; and

« the uncertainty in the transformation of radar obser-
vations of reflectivity Z into rainfall rate R, which can
be attributed to the variability of the drop size distri-
bution (DSD) at different scales (both from storm to
storm and within each storm).

Traditionally, the effects introduced by these two
sources of error have been characterized mainly from
the point of view of the resulting biases and, sometimes,
the error variability. For example, Collier (1986), Fabry
et al. (1992), Kitchen and Jackson (1993), Andrieu et al.
(1995); Vignal et al. (1999), Germann and Joss (2002),
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Koistinen et al. (2003), and Mittermaier et al. (2004);
Bellon et al. (2005) studied the range-dependent error
and, among others, Richards and Crozier (1983), Bal-
akrishnan et al. (1989), Smith and Krajewski (1993),
and Lee and Zawadzki (2005) characterized the uncer-
tainty associated with the Z-R transformation from
datasets of different lengths and in different geographi-
cal locations.

In section 2, the problem is stated mathematically
and, in particular, the expression for the covariance of
the error resulting from these two sources of uncer-
tainty is expressed as a combination of (i) the structure
of the range-dependent error, (ii) the structure of the
uncertainty in the Z—R transformation, and (iii) the in-
teraction between these two sources of error.

Section 3 describes the database used in this work
and in sections 4-6 we quantify the structure of the
range-dependent error [based on simulating radar ob-
servations at different ranges from real, high-resolution
reflectivity measurements as in Bellon et al. (2005)], the
structure of the uncertainty in the Z-R transformation
from disdrometric measurements in a manner similar to
that in Lee and Zawadzki (2005) and Lee et al. (2007),
and the interaction of these errors from the comparison
of radar measurements with collocated DSD observa-
tions. The error covariance matrix resulting from the
considered errors is analyzed in section 7, and, finally,
our results and some considerations about the error
covariance matrix are discussed in section 8.

2. The error covariance matrix of radar rainfall
estimates

The range-dependent error is caused by the vertical
variation of reflectivity (radar sampling height in-
creases with range due to Earth’s curvature and eleva-
tion angle), and due to the sampling of the atmosphere
with a beam that becomes wider with range and
smoothes the gradients of the observed reflectivity
field. As mentioned in Fabry et al. (1992), the range-
dependent error is especially relevant in stratiform
situations, due to the fact that the reflectivity field
changes rapidly with height: in snow, the vertical pro-
file of reflectivity (VPR) presents a strong negative gra-
dient, and around the melting layer, an enhancement of
the VPR appears (the bright band) due to the aggrega-
tion of snowflakes and the higher dielectric factor of
melting particles that depends on the snow density
above (Zawadzki et al. 2005). Below the brightband
peak, when flakes collapse into raindrops, their fall ve-
locity increases, resulting in less and smaller particles
per volume unit and, therefore, lower reflectivity.

The range-dependent error expressed in dB(Z) at a
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certain location and time, x = [x, y, f], and when the
radar measurement is extrapolated from a height 4 to
the ground (where & = h,) can be expressed as (see,
e.g., Koistinen et al. 2003)

Z(x, h) ] o

e,(x, h) = 10 log[ Zo i)

where Z(x, h) represents the reflectivity measured at x
and at a height 4 (i.e., affected by beam broadening)
and Z(x, hy) is the reference reflectivity (not affected
by beam broadening) at the same x, but at the ground
(h = hy).

On the other hand, Smith and Krajewski (1993), Jor-
dan et al. (2003), and Lee et al. (2007) modeled the
fluctuations in rainfall estimates due to the uncertain-
ties in the Z—R relationship as multiplicative perturba-
tions. Therefore, in dB(R), the residuals due to the Z-R
transformation can be expressed as

Rzr(x, h):|

e r(x, h) =10 log[ Rx. 1)

(€)
where R(x, h) is the actual rain rate at (x, #) and R (x,
h) is the rain rate estimated from Z(x, #) with a power-
law Z—R relationship (Z = aR®):

Z(x, h) ]
(x )} . @

Rzr(x, h) = [

Thus, the total error in rain rate at the ground result-
ing from the combination of the range-dependent error
and the uncertainty associated with the Z—R conversion
can be expressed as

~ R(x, h)
e(x, h) = 10 log Rix. hg) | 5)

where Ié(x, h) is estimated from Z(x, h) using (4).
Therefore,

10 [Z(x, h)

s(x, h) = 7~ log ] — 10 log[R(x, hy)].  (6)

a

Considering Egs. (2)—(4), (6) can be rewritten as
1
S(Xa h) = E sr(x7 h) + SZR(X7 hO)) (7)

which expresses the resulting error as the summation of
the range-dependent error, ¢,, and the error due to the
Z-R transformation, & 5.

From this last equation, the expressions for the bias
affecting radar rainfall estimates, the error variance,
and the error covariance become
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1
pe(X, h) = (e(x, b)) = 7 {e,(x, W) + (e2x(X, ho)), ®)

1 2
O'i(X, h) = <[8(Xa h) - IJ“E(Xv h)]2> = E U%(X’ h) + E COV{Sr(X’ h')’ 8ZR(X9 hO)} + O-%AR(X7 h0)7 and

©)
cov{e(x, h), e(x + Ax, h)} = ([e(x, h) — p (x, h)] - [e(x + Ax, h) — p (x + Ax, h)])
= %cov{sr(x, h), g,(x + Ax, h)} + cov{e ,x(X, hy), e,r(X + AX, hy)}
+ %[cov{s,(x + AX, h), e,x(X, hy)} + covi{e,(x, h), e, x(x + AX, hy)}], (10)

where () stands for the expected value, cov{e,(x,),
£,(x,)} represents the covariance between the errors
e,(x;) and g,(x,) at locations x; and x,, and Ax = [Ax,
Ay, Af] is the lag in space and time.

Summarizing, to fully characterize the error in radar
estimates of rainfall at the ground using Egs. (8)—(10),
it is necessary to characterize the error structure for
g,(x, h) and e,x(x) and the cross terms, cov{e,(x;, /),
e,r(X,, hy)}, that appear in the expressions for the error
variance and covariance [Egs. (9) and (10)].

3. Database

The data used in this study are time series of collo-
cated radar reflectivity profiles and disdrometer DSD
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FI1G. 1. Locations of the instruments used in this study. The
McGill S-band radar is shown as a black triangle (dotted circum-
ferences are centered at the radar and separated by 20 km), and
the two disdrometers, POSS-1 and POSS-2, were located in down-
town Montreal and at Montreal-Trudeau airport, respectively.

observations obtained during 27 stratiform events that
occurred in Montreal, Quebec, Canada, between No-
vember 1997 and September 2004, corresponding to
around 170 h of rainfall at the ground (the geographical
layout and the locations of the instruments used in the
study are given in Fig. 1).

Reflectivity volume scans from the McGill University
S-band radar (see its main characteristics in Table 1)
were used to simulate radar observations at different
ranges as described in section 4a. These simulated re-
flectivity fields have been smoothed to a resolution of
15 X 15 km? to match a typical resolution of the
schemes assimilating surface rainfall observations in
mesoscale models and the time series of these
smoothed VPRs have been used to analyze the struc-
ture of the range-dependent error (a typical stratiform
VPR is presented in Fig. 2 jointly with simulations of
the same VPR at different ranges).

On the other hand, the analysis of the uncertainty
associated with the Z—R transformation has been car-
ried out using 1-min DSD observations for the same
events (in Fig. 3 we present the time series of R, R g,
and &5, corresponding to the event of 18 October
2000, where R, has been obtained with the Z—R rela-
tionship derived from long-term DSD observations in
stratiform conditions; see section 5a). These DSDs
were measured with the Precipitation Occurrence Sen-
sor System (POSS), which is a low-power, continuous-
wave, X-band, bistatic, Doppler radar developed by At-
mospheric Environment Canada [its technical details

TABLE 1. Technical characteristics of the McGill S-band radar.

Wavelength 10.4 cm

3-dB beamwidth 0.86°
Rotation speed 6 rotations per minute
Resolution 1 km X 1°
Elevation angles 24 (0.5°-34°)
Height 75 m (MSL)
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FIG. 2. VPR measured at the POSS-1 site at 1159 UTC 18 Oct
2000 (continuous line) and the VPRs simulated from these obser-
vations at 80 km (dotted line) and at 160 km (dashed line).

can be found in Sheppard (1990) and Sheppard and Joe
(1994)]. POSS retrieves the DSD from the average
Doppler spectrum, and its big sampling volume (three
orders of magnitude larger than a typical disdrometer
such as a Joss—Waldvogel model) minimizes undersam-
pling problems with a high temporal resolution (Lee
and Zawadzki 2005).

In this study, measurements of two different POSS
disdrometers have been used: one located in downtown
Montreal, 30 km from the McGill radar for the 10 cases
prior to 2001, and another one located at Montreal-
Pierre Elliott Trudeau International Airport, 15 km
from the radar, for the remaining 17 cases.

4. Structure of the range-dependent error

a. Framework of study

The characterization of the range-dependent error
has been carried out by simulations as described by
Bellon et al. (2005): observations of the 24 elevations of
the McGill radar within a sector of 15 X 15 km? collo-
cated with the available POSS have been used as the
fine-resolution (reference) 3D field.

Radar observations at further ranges (from 40 to 200
km, every 40 km) have been simulated in a conformal
manner by convolving the fine-resolution observations
of the reference sector with a Gaussian beam of hori-
zontal and vertical widths of 0.86° at half-power [ap-
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Fi1G. 3. Time series of (a) R and R, and (b) £, obtained from
POSS disdrometer observations measured from 0630 to 1710
UTC 18 Oct 2000. The relationship Z = 237R'> (derived in
section 5a) has been used to obtain R .

propriate for the McGill radar; see Bellon et al. (2005)
for further details]. From the simulated 3D volume
scans at different ranges, 30 polar constant-altitude
plan position indicator (CAPPI) maps between 1.3 and
7.1 km (every 0.2 km) have been generated, and the
1.3-km CAPPI for the original sector has been taken as
the reference reflectivity field at the ground.

Figure 4 shows one of the cases analyzed in our study:
the top panels show time series of radar reflectivity
profiles collocated with disdrometer POSS-1 [actually
measured VPRs in Fig. 4a, and VPRs simulated at 120
km in Fig. 4b], and the bottom panels show the time
series of the resulting range-dependent error when dif-
ferent CAPPIs are used to estimate rainfall at the
ground. The bright band appears in Fig. 4c as a signif-
icant overestimation of the rainfall at the ground
(around 2.2 km), while, above, the reflectivity of snow
is significantly lower than that observed at the refer-
ence height. In Fig. 4b and 4d, the effects of distance
can be observed: at 120 km no measurement is obtained
below 1.9 km (and, thus, reflectivity is extrapolated
from above), and a bigger sampling volume results in
vertical gradients of reflectivity that are much smoother
than at close range.

Due to the nature of the range-dependent error, and
following many authors (Collier 1986; Fabry et al. 1992;
Kitchen and Jackson 1993; Koistinen et al. 2003; Bellon
et al. 2005), the different statistics from section 2 in
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FIG. 4. (a) Time series of the McGill S-band radar VPRs collocated with POSS-1 observed from 0630 to 1710 UTC 18 Oct 2000. (b)
Time series of VPRs simulated at a range of 120 km for the same period. (c), (d) The corresponding time series of the range-dependent

error, g,(r, h, t).

which this error is involved have been estimated as a
function of range, r, according to

1
Alrh) =~ >, 6,(r b 1)),

13

an
Gty = D [ofrcht) ~ . WF, and (12

. 1
Colroh, ) = — X e, ) = (1, )] - [, Bt

+ A — [, h)], (13)

where * indicates that (11)-(13) are estimators of the
bias, variance, and covariance, respectively.

Additionally, as in Bellon et al. (2005), the results are
also shown as a function of the height of the CAPPI
used to estimate rain at the ground, £, and stratified
according to the height of the brightband peak (see
Table 2).

b. Bias and standard deviation of the
range-dependent error

Figure 5 shows the bias and the standard deviation of
g,(r, h) obtained from the simulations for those scans
where the brightband peak was detected in the ranges
2.2-2.6 and 3.0-3.4 km. Below the melting layer, the
bias remains below 1 dB and the standard deviation
does not exceed 2 dB. In Fig. 5, the bright band is quite

evident as an overestimation of the reflectivity at the
ground (for the presented cases, the mean biases are
over 4 dB). Around the bright band, the standard de-
viation of the error increases up to 3 dB. This increase
in the variability around the brightband peak can be
attributed, among other factors, to event-to-event dif-
ferences in the role of the main microphysical processes
affecting the density of melting snow, which results in
significantly different bright bands (Fabry et al. 1992;
Fabry and Zawadzki 1995; Huggel et al. 1996;
Zawadzki et al. 2005). Above the melting layer, the
mean VPR decreases (due to less power backscattered
from snow), which results in severe underestimation of
the reflectivity measured at the ground. The profiles
also show more variability (the standard deviation of &,
at close range reaches 4 dB), which can be explained by
the following effects: (i) the high variability of the gra-
dients of the VPR (which in some cases results in beam
overshooting) and the impact of trails in the snow re-
gion, and (ii) the variability in the lower part of the
VPR with respect to the climatological VPR.

The effects of the range of the observations are
threefold: (i) no observations can be obtained below

TABLE 2. Distribution of the 171.8 h of data with an identified
brightband peak among the six height intervals selected.

Height (km) 1.4-1.8 1822 2226 2630 3.0-34 >34
Duration (h) 94 295 311 335 193 490
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b) Standard deviation € [o]=]|
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FIG. 5. Errors in reflectivity at the ground when estimated from reflectivity observed at different ranges and heights for the cases
where the brightband peak is (top) between 2.2 and 2.6 km and (bottom) between 3.0 and 3.4 km: (a), (c) bias and (b), (d) standard

deviation of the error.

the lowest elevation angle and, thus, they have to be
extrapolated from elevated heights; (ii) bias profiles at
farther ranges are smoother due to the effect of a wider
beam (e.g., brightband contamination is lower but ex-
tends to higher elevations); and, similarly, (iii) the error
variability is slightly lower than the variability at the
same height but at closer ranges.

The results presented here are almost identical to
those obtained by Bellon et al. (2005) (carried out in
Montreal using a very similar simulation method and
dataset). There are also some similarities to the results
presented by other authors; for example, Kitchen and
Blackall (1992) and Koistinen et al. (2003) found long-
term biases due to the brightband contamination in
low-radar measurements of 1 dB(R) between 50 and 75
km and 2 dB(Z) between 60 and 110 km, and under-
estimations at far ranges of —5.6 dB(R) and —8.0
dB(Z) in England and in Finland, respectively. How-
ever, the values of the biases due to the bright band can
be significantly smoothed due to the fact that no strati-

fication with the height of the brightband peak was
taken into account. Kitchen and Blackall (1992) found
similar behavior for the standard deviation of &, with
range for observations of the lowest PPI during winter
events.

c. Autocorrelation and decorrelation of the
range-dependent error

Figure 6 shows the autocorrelation functions (ACF)
of &,(r, h) for the height ranges of the brightband peaks
shown in the previous section. It can be seen (Figs. 6a
and 6b) that when the measurement is in the rain re-
gion, &,(r, h) decorrelates rapidly (in less than 10 min),
indicating that these errors, besides being small (as was
shown in the previous section), have no coherent struc-
ture, except at far ranges because observations from
aloft are extrapolated to construct these low CAPPIs.
At higher elevations, where the variances are also
higher, stronger correlation is found. In the snow region
we note significant differences between the two consid-
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FI1G. 6. Autocorrelation functions of the range-dependent error when the brightband peak is (left) between 2.2
and 2.6 km at CAPPI heights of (a) 1.3, (c) 1.9, and (e) 3.5 km, and (right) between 3.0 and 3.4 km at CAPPI heights

of (b) 1.5, (d) 3.1, and (f) 4.1 km.

ered classes of bright bands. It is interesting to note that
for the cases when the melting layer is between 2.2 and
2.6 km, &,(r, h) decorrelates much faster than for the
cases with a higher bright band.

Similar results can be seen in Fig. 7, which shows the
decorrelation time lags of g,(r, k) (obtained as the time
lag for which the correlation falls below 1/e = 0.37): &,
decorrelates in less than 15 min in rain measurements,
and the maximum correlation appears right below the

melting layer (the decorrelation time goes up to 2.5-4
h) and decays to lower values in the snow.

5. Structure of the uncertainty associated with the
Z-R transformation

a. Long-term quantification of the Z—R uncertainty

DSD measurements obtained with two POSS located
in Montreal were used to characterize the uncertainty
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F1G. 7. Decorrelation time (h) of the range-dependent error when the reflectivity at the ground is estimated from elevated
reflectivity measurements at different ranges when the brightband peak is between (left) 2.2 and 2.6, and (right) 3.0 and 3.4 km.

in the Z-R transformation when a single Z—R relation-
ship is used to estimate rainfall from reflectivity obser-
vations.

Here, from 1-min DSD observations corresponding
to the events described in sections 3 and 4, R (mm h™ ")
and Z (mm® m~?) were computed using

Dmax
R=6mw-10"* f D> (D)N(D)dD and (14)
Dmin
Dmax
Z= f DSN(D) dD, (15)
Dmin

where D is the diameter (mm), v(D) the velocity (ms™'),
and N(D) is the concentration of drops of diameter D
(mm~' m~).

DSD observations have been averaged over a 20-min
window to ensure that the DSD variability in disdro-
metric observations is equivalent to the variability in
the 15 X 15 km? resolution of radar observations. We
chose 20 min because it is the time interval that leads to
the best correlation between POSS and radar reflectiv-
ity averaged over a 15 X 15 km? sector (see an example
in Fig. 8).

The Z-R scatterplot obtained from disdrometer ob-
servations of the 27 analyzed events is presented in Fig.
9 (the dashed line represents the best fit; Z = 237R").
This Z-R relationship is very similar to the climatologi-
cal Z-R relationship derived by Lee and Zawadzki
(2005) for Montreal (Z = 210R**’) and to the widely
used Z = 200RS obtained by Marshall and Palmer
(1948).

By construction, no long-term bias is expected in
rainfall estimated from reflectivity observations. How-
ever, the variability in the DSD [both from storm to

storm and within a single storm, as discussed by Lee
and Zawadzki (2005)] results in significant scatter in the
R-R, plot (as shown in Fig. 9). In a climatological
sense, all scatter must be considered as random error of
individual 20-min observations, although an important
bias and a reduced random error are present on a
storm-by-storm basis. For the analyzed dataset, the “cli-
matological” standard deviation of &,5, obtained with
an equation analogous to (12), resulted in 6, = 1.37
dB(R).

Lee and Zawadzki (2005) also quantified the vari-
ability of the Z—R relationships at different scales using
long-term observations collected with the same instru-
ments, but for a different set of events, including some
convective storms. For an averaging window of 20 min
and using the climatological Z-R relationship, they
found similar values for the standard deviation of the
error in linear units (1.4 mm h™') and for the random

50 _ — Radar reflectivity @1300 m (range: 8km) :
Eooen POSS reflectivity (from DSD measurements)
40F E
N
a
:" 305—
20
10E i ; ; : -
08:00 10:00 12:00 14:00 16:00
time [h]

Fi1G. 8. Time series of the reflectivity computed from POSS
DSD observations (dotted line) and observed with the McGill
S-band radar 1300 m over the POSS (continuous line) from 0630
to 1710 UTC 18 Oct 2000.
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FI1G. 9. A Z-R scatterplot obtained from the DSD POSS mea-
surements corresponding to the entire dataset analyzed in this
study. Each dot corresponds to a 1-min observation averaged over
a window of 20 min. The dashed gray line represents the best fit
to the observations (Z = 237R').

component (44%; with our dataset, 1.7 mm h™' and
35%, respectively).

b. Autocorrelation and decorrelation of €5

Lee et al. (2007) proposed a two-component model
to characterize the structure of e,5: a broken-line
model to characterize the large-scale variability and a
power law model for the Fourier spectrum at storm
scale, since they found scaling properties in small-scale
fluctuations of €.

Assuming their model, Fig. 10 shows the sample ACF
and the second-order structure function of the residuals
e, for the analyzed dataset using (13). The decorrela-
tion time of around 130 min is significantly longer as
compared to the 60 min for the cases analyzed by Lee
et al. (2007). This is evidence of the effects of the
coarser resolution of the observations analyzed here on
the shape of the error covariance matrix (further dis-
cussion is presented in section 8).

6. Cross correlation between ¢, and £,

As discussed above, besides the individual contri-
butions of the two analyzed sources of error, the ex-
pression for the error covariance of the error also in-
cludes the cross term involving &, and &, [cov{e,(X;, h),
ezr(Xa, ho)} in (10)].

In this section we analyze the cross correlation be-
tween the time series of ¢,(r, A, t), as estimated from the
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F1G. 10. Structure function (black line) and ACF (gray line) of
the residuals of the Z-R transformation, ¢, computed from the
dataset of observations analyzed in this study (see Fig. 9).

radar reflectivity profiles used in section 4, and the col-
located e,x(f) obtained from POSS observations. For
this, it is necessary to have a well-calibrated radar. In
our case, the calibration of the McGill S-band radar is
regularly monitored using POSS measurements (Lee
and Zawadzki 2006) and, thus, the agreement in the
reflectivity measurements of the two instruments is rea-
sonable, as can be appreciated in the example of Fig. 8.

The sample cross correlation between the time series
of the range-dependent error, ¢.(r, ki, t), and the error
due to the Z-R variability, e,£(f), has been calcu-
lated as

1

0,0zR

p‘r*ZR(’g h7 A[) =

|:% Z {[8,(}’, h7 li)

= i(r, h)] - ezp(t + At)}]-

(16)

The estimated p,_,g(r, h, At) corresponding to the
example of Figs. 3 and 4 is presented in Fig. 11. It can
be appreciated that correlations stay low in the rain
region and at higher elevations (over 3 km), and there
is a significant maximum of correlation around the
mean height of the brightband peak. Thus, there is cor-
relation between e, at the ground and the extrapola-
tion error around the brightband peak, &,(r, hpcax)-
Assuming a uniform VPR below the bright band,
&,(r, hpear) Would be a proxy for the brightband inten-
Sity, AZ cak-to-rain [defined as the difference in dB be-
tween the reflectivity of the brightband peak and the
reflectivity of the rain right below the bright band, as in
Klaassen (1988) or Fabry and Zawadzki (1995)]. Thus,



DECEMBER 2008

5

height [km]
w

1 1 PRSI SR S TR R S S R S |

BERENGUER AND ZAWADZKI

L 1 1 L 1 n
-100 -50 0 50 100
lag [min]

F1G. 11. Cross correlation between the time series of &,(ry, 1)
and e, obtained from the series of Figs. 3, 4a, and 4c, from radar
and POSS-1 observations measured from 0630 to 1710 UTC 18
Oct 2000.

our results confirm the direct relationship between the
brightband intensity and the local Z-R relationship, in-
dicating that the main physical processes involved in
the growth of snow determine both the characteristics
of the bright band (in this case, AZ,c.x.(o-rain)> @S dis-
cussed in Fabry and Zawadzki (1995) and quantita-
tively evaluated in Zawadzki et al. (2005), and the re-
sulting Z-R relationship at the ground (Zawadzki and
Lee 2004; Bellon et al. 2007), here, expressed as the
departures e, from the long-term Z-R relationship.
Huggel et al. (1996), following the results of Wald-
vogel (1974) and Waldvogel et al. (1993), found a very

height relative to BB peak [km]

100 -50 0 i
At'Atpeak-to-ground [mm]

100
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similar result: They showed significant correlation be-
tween the parameters Ny and A of an exponential DSD
and AZ,c.x to-rain,» and proposed the use of the bright-
band intensity to estimate ¢,z and, thus, improve radar
rainfall estimates.

On the other hand, it is also worth noting two fea-
tures that can be appreciated in Fig. 11: (i) the maxi-
mum correlation appears for a lag of 5-10 min in the
melting layer (at a height around 2.3 km), which ap-
proximately corresponds to the time needed for the
melting particles to reach the ground (see, e.g., Mitter-
maier et al. 2004), and (ii) the correlation develops
along the snow trails right above the melting layer.

Figure 12a shows the median cross correlation be-
tween ¢,(ry, h) and e, obtained from the dataset of 27
events, where the height is now relative to the height of
the brightband peak, and the lag needed by brightband
melting particles to reach the ground, Afyc.i io-grounds
has been subtracted from the time lag. Figure 12 shows
similar behavior to the example case shown in Fig. 11:
low correlation between ¢,(ry, k) and e, below the
bright band and above the melting layer, as well as a
significant maximum in the vicinity of the bright band.
Results appear smoother when the same figure has
been derived using VPRs simulated at 120 km, due to
the effect of a wider beam (Fig. 13b), which extends the
effects of the correlation between &, when observations
are extrapolated from the brightband peak and e,.

7. Resulting error covariance

From the results shown in previous sections, the co-
variance of &(r, h, t) = (1/b)e(r, h, t) + &,x(t) can be
estimated using (10).

100 -50 0 29
At-Atpeak-to-ground [MiN]

100

FiG. 12. Median cross correlation between the times series of &,(ry, h) and &5, corresponding to the 27 events
analyzed in this study, where the height has been referred to the height of the brightband peak and the time needed
for melting particles to reach the ground has been subtracted from the lag. (a) Results using observations from the
McGill S-band radar at the POSS sites and (b) those using reflectivity simulations corresponding to a range of 120

km.
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Fi1G. 13. ACF of &(r, h) obtained for the cases where the brightband peak is (a), (b) between 2.2 and 2.6 km and
(c), (d) 3.0 and 3.4 km. Results from using (left) radar observations at the POSS sites and (right) reflectivity
simulations at 120 km from the radar. The white line corresponds to ACF values of 1/e.

Figures 13 and 14 show the resulting error ACF and
covariance, respectively, at close range and at 120 km
for the cases when the brightband peak is located be-
tween 2.2 and 2.6 km and 3.0 and 3.4 km. The errors, &,
below the melting layer have longer decorrelation lags
than above. This is due to the fact that in the lower
heights the error is dominantly due to the Z-R trans-
formation. Therefore, below the melting layer, &.(r, k)
stays between 1.4 and 2 dB(R), and the decorrelation
lags between 1.5 and 2 h (very similar to the decorre-
lation lags of &,5). For elevated observations, the stan-
dard deviation of the error is around 2.5-3.5 dB(R) and
the decorrelation is significantly shorter (between 40
and 60 min). This is due to the fact that, in this region,
o.(r, h) is significantly higher than &, (as shown in
previous sections), and, therefore, the error with range
has more weight in the resulting ACF. Similarly, at fur-
ther ranges, the error decorrelation is around 1 h,
though the ACF and the covariance are smoother with
height due to the effect of a wider beam.

Up to this point we have only considered the tempo-

ral structure of the error affecting radar rainfall esti-
mates. Similarly to Zawadzki (1973) and Lee et al.
(2007), here we assume the validity of the Taylor hy-
pothesis to infer the spatial structure of this error. As-
suming the climatological advection velocity of precipi-
tation patterns for the region of Montreal (around 40
km h™!), the spatial decorrelation of the error affecting
radar rainfall estimates, &, becomes around 60-80 km at
near range and low heights, and decreases up to 40 km
when the observations are taken aloft.

8. Conclusions and discussion

In this study we have developed a methodology for
the analysis of the error covariance matrix of radar
rainfall estimates at the ground. Our approach is based
on detailed study of each source of error so that it can
be applied to different conditions, regional characteris-
tics, and radar operations. This method also provides a
physical understanding of error sources affecting radar
measurements.
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FIG. 14. Covariance [dB(R)?] of &(r, h) obtained for the cases where the brightband peak is (a), (b) between 2.2
and 2.6 km and (c), (d) between 3.0 and 3.4 km. (left) Results using radar observations at the POSS sites and (right)
from using reflectivity simulations at 120 km from the radar.

Our aim is to give a better characterization of errors
for the assimilation of surface radar rainfall observa-
tions into NWP mesoscale models. We have concen-
trated here on the structure of the errors resulting from
the two major sources of uncertainty affecting radar
rainfall observations at nonattenuated wavelengths
(i.e., the range-dependent error and the error associ-
ated with the Z-R transformation) and only in strati-
form conditions. For this purpose we analyzed long
time series of collocated radar reflectivity and DSD
observations obtained in Montreal.

The analysis of the biases introduced by the range-
dependent error has shown characteristics already
found by other authors: little bias close to the ground
(below the bright band), a significant overestimation
when reflectivity observations at the ground are extrap-
olated from the melting layer, and progressive under-
estimation as the radar samples at higher elevations.
The effects of the beamwidth increasing with range can
be appreciated as a clear smoothing of radar observa-
tions. The autocorrelation function of these errors has

also been characterized and we show that the errors are
mainly uncorrelated in the rain region. As the observa-
tions are taken farther aloft, the errors become more
correlated (with decorrelation lags below the bright-
band peak around 2 h) and slightly less correlated in the
snow region. The latter is somewhat surprising because
one would expect more correlation in snow due to the
more uniform nature of the fields and could be attrib-
uted to the small-scale variability of the VPRs in the
snow region.

The errors due to the uncertainty associated with the
reflectivity transformation at the ground when a single
Z-R relationship is used have also been characterized
in terms of their variability and average ACF. During
stratiform conditions, a standard deviation of 1.37 dB
has been found and the decorrelation time shows that
the consistency of the departures from the climatologi-
cal Z-R persists for around 2 h for resolutions corre-
sponding to 15 X 15 km?.

Finally, we have also studied the cross correlation
between the two analyzed sources of error. We have
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shown that, below and above the melting layer, negli-
gible correlation exists between the two types of errors
while contamination by bright band is responsible for a
significant correlation. This simply reflects the fact that
the physical processes dominating the generation of
precipitation above the melting layer have a direct ef-
fect on both the intensity of the bright band (for which
the error with range is a proxy) and on the resulting
Z-R relationship at the ground.

The resulting error covariance shows that the stan-
dard deviation of the resulting error remains within
very narrow limits at near ranges and at low heights
[between 1.5 and 2 dB(R)], while the ACF shows that &
decorrelates at lags of 1.5-2 h or, alternatively, 60-80
km. At farther ranges, when the observations are ob-
tained in the melting layer or aloft, the standard devia-
tion of ¢ increases up to 2.5-3.5 dB(R) and the error
decorrelates faster (after 40-60 min, or 25-40 km).

Considering the results described above and that,
with the resolution of the observations used in this pa-
per (15 X 15km?), the obtained decorrelation distances
of 60-80 km result in four to six grid points (or two to
three grid points for elevated observations), we con-
clude that (i) the usual hypothesis of homogenous er-
rors is not realistic at ranges where the CAPPI used to
estimate rainfall at the ground is constructed from the
lowest PPI (i.e., from observations significantly higher
than the nominal CAPPI height), and (ii) at the region
where o, remains within reasonable limits (where the
radar measures in the rain region), the decorrelation
distance of the error is significantly longer than the
resolution of the observations and, therefore, the as-
sumption of uncorrelated errors (very common in
schemes assimilating radar rainfall measurements) is
not generally valid.

From a more hydrological perspective, Ciach et al.
(2007) and GBSTZ looked into the problem by char-
acterizing the structure of the residuals between radar
rainfall estimates at ground and gauge observations. In
this way, they account for the general effects of the
errors affecting radar estimates, assuming the gauges to
be perfect.

The approach to computing radar errors used here
has more similarities to that of Jordan et al. (2003). The
main differences are (i) we used a much longer dataset
and (ii) in their study, the analyzed error sources were
assumed to be independent (which, as has been shown,
is not necessarily satisfied when the measurements are
contaminated by the bright band) and stationary in
space.

In our approach, there are some assumptions and
considerations that need further discussion and that
could be taken into account in further characterizations
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of the error covariance matrix of radar rainfall esti-
mates:

(i) Both radar rainfall estimates and the error have
been considered in logarithmic units. By doing
this, we assume that the distribution of the error
&(x) is more Gaussian-like than the multiplicative
version of the error [as was also argued by Jordan
et al. (2003) and Ciach et al. (2007)]. This has been
adopted so as to satisfy the hypothesis of Gaussian
errors implicit in most of the assimilation schemes;
however, at the same time, it also imposes assimi-
lating rainfall observations in logarithmic units.

(ii) We have neglected here to consider a possible de-

pendence of the error structure on rainfall inten-

sity [as was also done by Jordan et al. (2003) and

GBSTZ]. However, since here we limit our study

to stratiform rain, and consequently to a limited

dynamic range of intensities, we should expect
little advantage in further stratification with inten-
sity, although this remains to be verified.

The presented methodology assumes that the

height of the brightband peak is known, and this is

not always the case within the framework of radar
data assimilation. Here, we propose using the in-
formation of the 0°C isotherm provided by the
background term and/or the information about the
brightband peaks identified by an algorithm such
as the one proposed by Sanchez-Diezma et al.

(2000).

(iv) The fact that the study has been carried out using
long-term observations means that the resulting
error covariance matrix is representative of the
mean stratiform conditions and it may be not fully
appropriate for each individual situation. It also
has to be mentioned that it is limited to certain
conditions of the quality control of the data.
Mainly, it is valid when no correction is applied to
compensate for the range-dependent error [or, al-
ternatively, when the climatological VPRs strati-
fied according to the height of the brightband peak
are used to compensate the range-dependent er-
ror, similar to methodology C3 of Bellon et al.
(2007); we would expect less correlated e, if
method C2 in the same paper were applied] and
when a climatological Z-R transformation for
stratiform precipitation is used. Finally, it has to be
mentioned that although the methodology can be
applied elsewhere, the results shown here corre-
spond to the specific region where the study has
been done (Montreal, Quebec, Canada) and to the
scanning strategy and characteristics of the radar
used for the analysis. For instance, characterizing

(iii)
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the error covariance matrix becomes a much more
complex problem at shorter wavelengths, since at-
tenuation due to precipitation becomes a signifi-
cant source of error, and modeling it can be a se-
rious challenge due to its complexity (e.g., the at-
tenuation error is clearly nonstationary).

(v) Similarly, it has to be noted that the presented
results have been obtained at a resolution of radar
rainfall observations of 15 X 15 km? This can be
considered a typical resolution for schemes assimi-
lating surface rainfall observations to constrain the
profiles of temperature and pressure of mesoscale
models. However, the resolution of the observa-
tions has a direct impact on their error covariance
and it is, thus, not correct to use the results pre-
sented in this work for different resolutions (in a
follow-up paper, we will discuss the impact of reso-
lution on the resulting error structure).

(vi) In our study we have only characterized the instru-
mental error of radar rainfall estimates, while the
error covariance matrix of observations R should
also include the component due to the uncertain-
ties in the observation operator H() used to trans-
form model variables to the observation domain
(see Kalnay 2003). The error covariance matrix
derived in our study would, thus, underestimate
the errors affecting the assimilation of radar rain-
fall estimates into NWP models.

It is also worth mentioning that one interesting ap-
plication of the error covariance matrix of radar rainfall
estimates (as the one proposed here) is to study how
the uncertainty in rainfall observations is propagated
through a rainfall-runoff model in terms of the uncer-
tainty in simulated flows (see Krzysztofowicz 1998;
Krzysztofowicz 2002). In this sense, some authors (e.g.,
Jordan et al. 2003; Berenguer et al. 2005; Germann et
al. 2006; Ciach et al. 2007) propose a probabilistic ap-
proach based on ensemble of equiprobable rainfall
fields compatible with radar observations [first at-
tempts have been presented in the works of Pierce et al.
(2005), Lee et al. (2007), Berenguer et al. (2006), and
GBSTZ] and use them as inputs for a rainfall-runoff
model to analyze the impact of the uncertainty in rain-
fall products in terms of the simulated discharges.
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covariance matrix of radar estimates of rainfall at the
ground for mesoscale assimilation systems.
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