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1. Introduction 

Geostatistical methods have been widely used for quantitative precipitation estimation (QPE) based on the combination of 

radar and raingauge observations. They are flexible and accurate and allow for radar-raingauge combination in real-time. 

Even within the area of geostatistical methods, however, a wide range of choices have to be made when planning for a 

particular application. These choices regard, for example, the actual combination method (e.g., kriging with external drift, 

cokriging), the kriging neighbourhood (global vs. local), the technique used to estimate the parameters of the geostatical 

model (e.g., least-squares, maximum-likelihood estimation), and the 

transformation of the precipitation variable. 

In addition to these issues, there are a number of options for modeling 

spatial dependencies in the precipitation data. Correlograms (variograms) for 

kriging are customarily one-dimensional, but two- or higher-dimensional 

correlation maps are also used and are one way of taking spatial anisotropy 

into account. Furthermore, correlograms can be parametric or 

nonparametric, they can be obtained from the radar or the raingauge data, 

and they can be estimated flexibly on a case-by-case basis or with data from 

a longer period of time. 

Recently, nonparametric correlograms based on spatially complete radar 

rainfall fields have been used in combining radar and raingauge data [1]. 

Here, we compare the estimation of nonparametric correlograms with the 

estimation of parametric semivariogram models conventionally used in 

geostatistical applications. We identify and explain a bias of the non-

parametric correlograms towards too low ranges, and suggest a correction 

for this bias. 

2. Semivariogram estimation 

The semivariogram of a spatial process Z is defined as (for greater detail 

see [2], whose notation we largely follow): 
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are the variance and the correlation function of the process Z, and E(·) 

denotes an expectation value. The widely-used Matheron-estimator for the 

semivariance reads (we denote estimators with a hat to distinguish them from 

theoretical quantities): 
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N(si-sj) denotes the set of all pairs of observations at a given lag distance and 

|N(si-sj)| is the number of such pairs. For complete radar grids of dimensions 

Fig. 1. Semivariogram and correlogram 
estimation. (a) One-dimensional synthetic 
data sample, (b) semivariogram cloud, (c) 
empirical semivariogram and fitted 
parametric model, (d) theoretical and 
estimated correlograms.  
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N1 · N2 ·… this number is equal to (N1-k) · (N2-l) ·…, where k, l, … are the components of the lag distance vector in units of 

the grid spacing. 

The customary procedure for estimating a semivariogram model is illustrated by means of synthetic data in Fig. 1a-c. Fig. 

1a shows a single realization of a one-dimensional Gaussian random process with variance 1 and an exponential correlation 

function (the practical range, i.e. the lag at which the correlation decays to 0.05, equals 0.6 for this process). The sample 

semivariogram (or the so-called semivariogram cloud) is shown in Fig. 1b. It shows semivariogram ordinates for all pairs of 

observations. Since these values scatter substantially, it is customary to smooth the sample semivariogram by calculating the 

estimate (4) after pooling the semivariogram ordinates into a number of lag distance classes. This yields the so-called 

empirical semivariogram shown in Fig. 1c (open circles). Finally, a parametric model is fit to the empirical semivariogram. 

Here, a curve-fitting technique has been used to estimate an exponential semivariogram model (dashed line in Fig. 1c). 

Equation (3) yields the correlation function corresponding to the fitted semivariogram model (Fig. 1d, dashed line). The 

theoretical correlation function is shown by the solid black line in Fig. 1d. The difference between the estimated and the 

theoretical correlation is due to sampling variability and a bias of the estimator and will be discussed later. The use of a 

parametric model has a number of reasons. First, the parametric models are chosen such that they fulfill the property of 

positive definiteness. Correlation functions with this property can be used in geostatistical interpolation (kriging; see relevant 

texts such as [2] for details). Additionally, the parametrization further smoothes the empirical semivariogram and allows to 

estimate the correlation at unobserved lag distances. 

3. Estimation of nonparametric correlograms 

The nonparametric estimate of the correlation function is given by 
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are the sample (also called plug-in) mean and variance, and N is the number of observations (e.g., radar grid points). This 

estimator can be conveniently computed in terms of the discrete Fourier transform (DFT). In fact, the Wiener–Khinchin 

theorem affirms that the magnitude of the DFT of the standardized observations is the spectral representation of the 

(auto-)correlation estimate computed in (5). Thus, (5) can be obtained rather simply by computing the DFT, multiplying with 

the complex conjugate and computing the inverse DFT of the product. This has two main advantages. First, the fast Fourier 

transform allows computing (5) much faster than by means of 

explicit summation. Therefore, the complete radar grid can be 

taken into account. In contrast, the complete semivariogram 

estimator (4) cannot be conveniently computed for sizeable two-

dimensional radar grids, and is practically obtained from ‘thinned-

out’ subsamples of the entire field. Second, the estimated 

correlation function has, by construction, a real and positive 

spectral density. According to Bochner’s theorem, it is therefore a 

positive definite function (called ‘licit’ in [3]) and can be directly 

applied in geostatistical prediction (kriging). In principle, no 

further fitting of a parametric covariance model or manipulation 

of the spectral density is necessary. (This corrects a remark on this 

issue made in [4], section 3.6.1.). The nonparametric estimate (5) 

of the correlation function for the synthetic one-dimensional data 

of Fig. 1a is shown in Fig. 1d (dotted line). 

4. Comparison of estimators 

Both estimates of the correlation function in Fig. 1d exhibit 

shorter ranges than the theoretical correlation. Of course, this 

could be completely due to sampling variability and we cannot 

conclude from the estimates for a single realization (Fig. 1a) on 

the behaviour of the estimators. Therefore, we extend the 

experiment as follows: For each of three Gaussian processes with 

unit variance and exponential correlation function with practical 

ranges of 0.2, 0.6, and 1.5, we draw 100 realizations and estimate 

a parametric (exponential) semivariogram model and the 

nonparametric correlation for each of the realizations. Each 

realization is sampled in the domain [0,1]. The median estimated 

Fig. 2. Behaviour of semivariogram-based and 
nonparametric correlogram estimators for Gaussian 
spatial processes of different ranges. Dashed black line: 
Median fitted semivariogram model for a Gaussian 
process of practical range 0.2. Dotted black line: 
Median nonparametric correlogram estimate for a 
Gaussian process of practical range 0.2. Red and blue 
lines: the same for processes of larger practical ranges 
(0.6, 1.5). All dashed and dotted lines show the median 
of estimates for 100 realizations of the Gaussian 
process. Solid line: theoretical correlation (for all 
ranges; the abscissa is scaled by the practical range). 
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semivariogram-based model for the process with practical range 

0.2 is shown by the black dashed line in Fig. 2. This line is very 

close to the theoretical correlation (solid black line). As a matter 

of fact, the estimator (4) is known to be unbiased. For finite-size 

samples of correlated data, however, it is only approximately 

unbiased. In the present example, the positive autocorrelation 

causes the variance of the process (the semivariogram sill) to be 

underestimated. As a consequence, also the range of the 

semivariograms is underestimated. This effect is the more 

pronounced the larger the practical range is compared to the 

domain size, i.e. keeping the domain size constant (here equal to 

1), the bias will be larger for larger ranges (red and blue dashed 

lines in Fig. 2). 

The dotted lines in Fig. 2 show the nonparametric correlation 

estimates from (5) based on the same 100 realizations of the three 

Gaussian processes. For small lags and a practical range of 0.2, 

the estimate (black dotted line) is still fairly close to the 

theoretical correlation. If the practical range is on the order of the 

domain size, however, the nonparametric correlation is strongly 

biased towards too small values (red and blue dotted lines). The 

bias in the nonparametric correlogram estimate is much larger than in the corresponding semivariogram estimate. (Note: At 

least for small lags, the different normalizations, |N(si-sj)| vs. N, in (4) and (5) are only a minor contribution to the difference 

between both estimates.) 

In order to understand this observation, we rewrite equation (5) as follows: 
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For lag distances that are much smaller than the domain dimensions, we can approximate 
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Equation (6) shows that the computation of the nonparametric correlogram is approximately equivalent to the estimation of a 

semivariogram, and the subsequent conversion of the semivariogram to a correlogram using the simple plug-in estimate of 

the variance. From the point of view of conventional geostatistics, this is a rather far-fetched procedure, which is mainly 

motivated by the convenience of the estimator (5). For positively correlated data, the estimator Ĉ(0) underestimates the 

variance much more than the semivariogram sill, since the latter is largely determined by the semivariance values 

corresponding to the largest lag distances and the extrapolation performed by fitting the parametric semivariogram model. 

This explains the larger bias of (5) compared to (4). 

5. Bias correction 

Equation (6) also suggests an approximate bias correction for the correlation function. Given an alternative estimate 
2σ̂ of 

the variance, assumed to be superior to the sample variance Ĉ(0), the corresponding estimate of the correlation function is 
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The correction of the correlation function is equivalent to scaling the semivariance function by a constant factor Ĉ(0)/
2σ̂ , 

and therefore preserves positive definiteness. For the synthetic data of our introductory example, we have used the sill of the 

Fig. 3. As Fig. 2 but for bias-corrected nonparametric 
correlograms. 
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parametric semivariogram (Fig. 1c) for 
2σ̂  in (7) and the corrected correlation 

function obtained in this way is the dash-dotted line in Fig. 1d. Repeating the 

experiment from section 4 with the bias-corrected estimator (7) yields the results 

shown in Fig. 3. Indeed, the correction works and the bias-corrected 

nonparametric correlograms are very close to the semivariance-based 

correlograms for small lag distances. With increasing lag distance, the 

approximation the bias-correction is based on deteriorates. This can be clearly 

seen for the example with largest practical range (blue dotted line in Fig. 3). 

So far, we have analyzed the behaviour of the two estimators for synthetic 

one-dimensional data. In the following, we apply them to mesoscale hourly 

radar precipitation fields in Switzerland. We conduct the following experiment: 

We collect 220 hourly radar precipitation fields in a domain of 100 · 100 km
2
 

(Fig. 4) between January and March 2009. These fields are selected such that 

the precipitation amount is larger than 0.5 mm in at least a quarter of the domain. For each of the fields, we estimate 

correlograms in four different ways and represent the median across the estimates for all fields in Fig. 5a-d: 

a) A subsample of 1000 grid cells is chosen randomly from the field. From the subsample, a parametric (exponential) one-

dimensional semivariogram model is fit as illustrated in Fig. 1a-c and converted to a correlation function as illustrated in 

Fig. 1d. 

b) A two-dimensional empirical semivariogram is determined according to (4) and by averaging in two-dimensional bins of 

lag distance classes (this yields the two-dimensional analogue of the open circles in Fig. 1c). This empirical 

semivariogram is converted into a correlogram using the semivariogram sill estimated in step a). 

c) The unmodified nonparametric correlogram estimate (5). 

d) The nonparametric correlogram estimate corrected according to (7) using the semivariogram sill estimated in step a). 

The estimates a) and b) are traditional semivariance-based estimates; the latter also represents the dominant anisotropy of 

the precipitation fields (for this domain largely determined by the orientation of the main Alpine ridge). The nonparametric 

correlograms also capture this anisotropy, but the range of the estimated correlograms is considerably smaller than that of the 

semivariograms. Finally, the corrected nonparametric correlogram estimate (Fig. 5d) is much more similar to the 

semivariance based estimate (Fig. 5b). Of course, we cannot compare to a theoretical reference correlation for the observed 

precipitation fields, but the fact that the estimators behave in an analogous way to what was found for the synthetic data 

suggests that similar mechanisms act here. If we correct for the different normalizations in (4) and (5), the agreement of the 

bias-corrected correlogram with the 

semivariance-based estimates is further 

improved (not shown). However, this 

renormalization of the correlation function 

does not preserve positive definiteness and is 

therefore not put forward here. 

Fig. 6 is a scatter plot that compares the 

two variance estimates for all the cases 

considered. Indeed, the semivariogram sill is 

considerably larger than the plug-in variance 

for many cases. This illustrates that the 

difference between the two estimators can be 

much larger for individual cases, than the 

median correlograms in Fig. 5 suggest. 

Furthermore, Fig. 6 shows that the difference 

between the two estimators is strongly 

dependent on the precipitation situation (and 

must also be expected to be subject to 

considerable sampling uncertainty). 

According to the above analysis, both 

estimators should agree better for situations 

where the correlation length is small 

compared to the domain size. Arguably, this 

is the case for the points in the vicinity of the 

identity line in Fig. 6. 

 

Fig. 4. Domain (100 · 100 km2) of radar 
composites used in present analysis. The 
grid spacing is 1 km. 

 

Fig. 5. Semivariogram and nonparametric correlogram estimates for hourly 
radar precipitation fields in Switzerland. Median from 220 fields of (a) 
correlogram from exponential semivariogram fit, (b) from empirical two-
dimensional semivariogram, (c) nonparametric correlogram, (d) bias-
corrected nonparametric correlogram. Lags are in km. 
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6. Summary and discussion 

We have shown that the estimation of nonparametric correlograms, while 

computationally very convenient, suffers from a short-range bias that can be 

much larger than the bias in conventional parametric semivariogram estimation. 

The different performance of the two estimators is due to the fact that the 

nonparametric correlogram estimation implicitly uses the simple plug-in 

estimator of the sample variance of the spatial field under consideration. When 

correlated spatial fields are observed in a finite domain, this can substantially 

underestimate the variance. In contrast, in the conventional estimation of 

parametric semivariograms, the variance of the process is determined by the sill 

of the semivariogram model. For positively correlated fields this also 

underestimates the variance, but much less so than the sample variance. It has 

also been shown that the nonparametric correlograms can be corrected in a 

straightforward way if the process variance is estimated from the semivariogram 

sill. 

The relevance of the bias discussed here and the necessity for bias correction will depend strongly on the data under 

consideration and on the context in which the correlation maps are to be applied. In situations where the correlation length of 

the data is small compared to the domain size, and where the focus is on timely calculation and on the best estimate of a 

spatially interpolated field, it may well be justified to opt for the uncorrected correlogram estimator. Great care should be 

taken, however, when using uncorrected nonparametric correlograms for strongly correlated fields observed in comparatively 

small domains, and when the focus of the application is not only on the best estimate of the interpolated field, but also on the 

estimation of the interpolation uncertainty (e.g., kriging variance). Analyses of the kind presented above can help in justifying 

the choice of an appropriate estimator. 
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Fig. 6. Scatterplot of semivariogram sill 
vs. sample variance. 


