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Abstract  —  We present a nonlinear model for Bulk Acoustic 
Wave resonators that combines different sources of nonlinearity 
by use of device-independent material-specific parameters to 
predict intermodulation and harmonic generation. The model 
accounts for intrinsic nonlinearities due to the stiffened elasticity 
and thermal effects that arise from temperature changes in a 
sample driven by an amplitude-modulated signal. Nonlinear 
parameters of the aluminum nitride piezoelectric layer have been 
extracted that are in agreement with previously published results. 
 

Index Terms — Intermodulation, thermal effects, second 
harmonic, Bulk Acoustic Wave resonators. 

I. INTRODUCTION 

The demand for accurate modeling of the nonlinearities in 
bulk acoustic wave (BAW) resonators has recently increased 
because of the need to fulfill expected requirements in 
microwave filters [1]. Despite increased demand, accurate 
modeling is challenging because of the numerous sources of 
nonlinearity, which may or may not be negligible [2]. Existing 
models usually make use of nonlinear lumped circuit 
elements, which are specific to the geometry of the measured 
device and are difficult to relate to the material properties. 
Such approaches usually lead to narrow-band, 
phenomenological descriptions that fail to predict nonlinear 
effects for different geometries and materials [3], [4]. 

This work presents a device-independent physical model to 
account for nonlinear effects in BAW resonators that is valid 
for a broad range of frequencies. Intrinsic nonlinearities 
arising from the dependence of the stiffened elasticity on the 
stress give rise to second harmonics, whereas its variation with 
the dynamic changes of temperature accounts for the 
measurable intermodulation distortion. 

II. UNIFIED NONLINEAR MODEL 

The dependence of the elasticity of the piezoelectric layer 
(generally aluminum nitride (A1N) in BAW devices) on the 
stress has been shown to be an important contribution to 
second-harmonic generation [5]. This sets the intrinsic 
nonlinear properties of the material that can be modeled by 
using a nonlinear distributed capacitor in a distributed 
implementation of the acoustic transmission line in the 
Krimtholz, Leedom and Matthaei (KLM) model [6].  

The process by which intermodulation distortion is 
generated, follows a totally different mechanism. Dissipation, 
arising mostly from viscous damping, is related to the square 

of the input signal, which in turn leads to several spectral 
components of the dissipated power. One of these components 
is the envelope in “two-balanced tones” test, whose frequency 
is half the difference Δf  between two signals f1 and f2. 
Because a temperature rise follows a low-pass filter-like 
behavior, or the speed of temperature variations in a material 
is determined by its diffusivity, the frequency Δf / 2 of the 
envelope becomes the dominant spectral component in terms 
of temperature variations. This leads to a dependence on 
temperature-dependent material properties at the envelope’s 
frequency. This dependence then gives rise to intermodulation 
distortion (2f1 - f2 and 2f2 - f1) when low frequency changes are 
up-converted by mixing with the fundamental frequencies f1 
and f2 [7]. The mechanism of generation for intrinsic and 
thermal effects is shown in Fig. 1, where the nonlinear 
capacitor is defined as 
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which is related with the stiffened elasticity of the material: 
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where S and T are the stress and temperature, respectively, at 
each infinitesimal section of the piezoelectric layer. The 
device-independent parameters ΔcD

1, ΔcD
2 in (2) account for 

the intrinsic nonlinearities and can be linked to ΔC1, ΔC2 in (1) 
as shown in [5]. Similarly, the parameter ΔcD

T accounts for 
thermal effects and is linked with ΔCT by 
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where A is the area of the device. 
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Fig. 1. Nonlinear generation mechanisms in BAW resonators. 
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A. KLM linear model 

The model presented can be considered to be an extension 
of the KLM model that accounts for nonlinear effects. Specific 
details of the KLM model implementation can be found in [6]. 
The piezoelectric layer is implemented as a cascade of 
infinitesimal cells that enable the circuit parameters to be 
related to the nonlinear material properties, as shown in Fig. 2. 
The different material layers of the stack are cascaded as a 
transmission line in the acoustic domain of the circuit model. 
Two types of losses are introduced to correctly fit the model to 
the measured S-parameters. A series resistance models the 
electric loss due to the electrodes, while a parallel conductance 
in each cell assesses the acoustic viscous damping of the 
distributed piezoelectric layer. 
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Fig. 2. Nonlinear KLM model: The piezoelectric layer is divided 
into sections whose lengths are dz. The  upper and lower layers are 
modeled cascading acoustic transmission lines. 

B. Nonlinear model implementation 

i. Intrinsic nonlinearities 

As previously stated, the piezoelectric layer is divided into 
smaller cells and can be directly constructed with the 
distributed parameters of the equivalent acoustic transmission 
line. We only discretize the piezoelectric layer, and treat the 
other layers with equivalent transmission lines, because it is 
the main source of acoustic losses and it is where most of the 
acoustic energy is stored. The nonlinear distributed 
capacitance depends on the mechanical stress at the position 
of each cell, which accounts for the intrinsic nonlinearities that 
lead to harmonic and intermodulation generation [5]. 

ii. Heat flow 

Besides intrinsic nonlinearities, the dependence on the 
temperature is also introduced in order to model the thermal 
effects occurring in the device. This is achieved with a 
dynamic thermal model of the BAW resonator that is coupled 
to the acoustic transmission line to model self-heating 
mechanisms, as seen in Fig. 3.  The heat flowing through the 

layers is modeled, according to the heat equation, as a cascade 
of series resistances and shunt capacitances that accounts for 
thermal conductivity and heat capacity, respectively, of each 
material layer [8]. The terminations of the thermal lines model 
the silicon substrate at the bottom layer, as well as the 
convection and radiation resistances at the top layer, which are 
both followed by a DC voltage source used to model the 
ambient temperature [9].  

iii. Self heating mechanisms 

As seen in Fig. 4, the dissipated heat due to acoustic viscous 
damping at each infinitesimal length dz of the acoustic line is 
coupled to the thermal domain as a current source. The sensed 
temperature, or the voltage in the thermal transmission line, is 
used to change the elasticity according to (2). 
 

 
 

Fig. 3. Nonlinear model including the dynamic thermal domain. 
Detail of grey blocks is shown in Fig 2 and Fig. 4. 
 

 
 
Fig. 4. Implementation of a section dz of the piezoelectric layer. 
The distributed parameters of the acoustic domain are Ld, CNL [5]; Gd 
models the viscosity, and the dissipated power Pd acts as a heat 
source.  
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III. MEASUREMENTS AND RESULTS 

Harmonics and intermodulation products of two tones (f1 
and f2) have been measured over a broad range of frequencies, 
1.88 GHz to 1.98 GHz at 0.01 GHz intervals, in order to 
obtain the nonlinear parameters ΔcD

1, ΔcD
2, and ΔcD

T of the 
piezoelectric layer AlN. Several rectangular and trapezoidal 
shaped state-of-the-art one-port BAW resonators from two 
different suppliers, with different stack configurations and 
areas ranging from 12,500 µm2 to 64,100 µm2, were 
measured. For clarity we show the measured data of only two 
of the rectangular-shaped resonators, which correspond to one 
of the suppliers. The areas of these resonators are 23,300 um2 
and 64,100 um2, which will be noted as A23 and A64, 
respectively. 

A. Second harmonic and IMD2 

Figures 5 shows measurements and simulations of the 
second harmonic 2f1 and 2f2 (2H) and the second order 
intermodulation products f1 + f2 (IMD2) for resonators A64  
(Fig. 5(a)) and A23 (Fig. 5(b)). In Fig. 5, the central frequency 
f0 = (f1 + f2) / 2 is shown as the horizontal axis, which is 
linearly swept from 1.88 GHz to 1.98 GHz. The difference 
between f1 and f2 is kept constant at Δf = 220 Hz. The output 
power of both tones is approximately 19 dBm.  

The circles and stars in Fig. 5 show the measured second 
harmonics 2f1 and 2f2 (points collapse), and triangles 
correspond to the measured IMD2. The left vertical axis 
shows the output power flowing from the device. The right 
vertical axis shows the output power of the 2H and IMD2 
signals normalized with the output power of the fundamental 
tones after de-embedding the effects of the measurement 
setup. The ripple in the output power originates from the 
measurement IMD one-port setup that includes amplifiers, 
filters, isolators, a combiner and one 90º broadband hybrid. 
The continuous lines fit the measurements using the unitless 
ΔcD

1 = 11 for both resonators. The proposed model and 
response of both resonators agree very well over the measured 
frequency range, except around 1.91 GHz, where a small 
spurious resonance appears. The frequency pattern of the de-
embedded normalized power corresponds to the frequency 
dependence of the stress inside the piezoelectric layer at the 
fundamental frequencies (f1 and f2), which elucidates stress-
dependent parameters that are responsible for these intrinsic 
nonlinearities. 

Measurements performed on all resonators from the other 
supplier were fitted with a value of ΔcD

1 = 12, which is 
comparable to the previous value obtained from A23 and A64 
and previous reports [10]. Moreover, these findings support 
the hypothesis that the stiffened elasticity of AlN is 
responsible for the 2H and IMD2 generation. 

B. Third-order intermodulation measurements 

Figures 6 show measurements and simulations (resonators 
A64: Fig 6(a) and A23: Fig. 6(b)) of the third order 
intermodulation products 2f1 - f2 and 2f2 - f1 (IMD3). The 
spacing between tones was also set to Δf = 220 Hz. 

Limitations in the measurement setup, specifically the phase 
noise of sources, lead to a lower bound on the dynamic range 
and resulted in a noise floor at approximately -60 dBm. By 
performing simulations, we were able to show that the IMD3 
due to the intrinsic value ΔcD

1 is smaller than the measured 
values. In order to account for the measured IMD3, we 
introduced the additional terms ΔcD

2 and/or ΔcD
T . 

The data given in Fig.6 have been fitted using ΔcD
1  = 11, 

ΔcD
2 = -1e-10 N-1·m2 and ΔcD

T = -5.8e6 Pa/K, where the 
temperature derivative term can also be read as ΔcD

T/cD
0  = -15 

ppm/K, which agrees in order of magnitude with the values 
reported in [9] and [11]. We have included ΔcD

2 to fit the 
dependence of the intermodulation distortion level on Δf / 2, 
which will be described later. This value of ΔcD

2 also has the 
same order of magnitude previously measured by means of 
mechanical measurements [10]. 
 

 

 
Fig. 5. 2H (circles) and IMD2 (triangles) for A64 (a) and A23 (b) 
resonators. Left vertical axis indicates the output power and right 
vertical axis shows normalized values. 
 

For the largest resonator (A64), Fig. 6(a) shows good 
agreement between the proposed model and the measured 
IMD3 data, over the measured frequency range above the 
noise floor.  In contrast, the smaller resonator (A23) in Fig. 
6(b) shows good agreement at the maximum level of the 
IMD3, but the model fails to predict the IMD3 when the 
spurious resonances play an important role. This could be due 
to the inherent one-dimensional nature of the implemented 

(a)

(b)
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model, and further development is underway. In addition, a 
small bump around 1.97 GHz can be seen in Fig. 6(b), which 
is also not predicted by our model. We believe that other 
dissipation sources could play a role in the third-order 
intermodulation distortion, which may also be dependent on 
the resonator area. 

i. Third-order intermodulation vs. frequency envelope 

Perhaps, the most indicative measure of the role of thermal 
effects is the dependence of the intermodulation distortion 
level on Δf [7]. Measurements with the two test tones at the 
frequency where intermodulation output power is a maximum 
have been performed as a function of the tone spacing. Figure 
7 shows the characteristic low-pass filter shape of the thermal 
impedance where the horizontal axis represents Δf. Squares 
and circles represent the measured IMD3 and solid lines show 
the simulations using the reported ΔcD

1 = 11, ΔcD
2 = -1e-10 N-

1·m2, ΔcD
T  = -5.8e6 Pa/K. 

 

 
Fig. 6. Stars, triangles, squares and circles represent the measured 
f1, f2, 2f1 - f2 and 2f2 - f1 for the A64 (a) and A23 (b) resonator. The 
solid lines are simulations using an input power of 19 dBm. 
 

This shows over this broad parameter space that the third- 
order intermodulation is due to the contribution of different 
sources of IMD3: ΔcD

1, ΔcD
2 and ΔcD

T. Figure 7 shows the 
contribution of each constant, independent of the others. The 
dashed line with circles shows the IMD3 level generated by 
ΔcD

1 as a result of mixing between the second harmonic with 
the fundamental. The dashed line with triangles shows the 

IMD3 level generated by the existence of ΔcD
2, which directly 

generates third-order components. Intermodulation due to 
thermal effects is represented by the dashed line with squares. 
From Fig. 7, IMD3 for slow envelope variations of the driving 
signal is due, almost entirely, to thermal effects. When the 
envelope frequency increases, self-heating effects lose 
importance and intrinsic (thermally independent) values of 
ΔcD

1 and ΔcD
2 become more significant, which produces a 

smoothing of the IMD3 vs. Δf slope. 
  

 
 
Fig. 7. IMD3 level for different separations between tones for the 
A64 resonator. Stars, triangles, squares and circles are f1, f2, 2f1-f2 and 
2f2-f1, respectively.  Contributions to the IMD3 level of each source 
by itself are also plotted with dashed lines: circles, triangles and 
squares represent ΔcD

1, ΔcD
2 and ΔcD

T contributions, respectively. 
 

A small disagreement between measurements and 
simulation can be seen in Fig. 7 for values of Δf between 10 
kHz to 100 kHz. Further improvements of the thermal model 
may account for this discrepancy by introducing additional 
terms to account for frequency-dependent heat diffusion. This 
may produce the desired slower decay and improve the 
agreement between the model and measurements. 
Furthermore, such developments may reproduce the measured 
asymmetries of 2f1 - f2 and 2f2 - f1 from 1 MHz up to 10 MHz. 

VII. SUMMARY AND CONCLUSIONS 

We have presented a nonlinear BAW model that allows us 
to obtain geometry-independent material parameters that 
account for second-harmonic and intermodulation generation 
with bulk material properties. The model is able to predict the 
harmonic generation and second-order intermodulation due to 
the stiffened elasticity as a function of stress. We have 
obtained a value of ΔcD

1  = 11 for the samples provided by one 
manufacturer (rectangular-shaped with several different 
areas), and ΔcD

1 = 12 for a set of samples from another 
manufacturer (trapezoidal-shaped with several different areas). 
These results show that the nonlinear-stiffened elasticity is 
predominantly responsible for second-harmonic generation at 

(a) 

(b) 
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these broad measurement frequencies and array of devices 
areas and shapes. 

Thermal effects were also modeled from third-order 
intermodulation measurements, and a value of ΔcD

T = -5.8e6 
Pa/K was obtained for all the square-shaped resonators. This 
value is consistent with the value reported in [9] and [11]. 
Further research should accurately model heat diffusion 
through the material’s stack. Additional investigation is 
underway to assess the role of other heat sources,  such as the 
electrical resistance of the electrodes, effects of nonlinear 
permittivity, etc. 
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