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We uncover and characterize different chaotic transport scenarios in perfect two-dimensional periodic po-
tentials by controlling the chaotic dynamics of particles subjected to periodic external forces in the absence of
a ratchet effect �i.e., with no directed transport by symmetry breaking of zero-mean forces�. After identifying
relevant symmetries of the equations of motion, analytical estimates in parameter space for the occurrence of
different transport scenarios are provided and confirmed by numerical simulations. These scenarios are highly
sensitive to variations of the system’s asymmetry parameters, including the eccentricity of the two-dimensional
periodic potential and the direction of dc and ac forces, which could be useful for particle sorting purposes in
those cases where chaos is unavoidable.
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I. INTRODUCTION

Controlling the transport of particles on periodic potential
energy surfaces is an old and ubiquitous problem appearing
in different fields such as physics, chemistry, and biology �1�.
Specific examples include colloidal transport in arrays of op-
tical tweezers �2�, flux creep through type-II superconductors
�3�, and Bose-Einstein condensates with periodic pinning
sites �4�, among many others. Previous theoretical analysis
of the motion of particles on surfaces �5–10� considered me-
soscopic models owing to the great complexity of the differ-
ent transport scenarios. While nonchaotic regimes have been
widely studied in the context of noisy overdamped models
�11� and the chaotic regime has been mainly considered
when directed transport is induced by symmetry breaking
�the so-called ratchet effect� �9,12�, to the best of our knowl-
edge, the fundamental case of deterministic dissipative cha-
otic transport �CT� in the absence of a ratchet effect �i.e.,
with no symmetry breaking of zero-mean forces� has yet
received little attention �13�. The study of such a chaotic
transport in simple two-dimensional periodic potentials
could indeed shed some light on diverse chaotic phenomena
of great complexity appearing, for example, in magnetotrans-
port on antidot lattices �14�.

The rest of the paper is organized as follows. In the next
section we introduce our simple two-dimensional model sys-
tem and obtain analytical estimates of the regions of the pa-
rameter space where chaotic transport can occur by using
Melnikov analysis �MA�. The analysis of the relevant sym-
metries of the equations of motion and the chaotic threshold
in parameter space is provided in Sec. III, while numerical
results confirming the theoretical scenario of chaotic trans-
port are presented in Sec. IV. Finally, Sec. V summarizes our
results.

II. MODEL SYSTEM

We consider here the classical dynamics of a dissipative
particle moving on a standard separable periodic potential,
with an external force having both dc and ac components,
and neglecting thermal effects:

mẍ + �V/�x = − �ẋ + f0 cos � + f1x cos��xt� , �1�

mÿ + �V/�y = − �ẏ + f0 sin � + f1y cos��yt� , �2�

where an overdot denotes a derivative with respect to t, �
describes the direction of the dc force f0, � is the phenom-
enological coefficient of friction, and V�x ,y�
=V0�cos�2�x /�x�+cos�2�y /�y�� /2 is the potential with
�x , �y being the characteristic length scales. A main purpose
of the present work is a theoretical characterization of the
different CT scenarios by providing analytical estimates of
the threshold conditions in parameter space by using MA.

A. Melnikov analysis

We now briefly describe this method for the simple case
of a perturbed integrable Hamiltonian system with one de-
gree of freedom. Consider the system

xt = h0�x� + �h1�x,t� ,

x = �x1,x2� , �3�

where the unperturbed system ��=0� is an integrable Hamil-
tonian system which possesses a hyperbolic fixed point X0
and a separatrix orbit x0�t� such that limt→�	 x0�t�=X0, while
the stable and unstable manifolds xs�t� , xu�t� are smoothly
joined. Generally, the perturbation term h1 can introduce dis-
sipation and nonautonomous excitation, with h1 being T pe-
riodic in time. For ��0, the perturbed stable and unstable
manifolds no longer join smoothly such that, if the ratio of
dissipation and excitation is sufficiently small, the stable and
unstable manifolds will intersect transversally, creating a ho-
moclinic point. This process is called a homoclinic bifurca-
tion and indicates the onset of chaotic instabilities. To check
when a transverse crossing occurs, Melnikov introduced a
function �now being known as the Melnikov function �MF��
which measures the distance between the perturbed stable
and unstable manifolds in the Poincaré section. If the MF
presents a simple zero, the manifolds intersect transversally
and chaotic instabilities result. See Refs. �15–17� for more
details about MA.
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B. Melnikov function

For the sake of a dimensionless description, we put the
equations of motion �1� and �2� into the form

r̈x + sin rx = − 
ṙx + F0x cos � + F1x cos��x�� , �4�

r̈y +
sin ry

a2 = − 
ṙy +
F0x

a
sin � +

F1xb

a
cos�c�x�� , �5�

where all variables and parameters are dimensionless, an
overdot denotes a derivative with respect to �
��t�2V0 /m�1/2 /�x, rx�2�x /�x��, ry �2�y /�y ��, 

���x�2mV0�−1/2 /�, F0x� f0�x / ��V0�, F1x��xf1x / ��V0�,
�x��x�x�m / �2V0��1/2 /�, a��y /�x, b� f1y / f1x, and c
��y /�x. It is also assumed that the system �Eqs. �4� and �5��
satisfies the MA requirements, i.e., the dissipation and forc-
ing terms are small-amplitude perturbations of the underly-
ing conservative pendulum r̈x,y +sin rx,y =0. Straightforward
application of MA to Eqs. �4� and �5� yields the MFs

Mx
���0� = Dx

� � 2�F1x sech���x

2
�cos��x�0� , �6�

My
���0� = Dy

� � 2�abF1x sech��ac�x

2
�cos�c�x�0� , �7�

respectively, where the positive �negative� sign refers to the
top �bottom� homoclinic orbit of the conservative pendulum,
and Dx

�� �2�F0x cos �−8
, Dy
�� �2�aF0x sin �−8a
.

Since the MFs �6� and �7� have an infinity of simple zeros, a
main conclusion is that necessary conditions for the onset of
chaotic instabilities are, respectively,

F1x 

min�	Dx

+	, 	Dx
−	


2�
cosh���x

2
� , �8�

F1x 

min�	Dy

+	, 	Dy
−	


2�ab
cosh��ac�x

2
� . �9�

Next, one can compare the theoretical predictions and
Lyapunov exponent �LE� calculations �16� with the caveat
that one cannot expect a too good quantitative agreement
between the two kinds of results because LE provides infor-
mation concerning solely steady chaos, while MA is a per-
turbative method generally related to transient chaos �17�. To
quantify the sorting capability associated with the threshold
of chaotic transport, we evaluate the Cartesian components
of the velocity, �vi�=lim�→	�ri���� /� �i=x ,y�, where angular
brackets indicate average over initial conditions, and con-
struct the velocity components parallel and perpendicular to
the external dc force f0, �v
�= �vx�cos �+a�vy�sin � and
�v��=−�vx�sin �+a�vy�cos �, respectively. We characterize
the deviation of �v� from f0 by means of the quantifier

tan � = �v��/�v
� , �10�

where � is the deflection angle �10�. For the sake of clarity,
we shall consider here the case with equal frequencies
�c=1� and both dc and ac forces acting on the same direction

�f1x� f1 cos �, f1y � f1 sin �, and hence b=tan ��. By defin-
ing F1��xf1 / ��V0�, one has F1x=F1 cos �, and hence Eqs.
�8� and �9� reduce to

F1 
 F1,th
x �

min�	Dx
+	, 	Dx

−	

2�	cos �	

cosh���x

2
� , �11�

F1 
 F1,th
y �

min�	Dy
+	, 	Dy

−	

2�a	sin �	

cosh��a�x

2
� , �12�

respectively, where F1,th
x , F1,th

y are the chaotic threshold am-
plitudes.

III. SYMMETRY ANALYSIS

Equations �11� and �12� tell us that the onset of chaos in
both directions strongly depends on the external force direc-
tion �, which can thus be used as a high-sensitivity control
parameter to suppress and strengthen CT in one or another
direction at will. Specifically, one straightforwardly obtains
from Eqs. �11� and �12� that the chaotic threshold amplitudes
exhibit �as functions of �� the symmetries

F1,th
x ��/2 � �� = F1,th

x ��/2 � �� , �13�

F1,th
y ��/2 � �� = F1,th

y ��/2 � �� , �14�

F1,th
x ��/4 � �� = F1,th

y ��/4 � �� , �15�

F1,th
x �3�/4 � �� = F1,th

y �3�/4 � �� . �16�

Now, the following remarks are in order. First, symmetries
�13�–�16� follow directly from the symmetries of the
equations of motion �Eqs. �4� and �5�� with respect to
the angles �=� /2,� /4. Second, Eqs. �13� and �14� are
valid for any spatial potential �a
0�, while Eqs. �15� and
�16� are solely valid for a symmetric potential �a=1�.
Third, symmetries �15� and �16� imply that different trans-
port regimes are expected in the x and y directions, as the
external force direction deviates from the “symmetric”
angles � /4 and 3� /4, respectively. Fourth, symmetries �15�
and �16� also imply �vx��� /4���= �vy��� /4��� and
�vx��3� /4���= �vy��3� /4���, respectively, and hence
tan � �as a function of �� exhibits the symmetry

tan ���/4 + �� = − tan ���/4 − �� , �17�

tan ��3�/4 + �� = − tan ��3�/4 − �� , �18�

i.e., for a symmetric potential, tan � is an odd function of �
with respect to the angles � /4 and 3� /4, respectively. Note
that this is no longer the case for an asymmetric potential
according to the second remark. It is worth mentioning that,
in the absence of ac forces �F1x=0� and a=1, the deflection
of �nonchaotic� particles still exhibits the aforementioned
symmetries with respect to the angles � /4 and 3� /4 since
the first remark holds for such a limiting case. In particular,
when F0x
1, F1x=0, and 
 is sufficiently high the only
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attractors of Eqs. �4� and �5� are limit cycles corresponding
to rotations �18�.

IV. NUMERICAL RESULTS

Extensive numerical simulations confirmed all the above
theoretical predictions. Thus, by varying � one can find dif-
ferent transport regimes �see Fig. 1, top panel�: CT in both
directions �as for �= �2� /9,5� /18
�, CT in one direction
while intermittent periodic transport �PT� in the other �as for
�= �� /6,� /3
�, PT in both directions �as for �
= �7� /36,� /4,11� /36
�, and PT in one direction while pe-
riodic oscillation in the other �as for �= �13� /36,5� /36
�.
Since the onset of chaos also depends on the particle mass
�through the coefficient of friction; cf. Eqs. �11� and �12��,
such a � dependence can therefore be used to sort different
particles according to their mass. For two kinds of particles
with different masses, this means that one can obtain analyti-
cal estimates of the optimal force directions �opt from Eqs.
�11� and �12� such that one particle exhibits CT while the
other does not, with the remaining parameters being held
constant. Numerical experiments confirmed this scenario as
is shown in Fig. 1 �middle panel� and Fig. 2. Additionally,
the onset of chaos also depends on the eccentricity parameter
a �Eq. �12��: decreasing or increasing a from 1 �symmetric
potential� means increasing the potential’s asymmetry. Thus,
the eccentricity of the periodic potential can also be used as
an effective parameter to control CT on a periodic surface, as
in the case of optical potentials, for example �19�. Figure 1
�bottom panel� shows an illustrative example where typical
trajectories are plotted for increasing values of a from 1.
Starting at a situation where CT occurs in both directions
�a=1�, one finds that increasing the potential’s asymmetry
�a
1� changes the motion to PT in both directions �as for
a=1.2�. This behavior changes again to CT in both directions
for higher values of a �as for a=1.4�, and finally changes to
PT in the x direction while remain bounded inside a well in
the y direction �as for a=1.6�. Also, the effectiveness of a
fixed external force at sorting heavy particles is enhanced by
breaking the potential symmetry �recall that 
�m−1/2; see
Fig. 2�. Figure 3 shows illustrative instances of maximal
LEs, �x

+ and �y
+, which quantify the chaotic dynamics in the

x and y directions, respectively, versus � for two values of
the eccentricity parameter. According to the first remark,
these diagrams present exactly the same symmetries than
those of the chaotic threshold amplitudes �Eqs. �13�–�16�,
respectively�:

�x
+��/2 � �� = �x

+��/2 � �� , �19�

�y
+��/2 � �� = �y

+��/2 � �� , �20�

�x
+��/4 � �� = �y

+��/4 � �� , �21�

�x
+�3�/4 � �� = �y

+�3�/4 � �� , �22�

i.e., Eqs. �19� and �20� are valid for any spatial potential �a

0�, while Eqs. �21� and �22� are solely valid for a symmet-
ric potential �a=1�. One typically finds how different chaotic

and nonchaotic regimes drastically change over certain �
ranges as the potential becomes asymmetric. For instance,
PT in both directions at �= �� /4,3� /4
 for a symmetric po-
tential �a=1� changes to CT in solely one direction for an
asymmetric potential �a=1.5� �cf. Fig. 3�. Finally, numerical
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FIG. 1. �Color online� Top panel: trajectories for a net force
applied at different angles: �=13� /36 �a�, � /3 �b�, 11� /36 �c�,
5� /18 �d�, � /4 �e�, 2� /9 �f�, 7� /36 �g�, � /6 �h�, and 5� /36 �i� for
a=1 and 
=0.25. Middle panel: trajectories for a=1, �=2� /9,
and four values of the dimensionless coefficient of friction: 

=0.25 �a�, 0.3 �b�, 0.35 �c�, and 0.4 �d�. Bottom panel: trajectories
for �=2� /9, 
=0.25, and four values of the eccentricity param-
eter: a=1 �a�, 1.1 �b�, 1.3 �c�, and 1.5 �d�. Other parameters are
F0x=0.28, F1=1, and �x=0.68. Dotted lines indicate the direction
of the external force.
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simulations confirmed the accuracy of predictions �17� and
�18� as is shown in Fig. 4. Starting with CT in both directions
at �=� /4 for a symmetric potential �Fig. 4, top panel�, one
sees that the deflection of particles increases as � deviates
from � /4 according to the route described in Fig. 1, top
panel. The maximum deflection occurs at symmetric angles
with respect to � /4,�max

low ,�max
sup �� /4−�max

low ��max
sup −� /4�,

where there is PT in one direction while periodic oscillation
in the other. For ���max

sup ����max
low �, this transport regime

remains, i.e., �vx�=0 ��vy�=0�, and hence tan �����max
sup �

=cot � �tan �����max
low �=−tan �� �cf. Eq. �10��. For an asym-

metric potential �Fig. 4, bottom panel�, the dependence of the
deflection angle on the external force direction essentially
presents a similar scenario to that of the symmetric case, but
now tan � is no longer an odd function with respect � /4, as
predicted �cf. fourth remark�. Finally, it is worth noting that

the above transport scenarios are intrinsically associated with
a chaotic dynamics in the sense that for F1x=0 there is nei-
ther chaos �cf. Eqs. �8� and �9�� nor transport for any value of
the angle � and the remaining fixed parameters.

V. CONCLUSIONS

To sum up, we have demonstrated theoretically and nu-
merically through a simple and general system that reliable
control of sorting in two-dimensional periodic potentials is
achieved for chaotic particles by identifying the relevant
symmetries of the equations of motion and the chaotic
threshold in parameter space. We uncovered and character-
ized different sorting scenarios associated with symmetric
and asymmetric spatial potentials, which could motivate ex-
periments in different contexts such as optical and antidot
lattices. Among the most interesting extensions of this work
are the case with the ac and dc forces having different direc-
tions, where preliminary results indicate the presence of in-

0.10 0.15 0.20 0.25 0.30 0.35 0.40
γ

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

ta
n

α

a=1
a=1.5

1.0 1.2 1.4 1.6 1.8
a

−0.8

−0.6

−0.4

−0.2

0.0

ta
n

α

γ=0.2

FIG. 2. Deflection angle vs coefficient of friction for two values
of the eccentricity parameter: a=1 ��� and 1.5 ���. The inset
shows the deflection angle vs eccentricity parameter for 
=0.2.
Other parameters are �=� /5, F0x=0.28, F1=1, �x=0.68. The
solid lines are solely plotted to guide the eye.

FIG. 3. �Color online� Maximal LEs �x
+ �dark gray� and �y

+

�light gray� as functions of the angle � for two values of the eccen-
tricity parameter: a=1 �top panel� and 1.5 �bottom panel�. Other
parameters are F0x=0.28, F1=1, 
=0.25, and �x=0.68.
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−tan � and cot � �dashed lines; see the text�.
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triguing “absolute negative mobility” phenomena �20�, as
well as the study of the effect of noise on the present trans-
port scenarios: even very small amounts of noise may cause
both a transition from a bounded state to a running state and
a significant modification of the chaotic threshold in param-
eter space �21�.
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