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Abstract 

We propose a new and very fast index (the frequency 

of sign changes of the mirrored differences or fscmd) with 

good correlation with the short range scaling exponent 

(Ｒ) estimated among scales 4 to 16 of the DFA. fscmd 

computes the relative number of sign changes of the 

difference of the RR time series minus their 

corresponding reversed RR time series after a moving 

average detrending procedure is applied using a window 

of 30 samples. Linear regression results with simulated 

time series with Fractional Brownian Noise and with 

actual time series using the Fantasia (FT), Normal Sinus 

Rhythm RR time series (NSR) and Congestive Heart 

Failure RR interval (CHF) databases after artifact 

correction show good agreement between fscmd and Ｒ. 

Finally, Mann-Whitney Rank Sum tests applied to Ｒ and 

fscmd when comparing NSR and CHF databases show 

very significant differences (p<0.001) between groups for 

both indices.  

 

 

1. Introduction 

Detrended fluctuation analysis (DFA) aims to quantify 
the self affinity of time series and was first proposed to 
analyze RR time series by Peng et al [1]. The dynamics of 
the signal can be summarized by fitting scaling exponents 
in different range scales. The short range exponent (1) 
and large range exponent (2) have gained attention in 
heart rate variability studies for its ability of dealing with 
the nonstationarity of time series and for distinguishing 
between normal and pathological states [2].  

One drawback of DFA is its computational cost when 
using long time series as is the case of 24 hour RR time 
series [3] so it is interesting to find alternative and fast 
indices with a high correlation with those obtained in the 
DFA. The aim of this work is to propose a very fast index 
with a high level of agreement with ң.  

 
 

2. Materials and methods 

2.1. Estimation of the short range 

exponent by DFA 

Let’s be X={x(1), x(2),…x(N)} a time series with N 
samples. The first step of the DFA is to compute the 
mean value of the time series and integrate the time series 
without its mean: 
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Next, the integrated time series is divided in boxes of 

equal length n. For each box, a trend (yn(k)) is obtained 
and the following statistic is computed: 
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F(n) is obtained for all the available boxes. Finally, the 

average of F(n) is computed (  nF  ) . By changing n,   

 nF  changes. The scaling exponent is obtained as the 

slope of a linear fitting of the log-log plot of n versus   for 
a certain range of n. [1] defined 1 in the range 4 ≤ n ≤ 16 
so this is the range that we have employed in this work. 
Moreover, we have used a linear detrending to compute 
F(n) although other detrending methods are feasible.  

In the case of a very long time series, the computation 
of the trend and F(n) is performed in a very large number 
of boxes so the algorithm can be very time consuming, 
especially for short scales. 
 

2.2. Computation of the proposed index 

Let’s define the reversed or mirrored time series as 
Xr={x(N), x(N-1), … x(1)} so xr(n)=x(N-n+1) and the 
time series of the mirrored differences as:  
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dm(n)=x(n)-xr(n)= x(n)-x(N-n+1)  (3) 
 

Then, the sign of dm(n) is computed. The proposed 
index (fscmd) is the number of sign changes normalized 
by N-1.  

When applying the index to RR time series where a 
very slow component could be present (i.e. the night-day 
difference) it is advisable to detrend the time series prior 
to the computation of the index. In this work, all the RR 
time series have been detrended by using a bidirectional 
moving average filter with a window of 30 beats. The 
appendix contains the MATLAB code for the 
computation of the index (including the detrending 
procedure).  

 
2.3. Simulations 

In order to assess the agreement between 1 and fscmd 
in purely self-similar time series, a fractional Gaussian 
noise generator proposed in [4] has been used with 
randomly generated Hurst exponents. The indices have 
been computed in time series with 30000, 3000 and 300 
samples. For each length of the time series 100 
realizations have been obtained.  

 
2.4. Databases and preprocessing 

For the sake of reproducibility we have used in this 
work only databases that are freely available online in 
www.physionet.org [5]. The Normal Sinus Rhythm RR 
time series database (NSR) has been employed to test the 
relationship between 胃 and fscmd in 24 hour recordings 
in healthy subjects. We have used all 54 recordings. The 
Fantasia database (FT) has also been employed in order to 
assess the agreement in a situation where all the subjects 
are in a resting situation. This database has a group of 20 
young subjects and a group of 20 old subjects and the RR 
time series have a length of approximately two hours. 
Finally, the Congestive Heart Failure RR interval 
database (CHF) has been used in order to assess the 
agreement of both indices in a pathological situation and 
to compare with NSR. Previous to any analysis, the raw 
RR time series have been automatically corrected with the 
following algorithm:  

If the change from one R-R interval to the next 
exceeds the inter-quartile range of the differentiated R-R 
time series ten-fold then it is decided that an artifact is 
present.  

The artifact is then classified as a false positive (FP), 
false negative (FN) or ectopic beat (EB) artifact.  

For a FP, as many consecutive R-R intervals as needed 
are added to obtain a corrected R-R beat whose value is 
close to the mean of the previous ten R-R intervals.  

A FN is split in as many R-R intervals with equal 
value as needed to be close to the mean of the previous 

ten R-R intervals.  
An EB is substituted with two equal R-R intervals 

corresponding to the mean of the two R-R intervals 
involved in the EB.   

After correction, 1 and fscmd have been sequentially 
computed for each time series of the three databases in 
the same computer. In the case of the NSR, the time of 
computation for 1 and fscmd has been also stored in 
order to compare the speed of processing. 

 
2.5. Statistical Analysis 

Statistical analysis were performed with SigmaStat© 
3.10. The agreement of both indices was assessed with 
linear regression. The intercept, slope, R2 and significance 
(p) of the analysis of variance of the linear regression 
were obtained for the simulated signals and the three 
databases. In the linear regression, 胃 was considered the 
dependent variable so it can be estimated by multiplying 
fscmd by the slope and then adding the intercept. Finally 
two Mann-Whitney Rank Sum tests were performed in 
order to assess if both 胃 and fscmd have significant 
differences when comparing the NSR and the CHF. The 
T statistic (sum of the ranks for the smaller group) and 
significance of the test (p) were used to compare the 
performance of both indices. 

 
3. Results 

Figures 1 and 2 show the results for the linear 
regression in simulated time series and RR time series 
respectively. Table 1 show the intercept and slope of the 
linear regression and the R2 of the linear fitting. All the 
linear regression were very significant (p<0.001). 
 
Table 1. Results of the linear regression for the simulated 
time series and RR time series. 

 
 Intercept Slope R2 

Simulated 30000 
beats 

1.593 -2.205 0.995 

Simulated 3000 
beats 

1.577 -2.176 0.986 

Simulated 300 
beats 

1.467 -1.841 0.834 

NSR 1.657 -2.241 0.793 
FT 1.605 -2.245 0.822 

CHF 1.568 -1.923 0.937 
 
Figure 3 show the results for the comparison of NSR 

and CHF using both indices using Mann-Whitney Rank 
Sum tests. Finally, the time expended in the computation 
of 1 is 461.3 ± 44.5 (mean ± SD) times that of the time 
needed to compute fscmd in the NSR. 
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4. Discussion 

As seen from figure 1 and table 1 there is a significant 
relationship between 1 and fscmd in self-similar time 
series especially when the length of the time series is 
large. Nevertheless, when using actual RR time series the 
relationship is still significant but at a lesser extent. 
Moreover, while the slope and intercept are similar in FT 
and NSR, the results for CHF show a lower intercept and 
slope. This can be due to the fact that actual RR time 
series can be approximated by a mix of several long-
range correlation processes, quantification noise and 
pseudo periodic signals (i.e. respiratory sinus arrhythmia). 
In CHF, the mix seems to be different from that of FT or 
NSR. Figure 3 shows significant differences between 
NSR and CHF with both indices. Nevertheless, the sum 
of ranks (T) shows a higher significance when using 
fscmd instead of 1. 
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Figure 1. Comparison of indices for simulated self-similar 
time series for different time series lengths. 

 
By definition, fscmd is computed from a time series 

that is generated as the point-to-point differences of the 
original time series and its reversed version. The sign of 
the differences could be completely different if the last 
samples of the original series are not considered or are 
missing. We have assessed the error by comparing fscmd 
obtained with the whole time series and the averaged 
fscmd obtained by computing the index when the last 
samples (discarding from one up to ten samples) are 
removed in the NSR. The relative error was 0.41% ± 
0.38% (mean ± SD) so the effect of obtaining the index 
from a time series of length N instead of its subset of 
length N-k its quite negligible. 

1 and fscmd are linearly related as seen in figure 1 
and 2 so fscmd can be used as an alternative way to 
estimate 1. Nevertheless, table 1 shows that this linear 
relationship depends on the database. By joining the 

results of NSR, FT and CHF the relationship between 
both indices can be written as: 

 
fscmd

fscmd
predicted ·068.2594.11    (4) 
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Figure 2. Comparison of indices for actual RR time series 
with different lengths. CHF and NSR correspond 
approximately to 24 hour recordings while FT uses 
approximately 2 hour recordings. 
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Figure 3. Mean and standard deviation of the indices for 
NSR and CHF and results of Mann-Whitney Rank Sum 
tests. 
 

Figure 4 shows the Bland-Altman when comparing 
this estimation of the short range exponent and that 
obtained by DFA. The absolute difference between the 
estimations of the short range exponent is 0.058±0.049 
(mean ± SD). So fscmd can be used as an alternative way 
to estimate 1. Nevertheless, further studies are required 
in order to assess if the relationship between both indices 
remains similar in other pathological or physiological 
situations. 
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5. Conclusions 

The frequency of the sign changes of the mirrored 
differences (fscmd) is proposed as an alternative way to 
assess the self-affinity of RR time series in the short 
range. This index has a very significant linear regression 
with 1 but it is computed nearly 500 times faster. When 
comparing RR time series from a normal group and from 
patients with congestive heart failure, there are very 
significant differences between both groups using fscmd 
or 1. 
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Figure 4. Bland-Altman diagram for the comparison of 
short range exponent estimated by DFA or by equation 
(4). 
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Appendix 

The following function computes fscmd in MATLAB.  
 

function fscmd=fscmdcomput(rr) 
rrd=rr-filtfilt(ones(size(1:30))/30,1,rr); 
rrr=rot90(rot90(rrd)); 
d=sign(rrd-rrr); 
k=find(d==0); 
d(k)=-ones(size(k)); 
fscmd=length(find(diff(d)))/(length(d)-1); 
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