
AnyTraffic labeled routing for static and dynamic traffic
Dimitri Papadimitriou

Alcatel-Lucent Bell
Copernicuslaan 50

2018 Antwerpen, Belgium
dimitri.papadimitriou@alcatel-lucent.be

Pedro Pedroso
Universitat Politècnica de Catalunya

Jordi Girona 1-3
08034 Barcelona, Spain

ppedroso@ac.upc.edu

Davide Careglio
Universitat Politècnica de Catalunya

Jordi Girona 1-3
08034 Barcelona, Spain

careglio@ac.upc.edu

ABSTRACT
This paper investigates routing algorithms that compute paths
along which combined unicast and multicast traffic can be
forwarded altogether, i.e., over the same path. For this purpose,
the concept of AnyTraffic group is introduced that defines a set of
nodes capable to process both unicast and multicast traffic
received from the same (AnyTraffic) tree. The resulting scheme is
referred to as AnyTraffic routing. This paper defines a heuristic
algorithm to accommodate the AnyTraffic group and to find the
proper set of branch nodes of the tree. The algorithm supports
dynamic changes of the leaf node set during multicast session
lifetime by adapting the corresponding tree upon deterioration
threshold detection. Studies are performed for both static and
dynamic traffic scenarios to i) determine the dependencies of the
algorithm (node degree, clustering coefficient and group size);
and ii) evaluate its performance under dynamic conditions. Initial
results show that the AnyTraffic algorithm can successfully
handle dynamic requests while achieving considerable reduction
of forwarding state consumption with small increase in bandwidth
utilization compared to the Steiner Tree algorithm.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]

General Terms
Algorithms, Design, Performance

Keywords
Routing, Algorithm, Unicast, Multicast, Performance

1. INTRODUCTION
With the advent of multimedia video stream/content,
multicast distribution from a source to a set of destination
nodes is (re-)gaining interest as a bandwidth saving
technique competing or complementing cached content
distribution. Nevertheless, the problems faced in the 90's
when multicast received main attention from the research
community are still present. Routing protocol dependent
multicast routing schemes (such as Distance Vector
Multicast Routing Protocol and Multicast OSPF) have been
replaced by routing protocol independent routing schemes
such as Protocol Independent Multicast (PIM) and Core
Base Trees. However, number of entries in routing and
forwarding tables (states) and their maintenance is and
remains a major problem. Two forwarding approaches are
commonly used in current datagram networks, namely 1)
forwarding on a set of point-to-point (P2P) paths to
encapsulate whether unicast or multicast traffic (i.e.,

multicast traffic is replicated as many times as the number
of edge nodes processing multicast traffic); and 2)
forwarding on a set of dedicated P2P paths for unicast
traffic and dedicated point-to-multipoint (P2MP) paths for
multicast traffic. The latter can be either root-initiated as in
source-specific multicast or leaf-initiated as in any-source
multicast. Regardless of the underlying forwarding
paradigm, a router must maintain membership state for
each multicast group. Multicast membership states are
stored as entries in the routing table that is subsequently
used to derive a forwarding table. The latter determines the
actual forwarding of an incoming packet to a router's
outgoing interfaces. However, unlike unicast routing, there
is no natural aggregation in multicast forwarding states thus
a router may take a long time to look up the forwarding
state for each arriving packet when there are a large
number of multicast group [1]. This results in limited
scalability of any multicast routing deployment. Several
research efforts have attempted to reduce the number of
multicast forwarding states in a router (see e.g. [2], [3]).

In this paper, we investigate routing algorithms that are
able to compute paths along which combined unicast and
multicast traffic can be forwarded altogether in label-
switched networks. At the addressing level, nodes are
named with arbitrary destination labels. These labels
encode topological information useful in the forwarding
decision process. Indeed, at the forwarding plane level,
each datagram carries the chosen destination in its header.
Labeling allows also distinguishing if necessary between
unicast (one-to-one) and multicast (one-to-many) traffic
using simpler header information.

2. RELATED WORK and CONTRIBUTION
This paper proposes a traffic routing approach, whose
computed paths enable forwarding of both unicast and
multicast traffic together, i.e., over the same path. For this
purpose, the concept of AnyTraffic group is introduced that
defines a set of nodes capable to process both unicast and
multicast traffic received from the same distribution tree,
the AnyTraffic tree. The resulting routing scheme is
referred to as AnyTraffic routing. This paper defines a
heuristic algorithm to accommodate the AnyTraffic group
and to find the proper set of branch nodes of the
AnyTraffic tree. It also provides for a performance
evaluation of the proposed scheme against two commonly
used approaches. Introducing an AnyTraffic distribution

tree to a group aims at reducing the total number of
forwarding states by maintaining (as much as possible) a
single path for both unicast and multicast traffic forwarding
altogether. In other terms, a single state allows for both
unicast and multicast traffic forwarding. The idea behind is
to perform label-based forwarding (where labels encode
topological information) using a single forwarding table
entry for both unicast and multicast labeled traffic directed
toward the same "label". The proposed routing scheme is
applicable to any label-based forwarding technology as
long as the following conditions are met: i) capability to
distinguish multicast from unicast traffic by inspecting
other header information than the destination address (e.g.
label flag to discriminate between unicast and multicast
traffic following the same path); and ii) de-multiplexing of
traffic at destination nodes relies on the information
encoded as part of other header information not processed
by each network node. This scheme can be seen as a
unification of the locator/identifier split concept where the
locator value space names topological end-points that are
able to terminate any traffic. Ingress edge nodes upon
multicast traffic identification tag this traffic as part of the
label. Based on this indication, branch nodes along the
AnyTraffic tree replicate the multicast traffic onto outgoing
interfaces towards edge nodes registered for the
corresponding multicast group(s). On the other hand, the
unicast traffic directed to these edge nodes is not replicated
at branch nodes but follows “as short as possible” paths.
The salient feature of the proposed scheme is that the
multicast traffic does not require any additional forwarding
entry on intermediate network node to reach the topological
location where the traffic is then natively processed.

The aim of the proposed routing scheme is to achieve better
system resource consumption (for state maintenance) while
limiting the network resource consumption (mitigate the
state vs bandwidth resource tradeoff by increasing the
“common path” stretch). For this purpose, the proposed
approach keeps the forwarding state maintenance overhead
as low as possible while avoiding bandwidth waste by i)
avoiding replication of multicast traffic at branch nodes,
and ii) keeping unicast traffic transmission over ”as short
as possible” paths. To meet this objective combined with
the decrease in hop count of P2P paths, a deficit factor and
an adaptive threshold function for the selection of the
branch nodes are specified to decide where to separate the
unicast from the multicast forwarding path (i.e., the
placement of a branch node). This algorithm is also
designed so as to efficiently operate in a dynamic
environment where receivers are joining and releasing the
multicast sessions during its lifetime. Beside the reduction
of the number of states, the AnyTraffic routing scheme can
also handle more efficiently join/leave requests. For this
purpose, we define two mechanisms to treat the join and
leave node requests, respectively. As both types of requests

may deteriorate system resource performance compared to
the optimal case, readjustment mechanism is designed so as
to accommodate actual receivers’ dynamics by adapting the
multicast tree.

3. ANYTRAFFIC ROUTING ALGORITHM
Consider a network modeled by a directed graph G = (N,
L), where N represents the finite set of nodes, and L
represents the finite set of links. Let s, d  N denote a
source and a destination node, resp. Each link l  L might
have an associated capacity b(l), and cost c(l). Let pi,j and
pi,k,j both denote a path from node i to node j where k is an
intermediate node, with i  j  k .Let Ts,M = (NT, LT) be a
connected sub-graph without cycles (i.e., a tree) of G,
source-initiated at s, and with the set of destination nodes
M  NT \ {s}, M  . Hereafter, M is referred to as the
AnyTraffic group, and Ts,M as the AnyTraffic tree.

3.1 Static AnyTraffic Heuristic Algorithm
Let φs,M denote a traffic request between source s and a
AnyTraffic group M where M  NT \ {s}, M  . If |M| =
1, φs,M is a request for unicast traffic. The objective of the
AnyTraffic routing algorithm is to construct a graph Ts,M
for a given source s and AnyTraffic group M, such that
Ts,M supports both unicast and multicast traffic requests.
The graph Ts,M is constructed by successive selection of
branch node, n*  N. At a given source node, s, processing
of the request φs,M depends on its nature, i.e., it is either a
unicast or multicast traffic request. We have the following
alternatives: i) if a multicast traffic request φs,M arrives and
an AnyTraffic tree Ts,M is available, then the request is
supported by Ts,M; otherwise, the AnyTraffic routing
algorithm is executed (see Section 3.1.2) to establish a new
AnyTraffic tree; ii) if a unicast traffic φs,d request arrives,
three situations can occur: (a) d  M and Ts,M (with |M| >
1) is available and φs,M is supported by Ts,M; (b) d  M but
Ts,M is not yet created and thus a shortest path must be
setup; or (c) d  M and thus a shortest path must be setup.
The AnyTraffic routing algorithm comprises two phases,
namely, the initialization and tree computation phase.

3.1.1 Initialization Phase
Let xi,j denote the cost of the shortest path from node i to j,
i  j, as computed by the Dijkstra algorithm on the (positive
integer) link cost c(l), l  L. The hop count is used as tie-
breaker. Methods for computing the cost c(l) of each link l
 L can be found in [4]. Accordingly, xs,d denotes the cost
of the shortest path from the source s to the destination d 
M. Among all path costs, cmax corresponds to the shortest
path of maximum cost. Let F(x): ++ be defined as:

 
 
max1

g x

cF x x e
 

  
 
 

 (1)

This function specifies the threshold for the maximum cost
of an alternative path to the path of cost x. In particular,
F(xs,d) limits the acceptable cost deviation of an alternative
path ps,d, d  M, from the path given by the Dijsktra
algorithm. The function g(x):+, is defined as g(x) =
x - , where parameters ,   [0,1[define the shape of
the threshold function. After performing a number of
experiments, setting =0.7 and =0.3 gives acceptable
values. Having defined F, we can now compute for each
shortest path ps,d, the maximum deficit factor △Ms,d :

 
 ,

max
, , , ,

s dg x

c
s d s d s d s dM F x x x e



    (2)

This factor determines the acceptable cost increment(s) of
an alternative path against the shortest path, i.e., it
quantifies the tolerable cost deviation when forwarding
both multicast and unicast traffic on that path without
incurring too much damage compared to unicast traffic
forwarding along the shortest path. Being dependent only
on the topology, xs,d, cmax, g(xs,d), and △Ms,d can be
computed off-line during the initialization phase for any
pair s, d  N. as their values remain constant along the tree
computation

3.1.2 Tree Computation Phase
Let’s define a leaf as the tuple ωυ,Λ = {υ, Λ}, where υ  N
is a leaf seed and Λ  M is a subset of the AnyTraffic
group. We define Ω as the set of leaves remaining to be
processed. At the beginning, this set comprises only the
initial leaf, Ω = {ωs,M}, where s is the seed from where
computation is initiated, which comprises all destination
nodes M. We also define the initial graph Ts,M = ({s}, ).
The algorithm terminates when there is no leaves left in Ω
and all destinations d  M can be reached from s in Ts,M.
At each iteration step, an arbitrary leaf ωυ,Λ is pulled out
from Ω and the algorithm searches for a branch node n* 
N to be included in Ts,M such that s is connected through n*
to a subset of nodes comprised in Λ. For this leaf ωυ,Λ, a set
of candidate branch nodes Aω is found. The set Aω is
restricted to unvisited nodes in previous iterations that are
adjacent to υ and have a node degree equal or greater than
three, i.e., the nodes that have at least two outgoing links,
apart from the outgoing link to node υ. In case the node
degree of an adjacent node a is two, the first node with
node degree equal or greater than three and laying on a
path going from υ through a is included into Aω. At each
candidate branch node n  Aω being evaluated, one
alternative path pv,n,d per destination d  M, starting at υ but
forced to pass through n is computed. A pruning condition
determines if the set of alternative paths from υ to each d 
L and passing through n could be accepted. Indeed, each
path pv,n,d may introduce higher cost (xv,n + xn,d) when
compared to the cost xn,d of the shortest path pv,d.

Therefore, a local deficit △Lv,n,d is computed for each d 
Λ by means of:

 , , , , ,n d n n d dL x x x      (3)

For each d  Λ, a cumulative path deficit △Ps,d, sums up,
at node n, the local deficits produced by the alternative path
ps,d passing by already accepted branch nodes n0 (= s),
n1,…,nu of Ts,M and the candidate branch node nu+1 (= n):

 
1 1, , , , , ,0 0i i i i

u u

s d n n d n n n d s di i
P L x x x

  
       (4)

Then, for each d  Λ, a comparison between the
cumulative path deficit (Eq.4) and the maximum deficit
(Eq.2) is performed. If the maximum deficit constraint
△Ps,d ≤△Ms,d is verified, i.e., if the cumulative deficit of
an alternative path ps,d does not exceed the maximum
deficit, the alternative path can be accepted. Otherwise, the
algorithm removes node d from ωυ,Λ and creates a new leaf.
When all candidate branch nodes have been evaluated,
branch node selection can be performed by running the
pruning condition for each d  Λ. The decision is taken by
considering the minimum total deficit among all candidate
branch nodes n  Aω. However, to reach decision fairness,
considering the deficit based on the cost metric only is
insufficient. Hence, we further ponder the deficit of each
candidate branch node n at: i) path level: by summing a
fraction γ of the local deficit (Eq.3) to a fraction (1 − γ) of a
local deficit △Hv,n,d defined as Eq.3 but using the hop
count instead of the cost metric; ii) node level: by
multiplying by a factor δ the ratio r, defined as the number
of alternative paths meeting the pruning condition divided
by the total number of paths that can reach all destinations
(i.e. |Λ|), via n  Aω. After a number of experiments, we
selected γ=0.5 and δ=2. In summary, for each candidate
branch node, a candidate deficit △Cn,ω is computed as :

 , , , , ,1n n d n dC L H r             (5)

The candidate branch node n with the lowest deficit is
selected as a branch node n*. Accordingly, Ts,M is updated
with all links and nodes that lay on the path from υ, which
is the seed of the currently processed leaf ωυ,Λ, to n*. Then,
two new leaves may be created, ω1 = {n*, Λn*} (leaf with
the subset of destination nodes Λn* that accepted n* as
branch node), and ω2 = {υ, Λ \ Λn*} (leaf with the
destination nodes removed by the pruning condition).
Leaves ω1 and ω2 are conditionally added to the set Ω for
further processing, resp., if |Λn*| > 1 and |Λ \ Λn*| > 1. If
either |Λn*| = 1 or |Λ \ Λn*| = 1, Ts,M is updated with all links
and nodes that lay on the shortest path, resp., from n* to d
 Λn* and from υ to d  Λ \ Λn*. Branch node n* is
excluded from the set of adjacencies of υ, i.e., Aω2 = Aω \
{n*}. Branch selection is repeated for each leaf left in Ω.

3.1.3 Complexity Analysis
The complexity of this algorithm is O (|M| · A · H), where
|M| is the size of the AnyTraffic group, A is the maximum
node degree, and H is the hop distance between the source
and the most distant destination node. This bound comes
from the fact that at each hop towards the destination all
adjacent nodes are checked as candidate branch node for
destination nodes belonging to M. In a regular connected
network (A << |N|) the complexity is low and, in common
network, it may be further reduced. The method consists in
limiting the set of adjacent nodes that are within a given
perimeter with respect to the next node belonging to the
shortest path of every destination node. Preliminary results
achieved by applying this method show no performance
degradation while significant reduction of running time.

3.2 Dynamic AnyTraffic Heuristic Algorithm
Let φs,d and χs,d denote resp., a join and a leave request
between source s and destination d. The maintenance by
the AnyTraffic algorithm of graph Ts,M = (NT,LT) under
dynamic traffic requests conditions consist in appending
node d  NT to the graph Ts,M when a join request φs,d
arrives, and releasing node d  M from Ts,M when a leave
request χs,d arrives. The graph Ts,M is built up by iterative
selection of a branch node n  NT.

3.2.1 Join request
As regards unicast, the traffic is forwarded over either i) a
shortest path if the receiver is not a member of any
AnyTraffic group, or ii) an existent AnyTraffic tree. As
regards multicast join requests, two situations can occur: i)
initiate a new AnyTraffic tree; or ii) join an existing
AnyTraffic tree at one of its branch node. In any case, if an
existing P2P path, rooted at the same source node, is up for
such receiver, it is aggregated to the established AnyTraffic
tree. A possible approach for a receiver to join an existing
tree would be to re-compute the entire tree as if a new
group request would arrive (using the static version of the
algorithm). The new group would be composed of the
existing AnyTraffic group to be joined plus the new
receiver node. Such computation is optimal for a given
group of receivers and can thus be considered as an upper
bound on the algorithm performance. The disadvantage of
this approach is the need to re-establish the entire tree each
time a join request is received. Therefore, we propose
another solution which consists in running an extension
tree update mechanism, without the need for re-computing
the entire tree. In this approach, deviation from the best
case (as given by the static algorithm) must be controlled
by means of the mechanism of Section 3.2.3. Let’s assume
a new receiver node d  NT attempts to join the AnyTraffic
group M supported by the tree Ts,M. Updating the tree “on-
the-fly” consists in joining the closest node of the tree
under the maximum deficit constraint. The algorithm

performs the following steps: 1) A Breadth-First Search
algorithm is executed to find a set of candidate branch
nodes Aω  NT with the shortest hop count to node d; 2)
For each node n  Aω, find the shortest path pn,d to the
receiver. For each path ps,n,d obtained by splicing path ps,n,
which is determined by the tree Ts,M, and pn,d, calculate its
deficit △Ps,d. Then, among all these paths, select the path
with the smallest deficit △Ps,d, such that it satisfies the
constraint △Ps,d ≤ △Ms,d; 3) If such path ps,d is not found,
step 1 is repeated by excluding the already processed nodes
from the set of candidate nodes Aω; 4) Once these steps are
completed, as the receiver may still have unicast
connectivity up rooted at the source node of the AnyTraffic
tree, the corresponding forwarding table entries are
removed and traffic is forwarded over the tree.

3.2.2 Leave/Prune request
When a multicast traffic receiver wants to leave an
AnyTraffic tree, the simplest operation consists of pruning
the leaves of the tree which are not used by any other
remaining receivers. This leads to two cases: the leaf node
could be either a destination node or an intermediate node
of the tree. Let’s assume a receiver b  Ts,M, attempts to
leave the AnyTraffic group M. The following operations
must be performed: 1) if node b is a leaf node, then the
path from branch node n to node b must be pruned; 2) if
node b is an intermediate node, the entry for this node must
be removed from forwarding table. The forwarding state is
not removed because some receivers are still active along
the path. In both cases, a check is performed to verify if
any P2P path is up for the leaving receiver. In case the
receiver is a member of other AnyTraffic group, and the
releasing branch node crosses one of the corresponding
AnyTraffic tree, unicast traffic may be redirected over one
of the existing trees. Concerning unicast release request, if
the receiver is a member of a multicast session, then the
request does not result into any state update if the corr. path
shares the same forwarding state with an AnyTraffic tree.

3.2.3 Deterioration Control
In a dynamic environment, after a certain period, join and
leave requests deteriorate the entire AnyTraffic trees, due
to the unpredictability of events. The process consisting in
locally re-adapting the tree is preferable than performing
entire tree re-computation every time a new join/leave
request arrives. Hence, a threshold is defined to detect
deterioration, i.e., deviation of the re-adapted tree from the
best case. The deviation is computed by the formula w Ds +
(1-w) Db (Eq.6), where Db and Ds accounts resp. for the
bandwidth and states consumption differences. To penalize
higher state consumption, Db and Ds are weighted
asymmetrically. The pre-determined deterioration threshold
value is used to decide to either continue with the on-the-
fly adapted tree (up to a certain deviation from the best
case) or instead shift to a full tree re-computation. A high

threshold value means less re-computation; on the contrary,
a low value means stricter control, avoiding bandwidth and
state consumption at the expense of more computation.

3.2.4 Complexity Analysis
The time complexity is O (AH' · |NT|), where A is the
maximum node degree, H' is the hop distance between the
node to be attached to the tree and the most distant node of
the tree, and |NT| is the number of nodes of the tree. Indeed,
the number of iterations the algorithm performs depends
mainly on the candidate branch node search, implemented
by the Breadth-First Search algorithm. At each hop, the
algorithm explores adjacent nodes looking for candidate
branch nodes. Then, for each candidate node, the constraint
compliance procedure is applied. In the worst case, all
nodes of the tree have to be checked. The time complexity
can be approximated by O(|NT|) since any node of the
graph G is visited at most only once.

4. PERFORMANCE EVALUATION
Simulations are performed to estimate the performance of
the AnyTraffic algorithm in terms of bandwidth and state
consumption, under the following scenarios: i) non-
blocking static traffic; ii) dynamic traffic with limited
capacity per link. Two reference approaches are used for
comparison purpose: approach 1 (AP1) that relies on both
unicast and multicast traffic forwarding over "as short as
possible" paths (shortest path routing); and approach (AP2)
that makes use of shortest path routing for unicast traffic
and the replication of multicast traffic at branch points of a
tree as computed by the minimum-cost path algorithm, a
Steiner Tree Heuristic (STH) [4], [5]. For the dynamic
scenario, the latter has been extended (with a Greedy tree-
based algorithm [6]) to process dynamic requests.

4.1 Experimental Setup
Different network topologies were used to determine their
topological dependencies. The differentiating properties of
these topologies include different node degrees and
clustering coefficient ranging in the interval [0,1], besides
the number of nodes (37 for Cost266 [7]/Rand37 and 50
for Germany50/Rand50, resp.) and links. Rand topologies
are generated by the algorithm proposed in [8] from a
random sequence of node degrees. Each the network node
is an ingress-egress node generating 150 traffic requests for
the static scenario and 200 for the dynamic scenario. The
traffic generation is a bound and discrete process. Both
unicast and multicast traffic are generated within a bound
range of two discrete traffic classes: class 1 -MPEG-4
standard definition- of 2 Mbps, and class 2 -MPEG-4 high
definition- of 8 Mbps. Different percentages of unicast and
multicast traffic ratios are considered, namely 50%-50%,
75%-25%, and 95%-5%. For each multicast session, the
size of the destination node set |M| ranges between log2(N)
and [log2(N)]2, where N represents the number of nodes.

The simulation steps consist in i) creating the network
entities (trees) for the AnyTraffic groups, and then ii)
processing the unicast requests looking for the minimum
cost path among the created trees. We also define the
relative gain as the percentage of performance gain in
terms of either bandwidth or state consumption, achieved
with AnyTraffic routing compared to AP1 and AP2. A
negative gain means a loss for the AnyTraffic algorithm.

4.2 Results
4.2.1 Static Scenario
Fig. 1 shows the results obtained for the Cost266 and
Rand37 networks, in terms of relative gain in state
consumption with respect to the generated percentage
unicast and multicast traffic ratios. Bandwidth consumption
figures are not shown but analyzed here below.

Fig.1. State Consumption for Cost266 and Rand37 networks

From this figure, AnyTraffic routing demonstrates good
performance in terms of state consumption compared to
both AP1 and AP2 in the range of 50%-95% of unicast
traffic rate. As the latter increases, the gain increases (from
65 to approx.80%). In terms of bandwidth consumption,
AnyTraffic routing shows worst performance (up to -10%)
due to the longer paths that unicast traffic has to follow.
The tendency of bandwidth consumption is inversely
proportional to the state consumption. Bandwidth decreases
because with less AnyTraffic trees created by multicast
requests, forwarding unicast traffic requires more P2P
shortest paths. Their number becomes closer to the values
observed for AP1 and AP2. This does not invalidate that a
considerable amount of unicast traffic is still carried by
means of AnyTraffic trees. The same behavior is observed
for both German50 and Rand50 networks although a bit
less favorable. This reflects that more nodes with higher
node degree influence the performance of the AnyTraffic
algorithm. We also observed that with identical number of
nodes, the algorithm performs better for networks with
lower clustering coefficient because the algorithm favors
path aggregation at a lower deficit △Ps,d. Fig.3 and Fig. 4
show consumption in terms of system and link resource,
resp., for AnyTraffic group sizes from 5 to 30. State
consumption gain is always positive for all unicast-
multicast traffic pairs. However, as the group size

increases, the state consumption decreases, except for the
95%-5% pair. Indeed, the larger the group size is, higher is
the probability that a unicast receiver node is a multicast
member. As regards bandwidth consumption, the worst
value is never lower than -8%. The concave shape
observed for the 50%-50% and 75%-25% traffic pairs is
steeper as the percentage of unicast traffic increases (as
longer tree branches increase the bandwidth consumption).

Fig.2: Evolution of the State consumption wrt AnyTraffic group size

Fig.3: Evolution of the BW consumption wrt AnyTraffic group size

4.2.2 Dynamic Scenario
Simulations consist in processing several dynamic requests
in which receivers join and leave an AnyTraffic group
during its lifetime. Such scenario is modeled as a sequence
of join and release requests where the bandwidth resources
are limited to a maximum link capacity set to 10Gbps. Each
simulation step represents one request processing for every
node in the network. A probability that follows a non-
stationary distribution function is associated to each
join/release request. This distribution starts with a 100%-
0% join/leave probability up to a 50%-50% balanced stage,
after several simulation steps. Fig.4 shows the state
consumption gain for the AnyTraffic algorithm when
performing with and without the deterioration control
(Section 3.2.3). The deterioration threshold to decide either
to continue with on-the-fly tree setup or to perform the
entire tree re-computation is set to 20%. After some
simulation iterations, we set w = 0.6 in Eq.6. From this
figure, it can be observed that re-computation gain
gradually grows to stabilize around 6% for the 50%-50%
traffic pair and around 5% for the 75%-25% pair. The
difference in the percentage of multicast requests explains
this 1% gain variation. Fewer trees decrease the number of

common forwarding entries for both unicast and multicast
traffic. These low gain values obtained with entire tree re-
computation means that deviations from the optimum are
not significant. Note that similar behavior is observed for
the bandwidth consumption (not shown). In order to avoid
waste of computational resource, a periodic deviation
control can be executed on the on-the-fly tree.

Fig. 4: Cost266 network: States consumption gain for the AnyTraffic

5. CONCLUSION
The initial results obtained with the AnyTraffic routing
algorithm, when applied to labeled-based forwarding
(labels encode topological information) are promising. By
stretching the shortest path for unicast traffic forwarding,
common forwarding entries can be shared for both unicast
and multicast traffic forwarding along the AnyTraffic tree
toward the labeled topological locations, and thus the
number of forwarding states significantly reduced. Future
work includes i) investigation of other maximum deficit
function; ii) execution of the algorithm on Internet-like
topologies (power law random graphs) with increasing
number of nodes up to O(10k) to further determine the
dependencies of the algorithm on a.o. node degree, and
clustering coefficient; and iii) elaborate on distributed
processing (in particular, under dynamic conditions).

6. REFERENCES
[1] Wong, T., and Katz, R., On Analysis of Multicast Forwarding State

Scalability, IEEE Int’l Conf. Network Protocols (ICNP 2000),
Osaka, Japan, Nov.2000.

[2] Thaler, D., and Handley, M., On the aggregation of multicast
forwarding state, IEEE Infocom 2000, Tel Aviv, Israel, Mar. 2000.

[3] Tian, J., and Neufeld, G., Forwarding state reduction for sparse mode
multicast communications, IEEE Infocom 1998, San Francisco (CA),
USA, Mar. 1998.

[4] Hwang, F.K., (Ed.), The Steiner Tree Problem, Annals of Discrete
Mathematics, vol. 53, Amsterdam, North-Holland Editions, 1992.

[5] Takahashi, H., and Matsuyama, A., An approximate solution for the
Steiner Tree problem in graphs, Math. Japonica, pp.573-577, 1980.

[6] Fei, Z., Ammar, M., and Zegura, E., Multicast server selection:
problems, complexity, and solutions, IEEE Journal on Selected
Areas in Communications., vol. 20, no. 7, Sep. 2002

[7] Inkret, R., Kuchar, A., and Mikac, B.,. Advanced infrastructure for
photonic networks european research project, Extended Final Report
of COST 266 Action, ISBN 953-184-064-4, 2003.

[8] Kim, H, (Ed.), On realizing all simple graphs with a given degree
sequence, Discrete Mathematics, April 2008.

