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Abstract. Turbulent flow in a water-filled rectangular parallelepiped tank of an inte-
grated solar collector is analyzed by means of a set of two and three dimensional simu-
lations. The geometry and the working conditions of the prototype yield an aspect ratio
of Γ = 6.68, Rayleigh number of Ra = 2.2 × 1011 and a Prandtl number of Pr = 3.42.
Different coarse DNS simulations and LES simulations using the dynamic Smagorinsky
SGS and WALE model are presented. Validity of the Oberbeck-Boussinesq approximation
is questioned. Heat transfer and first and second order statistics are studied.

1 INTRODUCTION

The natural convection flow within enclosures has attracted the attention of many
researchers due to its potential to model numerous applications of engineering interest,
such as cooling of electronic devices, air flow in buildings, heat transfer in solar collec-
tors, among others. The natural convection studies corresponding to the parallelepipedic
enclosures can be classified into two elementary classes: i) heating from a horizontal wall
(heating from below); ii) heating from a vertical wall. The characteristic example of the
former case is the Rayleigh-Bénard flow, however this work will only focus on the cavities
heated from the side. This configuration is referred commonly as the differentially heated
cavity.

Although the differentially heated cavity configuration represents a simple geometry,
the flow gets complex for sufficiently large Rayleigh numbers [1]. The flow undergoes a
gradual transition to a chaotic state as the Rayleigh number reaches a critical value. For
the situation studied in this work, both laminar, transitional, and turbulent zones are
expected to coexist within the domain. Generally the core of the cavity together with
the upstream part of the vertical boundary layers remain laminar while at some point
in the downstream part of the vertical boundary layers, turbulent fluctuations become
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significant. It is a challenging task to detect this phenomenon [2]. Another important
issue is the stratification phenomenon taking place in the core of the cavity. It is one
of the basic open problems of this configuration. Comparisons between numerical and
experimental studies give quite different results, which may be justified by the thermal
radiation effects [3].

The vast majority of the performed work in this field corresponds to air-filled cavities
(see [2] for a detailed preview). If the working fluid is water, obtaining solutions for the
governing equations gets even more complicated, as the boundary layer becomes thinner
than for air at the same conditions. As a consequence, there is an increasing demand for
excessively fine grids in space and time for solving the three-dimensional and time depen-
dent flow, in order to capture the smallest scales of the turbulent flow. Direct Numerical
Simulations (DNS) can be limited to lower Rayleigh numbers and less time integration,
however the use of Large-Eddy Simulations (LES) appears as an atractive alternative
for the resolution of natural convection problems at high Rayleigh numbers. It must be
borne in mind that as LES performs a modelling for the smallest scales of the flow, the
results are strongly dependent not only on grid resolution, but also on the selection of the
appropriate subgrid scale stresses (SGS) model to describe the flow behaviour.

Additional to the issues explained above, when investigating the fluid behaviour in
real working conditions, the validity of the Oberbeck-Boussinesq approximation has to
be questioned. According to Gray and Giorgini [4], the use of the Oberbeck-Boussinesq
approximation can be considered valid for variations of thermosphysical properties up to
10% with respect to the mean value.

The main objective of this work is to analyze the turbulent natural convection flow
of water in a rectangular parallelepiped tank. This configuration corresponds to an inte-
grated solar collector installed on an advanced façade. The aspect ratio is Γ = 6.68. The
working conditions of the particular design yield a Rayleigh number of Ra = 2.2 × 1011

and a Prandtl number of Pr = 3.42. Long-term accurate statistical data by means of a
coarse DNS simulation and a LES simulation using the dynamic Smagorinsky SGS model
[5] are presented, investigating the characteristics of the turbulent flow within the differ-
entially heated cavity. Detailed results of first and second order turbulent statistics are
also presented. Moreover, this work also aims at obtaining a starting point for our study
of non-Oberbeck-Boussinesq effects in turbulent natural convection. The actual working
conditions of the prototype point out a variation of about 20 % in the dynamic viscosity
and 15 % in the thermal expansion coefficient. Thus, it is of interest to analyze some
features of turbulent natural convection flow including Oberbeck-Boussinesq effects.
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2 DEFINITION OF THE PROBLEM

The adopted geometry considered in this work is shown in Figure 1. This geometry
models the parallelepiped tank of an integrated solar collector. The height of the tank
(H), and the width (W) are 0.735m and 0.11m respectively, resulting in an aspect ratio
of Γ = 6.68.
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Figure 1: Geometry of the differentially heated cavity

Taking into consideration the real working conditions of the studied prototype, the
temperatures at the hot and cold vertical isothermal walls are set to 57 ◦C and 47 ◦C
respectively.

3 DESCRIPTION OF MATHEMATICAL AND NUMERICAL METHOD

The Navier-Stokes and continuity equations can be written as

Mu = 0 (1)

∂u

∂t
+ C (u) u + νDu + ρ−1Gp + f = 0 (2)

∂T

∂t
+ C (u) T + ρ−1Cp−1kD(T) = 0 (3)

where u ∈ R3m and p ∈ Rm are the velocity vector and pressure, respectively (here m
applies for the total number of control volumes (CV) of the discretised domain), ν is the
kinematic viscosity and ρ the density. f is the body force f = β(T0 − Tm)g. Convec-
tive and diffusive operators in the momentum equation for the velocity field are given by
C (u) = (u · ∇) ∈ R3m×3m, D = ∇2 ∈ R3m×3m respectively. Gradient and divergence (of
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a vector) operators are given by G = ∇ ∈ R3m×3m and M = ∇· ∈ Rm×3m respectively.

In bouyancy driven flows a common approach is to consider constant thermophysical
properties of the fluid, with the exception of the density variations that are only taken into
account in the bouyancy forces, i.e., the so-called Oberbeck-Boussinesq approximation.
Thus, the temperature dependency of density is linearized in the bouyancy force as:

ρ(T ) = ρm − ρmβm(T− Tm) (4)

Here Tm = (Th−Tc)/2 is the mean value of the temperatures of the cold and hot walls.
Those assumptions have its own implications. First, continuity equation is treated in its
incompressible form, neglecting acoustic phenomena, which in the case of liquids has no
major implications. However, for liquids, deviations from the aforementioned hypothesis
are mainly due to viscosity variations, as the viscosity strongly decreases with the tem-
perature increase.

When considering these effects (Non-Oberbeck-Boussinesq effects) in our work, the
following are assumed:

• temperature dependent thermophysical properties

• density variations are only taken into account in the bouyancy term

• the temperature dependence of the density is linearized as:

ρ(T ) = ρm − ρ′(T ) (5)

Under the above assumptions, equations 1-3 read:

Mu = 0 (6)

∂u

∂t
+ C (u) u + D(ν(T )u) + ρ−1

m Ĝp− ρ−1
m ρ′(T )g = 0 (7)

∂T

∂t
+ C (u) T + ρ−1

m Cp−1
m D(k(T )T) = 0 (8)

The temperature dependencies for ν(T ), k(T ) and ρ(T ) are taken from Furukawa.[6]

Considering the reference scales for length, time, velocity, temperature and dynamic
pressure asH, (H2/α)Ra−0.5, (α/H)Ra0.5, Th−Tc, ρ(α/H2)Ra, respectively, Non-Oberbeck-
Boussinesq thermal convection in the cavity is governed by the non-dimensional quantities:
Ra = (gβm∆TrefH

3Prm)/ν2
m, Prm = νm/αm, Γ and the non-dimensional thermophysical

properties: ν∗ = ν(T )/νm; k∗ = k(T )/km; ρ∗ = ρm−ρ(T )
ρmβm∆Tref

= ρ′(T )
ρmβm∆Tref

.
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The governing equations are discretized on a collocated unstructured grid arrangement,
by means of second-order spectro-consistent schemes [7]. Such discretization preserves the
symmetry properties of the continuous differential operators, i.e., the conservation prop-
erties are held if, the convective term is discretized by a skew-symmetric operator and the
diffusive term is approximated by a symmetric, positive-definite coefficient matrix. These
properties ensure both, stability and conservation of the global kinetic-energy balance on
any grid. Energy transport is also discretized by means of a spectro-consistent scheme.
An explicit third-order Gear-like scheme [8] based on a fractional step method is used for
time-advancement algorithm, except for the pressure gradient where a first-order back-
ward Euler scheme is used.

Collocated meshes do not conserve kinetic energy when fractional step method is used
[9, 10]. The source of these errors are interpolation schemes and inconsistency in the
pressure field, in order to ensure mass conservation. While the first is eliminated through
the use of consevative schemes, the latter equals to εke = (p̃c)

∗Mc(Gc −Gs)p̃c. Felten and
Lund [10] showed that pressure errors are of the order of O(4x2 4t). However, these
errors do not have significant impact on the grid resolutions and time-steps used in LES
and DNS.

LES studies have been performed using two different SGS models: i) the dynamic eddy
viscosity model (DEV)[5] ii) the wall-adapting local-eddy viscosity (WALE)[11]. In order
to study the influence of the models, a course DNS (CDNS) is also calculated.

3.1 Boundary conditions and fluid properties

For the velocities, no-slip condition is applied on all the walls. In the spanwise direction
(when applicable) periodic boundary condition is used.

Isothermal vertical walls are assumed. Left vertical wall is at 57 ◦C and right vertical
wall is at 47 ◦C. In the top and bottom confining walls, Neumann boundary condition
(∂T/∂n = 0) is applied.

Except for the Non-Oberbeck-Boussinesq calculations, the fluid properties for water
are calculated at the average temperature of (Th−Tc)/2 = 52◦C. Rayleigh number based
on the height of the cavity is Ra = ρβ(Th − Tc)H

3/να = 2.2 × 1011 and the Prandtl
number is Pr = ν/α = 3.42, being ν is the kinematic viscosity and α thermal diffusivity.
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3.2 Geometric discretization

The samallest scales at the hot and cold walls are imposed by viscous and thermal
boundary layers, while grid size at the bulk must be lesser than Kolmogorov scale. For
the Prandtl number in our problem, the thermal boundary layer is thinner than the
viscous boundary layer as δt ∼ h/Ra0.25 and δv ∼ Pr0.5δt [12]. The meshes shown in
Table 1 are used for our preliminary studies.

level N1 ∆x1min N2 ∆x2min ∆t

m1 80 4.08× 10−5 250 4× 10−3 9.12× 10−6

m2 176 8.16× 10−5 550 1.82× 10−3 3.65× 10−5

m3 258 6.80× 10−5 770 1.30× 10−3 2.53× 10−5

Table 1: Space and time discretization grids used in the test cases.

4 PRELIMINARY RESULTS AND CONCLUSIONS

As the numerical effort to carry out the present simulations is too large, all the calcu-
lations here presented are restricted to two-dimensional (2D) simulations. Although 2D
calculations might affect the fluid dynamics, some of the characteristics of the flow or
non-Oberbeck-Boussinesq effects can still be captured under this assumption. It has been
shown earlier by Trias et al. [2] for a differentially heated cavity for Rayleigh numbers
up to 1010 and by Schalzl et al. [13] for Rayleigh-Benard convection, that in general as
a rough approach to capture the general features of the flow and especially boundary
layer profiles and Nusselt numbers, 2D simulations can be a good approximation. This is
particulary true for comparisons of the non-Oberbeck-Boussinesq effects, where no SGS
model has been used. However, regarding to LES modelling, some of the conclusions
drawn in the present work must be taken as preliminary results, as the filtering process
might be affected by the 2D assumptions done.

4.1 Grid study

Numerical solutions using grid sizes m2 and m3 are compared. Although not shown
here, differences are insignificant in terms of heat transfer. However, the differences in
velocity profiles are considerable and second order turbulent statistics differ significantly
(see Figures 2 and 3).

The integration period for the presented results is 100 time units starting from tini =
250. Even though, more time integration can be necessary, the obtained results suggest
using denser grids. Note that coarse mech solution overestimates the peak values of the
Reynolds stresses by more than twice.
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Figure 2: Velocity and temperature profiles at x2 = 0.5
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Figure 3: Reynolds stress components and temperature variance profiles at x2 = 0.5.

7
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4.2 LES models

In this work, LES studies using two different SGS models (WALE and DEV) have been
carried out. The performed numerical solutions with LES models use m2 grid level.

x1

u

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

nomodel m2
wale m2
dev m2

x1

v

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

nomodel m2
wale m2
dev m2

x1

T

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

-0.4

-0.2

0

0.2

0.4
nomodel m2
wale m2
dev m2

Figure 4: Velocity and temperature profiles at x2 = 0.5

As it can be seen from Figures 4 and 5, for the used mesh size, a clear effect of the
LES models cannot be observed. This can be due to the fact that the filtering process
employed can be affected by the 2D flow assumption.

In Figure 6 stratification values for the different LES and nomodel cases are shown.
Considering the outcome of these preliminary results, one can state that LES models
might need relatively more integration time to reach time-independent solution.

These results, together with the outcome of the nomodel comparisons, suggest the em-
ployement of the LES models on grid size m3.
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Figure 5: Reynolds stress components and temperature variance profiles at x2 = 0.5.
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Figure 6: Stratification values for LES models and nomodel cases
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4.3 Non-Oberbeck-Boussinesq solutions

In order to study the Non-Oberbeck-Boussinesq effects, m2 grid size ise used. The pre-
sented results correspond to a time integration of 100 time units starting from tini = 250.

First results show clearly that the employement of Oberbeck-Boussinesq approximation
affects the thermal and fluid dynamic behaviour of the numerical solution. The influence
of considering variable thermophysical properties can be apreciated in Figure 7. On the
left, temperature profiles over x2 = 0.5 is plotted. Temperature at the core of the cavity
is significantly greater in Non-Oberbeck-Boussinesq solution (TcNOB > TcOB). On the
right, vertical velocity profile is shown. It can be observed that there is no symmetry
in Non-Oberbeck-Boussinesq solution. Boundary layer thickness differs in hot and cold
vertical walls. In Figures 8 and 9 isotherms at representative instants for both cases are
presented. In these figures, the aforementioned differences can be observed.
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Figure 7: Temperature (left) and vertical velocity (right) profiles at x2 = 0.5

Although some three dimensional simulations have been carried out, the results are
not shown here. The present work is intended to be a starting point for our study of
non-Oberbeck-Boussinesq effects in turbulent natural convection.
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Figure 8: Representative instantaneous isotherms for non-Oberbeck-Boussinesq solution using m2 mesh.
(left) t = 300, (middle) t = 350, (right) t = 400. The isotherms are uniformly dsitributed from -0.5 to 0.5
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Figure 9: Representative instantaneous isotherms for Oberbeck-Boussinesq solution using m2 mesh. (left)
t = 300, (middle) t = 350, (right) t = 400. The isotherms are uniformly dsitributed from -0.5 to 0.5
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ical simulations of turbulent natural convection in an air-filled differentially heated
cavity. In 13th International Heat Transfer Conference, 2006.

[4] D.D. Gray and A. Giorgini. The Validity of Boussinesq Approximation for Liquids
and Gases. Int. J. Heat Mass Transfer, 19:545–551, 1976.

[5] M. Germano, U. Piomelli, P. Moin, and W.H. Cabot. A dynamic subgrid-scale eddy
viscosity model. Physics of Fluids A, 3(1760), 1991.

[6] M. Furukawa. Practical expressions for thermodynamic and transport properties of
commonly used fluids. Journal of Thermophysics, 5(4):524–531, 1991.

[7] R. W. C. P. Verstappen and A. E. P. Veldman. Symmetry-Preserving Discretization
of Turbulent Flow. Journal of Computational Physics, 187:343–368, May 2003.

[8] G.M. Fishpool and M.A. Leschziner. Stability bounds for explicit fractional-step
schemes for the Navier-Stokes equations at high Reynolds number. Computers and
Fluids, 38:1289–1298, 2009.

[9] Y. Morinishi, T.S. Lund, O.V. Vasilyev, and P. Moin. Fully conservative higher order
finite difference schemes for incompressible flow. Journal of Computational Physics,
143(1):90–124, 1998.

[10] F.N. Felten and T.S. Lund. Kinetic energy conservation issues associated with the
collocated mesh scheme for incompressible flow. Journal of Computational Physics,
215(2):465–484, 2006.

[11] F. Nicoud and F. Fucros. Subgrid-scale stress modelling based on the square of the
velocity gradient tensor. Flow, Turbulence and Combustion, 62:183–200, 1999.

[12] J. Patterson and J. Imberger. Unsteady natural convection in a rectangular cavity.
J. Fluids Mech., 100:65–86, 1980.

[13] J. Schmalzl, M. Breuer, and U. Hansen. On the validity of two-dimensional numerical
approaches to time-dependent thermal convection. Europhys. Lett., 67 (3):390–396,
2004.

13


