
A Passive Available Bandwidth Estimation

Methodology 1

Albert Cabellos-Aparicio a,∗ John Thompson b

Francisco J. Garcia c Jordi Domingo-Pascual a
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Abstract

The Available Bandwidth (AB) of an end-to-end path is its remaining capacity and
it is an important metric for several applications such as overlay routing and P2P
networking. That is why many AB estimation tools have been published recently.
Most of these tools use the Probe Rate Model, which requires sending packet trains
at a rate matching the AB. Its main issue is that it congests the path under mea-
surement. We present a different approach: a novel passive methodology to estimate
the AB that does not introduce probe traffic. Our methodology, intended to be ap-
plied between two separate nodes, estimates the path’s AB by analyzing specific
parameters of the traffic exchanged. The main challenge is that we cannot rely on
any given rate of this traffic. Therefore we rely on a different model, the Utilization
Model. In this paper we present our passive methodology and a tool (PKBest) based
on it. We evaluate its applicability and accuracy using public NLANR data traces.
Our results -more than 300Gb- show that our tool is more accurate than pathChirp,
a state-of-the-art active PRM-based tool. At the best of the authors’ knowledge this
is the first passive AB estimation methodology.
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1 Introduction

The Available Bandwidth (AB) of an end-to-end path is its remaining capac-
ity, that is, the amount of traffic that can be sent along the path without
congesting it. Recently the area of end-to-end AB estimation has attracted
considerable interest. This is because the AB is an important metric for sev-
eral applications such as overlay routing, P2P file transfers, server selection
and inter-domain path monitoring among others. As a result several estima-
tion techniques and tools based on active measurements have been developed.

Most of the proposed tools designed to estimate the AB fall into two categories:
the Probe Rate Model (PRM) and the Probe Gap Model (PGM). The first
model uses packet trains (a sequence of consecutive probe packets) and it
is based on the concept of self-induced congestion. Informally if one sends a
packet train at a rate lower than the AB, then the arrival rate of the packet
train at the receiver will match the rate at the sender. However if the sending
rate is greater or equal than the AB, then the packet train will congest the
queues along the path and the receiving rate will be lower than the sending
rate. Tools such as TOPP [2], PathLoad [3], IGI/PTR [4], pathchirp [5] and
BART [7] use this model. The second model (PGM) uses packet pairs and
relies on the differences of the input and output time gaps of the probe packets.
However it has been shown recently that this model can underestimate the
AB under certain conditions [20].

The PRM model has been used in many AB estimation tools and it has been
shown as very accurate. However it suffers from one basic problem: PRM-
based tools must send probe traffic at a rate equal or greater than the AB.
This will fill the queues along the path congesting it. This means that, for each
estimation, a PRM-based tool congests the measured path during a certain
period of time. In fact A.Shriram showed recently in [16] that tools such as
PathLoad [3] (a PRM-based tool) can significantly impact the response time
of TCP connections.

In this paper we present a different approach, a passive available bandwidth es-
timation methodology. This is able to estimate the AB of a given path without
introducing probe traffic. Our methodology is intended to be applied between
two separate nodes (Figure 1): the sender and the receiver nodes. We aim to
estimate the available bandwidth on the path by analyzing specific parameters
of the already existing traffic exchanged between both nodes. Throughout the
paper we will refer to this traffic as data-traffic.

The main challenge of our passive methodology is that we cannot rely on the
PRM or the PGM model. Both models require sending probe-traffic at a rate
matching the AB. That is why our tool takes base on a different model. K.
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Fig. 1. The passive AB estimation architecture

Harfoush presented in [8] a mathematical model that shows that there is a
linear relation between the utilization of a multi-hop path and the rate of the
probe traffic. This model -intended for active tools- states that, if we inject
probe traffic at a particular rate, the utilization increases linearly to this rate.
Thus we can estimate the AB by sending probe traffic at an increasing rate.
The rate of the packet train that estimates that the path is fully loaded (i.e.
utilization=1) is the AB.

The main challenge of our methodology is that it cannot rely on any given
rate of the data-traffic. Therefore instead of searching for this particular rate,
we estimate the linear equation (rate vs. utilization). Once the equation has
been estimated, the AB can be computed as the point where the utilization=1.
In order to this we rely on Kalman Filtering [11]. The Kalman Filters are an
efficient recursive filter that estimates the state of a linear system from a series
of noisy measurements. These noisy measurements are, in fact, extracted from
the data-traffic. Each measurement provides us an estimation of the utilization
that, in turn, feeds the Kalman Filters to estimate the linear equation.

First we present the related work (Sect. 2) and then our methodology (Sect. 3).
Afterwards we research the specific conditions that probe traffic has to fulfill
in order to estimate the utilization optimally (Sect. 4). Then we investigate if
such conditions are fulfilled by the Internet traffic (Sect. 5). As we will see in
the paper we have analyzed several NLANR data traces that show that our
methodology is feasible.

Finally we design a tool based on our methodology: PKBest and we evaluate
its accuracy through simulation (sec. 6). Additionally we compare the accuracy
of PKBest with that of pathChirp (a state-of-the-art PRM-based tool). Our
results, more than 300Gb, show that the accuracy of our tool is higher to that
of pathChirp. Considering all the scenarios evaluated, the mean relative error
of our tool is 0.12 while for pathChirp it is 0.30.
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2 Related Work

The area of AB estimation has attracted much attention recently and many
tools have been published. As has been stated above, most of these tools use
either the Probe Rate Model or the Probe Gap Model. However, at the best
of the author’s knowledge, there is very little research regarding passive AB
estimation methodologies or tools.

First M. Zangrilli presented in [21] a one-sided, passive, PRM-based tool that
uses TCP packets to estimate the AB. This tool uses the timestamps of data
and ACKs packets to calculate round-trip times and then applies the PRM
model. Second C. Man presented in [22] ImTCP, a new version of TCP that
uses the arrival intervals of ACK packets as packet pairs to produce estimations
using the Probe Gap Model. Both tools have the same issue, TCP cannot
guarantee any given rate or pattern. This means that they are only able to
produce estimations if the AB is similar to the actual TCP throughput.

Finally S. Katti presented in [23] MultiQ, a passive capacity measurement
tool suitable for large-scale studies of Internet path characteristics. MultiQ is
the first passive tool able to discover the capacity of multiple congested links
along a path from a single flow trace and it is based on a modified version
of the Probe Gap Model. Although this tool does not estimate the AB, both
tools (MultiQ and PKBest) are truly passive and use NLANR data traces to
evaluate their accuracy.

3 Methodology

In this subsection we present our methodology intended to passively estimate
the Available Bandwidth (AB). First we detail the mathematical model, next
we present how we apply the Kalman Filter to the model and finally we discuss
the estimator of the utilization used.

3.1 Mathematical Model

The utilization of a queue i in a single-hop scenario is:

ui = 1− πi (1)

Where π is the probability that the queue is void. Most of the existing AB
measurement tools rely on using a constant-rate fluid cross-traffic model. This
model assumes that the cross-traffic has infinitely small packet size and arrives
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Fig. 2. The mathematical model

at the hop at a constant rate. In fact X. Liu showed in [19] that the tools that
use the constant-rate fluid model can underestimate the AB under certain
conditions. However eq. 1 does not make any assumptions about the nature
of the cross-traffic.

If we transmit probe traffic at a rate r through this link, then the utilization
can be expressed as:

ui(r) = min(1, ui +
r

Ci

) (2)

Where Ci is the capacity of link i. For the multi-hop case K. Harfoush showed
in [8] a first order approximation of eq. 2:

u(r) ≈ min(1, ar + b) (3)

Where a and b are constants. This equation states that there is a linear relation
between the utilization of a path and the rate of the probe traffic sent. Figure 2
shows that, as the probe traffic rate increases so does the utilization (linearly).
At a certain rate rab, the utilization will reach 1 (the path is fully loaded) then,
the AB of the path is rab.

This means that with this model we can estimate the AB without sending
the probe traffic at the AB rate. Once the linear equation (eq. 3) has been
estimated the AB can be computed as:

AB =
1− b̃

ã
(4)

3.2 The Kalman Filters

Our tool uses a Kalman Filter (KF) to estimate the linear equation (eq. 3).
The KFs are able to estimate a system defined by a state vector x, affected by
an input u through noisy measurements. In our case the network is our system
and the noisy measurements are the estimations of the utilization. The system
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is also affected by a noise w and the measurements have a noise v. Then the
system is governed by the linear stochastic difference equation:

xk = Axk−1 + Buk−1 + wk−1 (5)

With a measurement z that is:

zk = Hxk + vk (6)

Where the subscript k refers to the discrete time and A relates the state of
the previous time step (k − 1) with the state of the new time step. Similarly
B relates the control input to the state x while H relates the state with the
measurement. Then the KF estimates the process by using a form of feedback
control: the filter estimates the process state at some time and then obtains
feedback in the form of (noisy) measurements. The KF algorithm has two
steps, in the first step (”time update“) the filter projects forward in time
the state of the system and obtains an a priori estimate. In the second step
(”measurement update”) the filter uses a new measurement to correct the a
priori estimate to produce an improved a posteriori estimate. After each time
and measurement update pair, the process is repeated with the previous a
posteriori estimates used to project or predict the new a priori estimates.
This recursive nature is one of the main advantages of the Kalman Filters.
The KFs assume that the system is linear and that the system noise w and
the measurement noise v are Gaussian and independent. We refer the reader
to [11] for further details on Kalman Filtering.

In our case the state vector x that describes the system represents our linear
model (the parameters of the sloping straight line from eq. 3):

x =

 a

b

 (7)

As it has been seen in the previous subsection our system is linear. We drop
the input u (and consequently B) because in our particular case the network
is affected by the intensity of our probe traffic and the cross-traffic. As we
cannot estimate the intensity of the cross-traffic we do not use this particular
parameter. In addition we drop A (i.e. A = I) because the state of the previous
time step of the network will be the same as the state of the new time step.

Thus the following equation governs our system:

xk = xk−1 + wk−1 (8)

The measurements are governed by equation 6. We define H as:
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H =
[
r 1

]
(9)

This way the measurements z (eq. 6) are seen by the KF as the actual utiliza-
tion of the system under our probe-traffic load. The measurements z are in
fact the estimations of the utilization. Finally the predictor equations defined
by the KFs in our particular case are:

x̃−k = x̃k−1 (10)

P−k = Pk−1A
T + Q (11)

And the corrector equations are:

Kk = P−k HT (HP−k HT + R)−1 (12)

x̃k = x̃−k + Kk(zk −Hx̃−k ) (13)

Pk = (I −KkH)P−k (14)

Where the ”minus” superscript refers to the a priori estimates (before the
measurement correction). P is the estimate of the error covariance matrix, its
value will be updated by the KF each time step. K is the Kalman gain, a very
important parameter of the KF. This gain is computed (in each time step)
in eq. 12 and weights the new measurement with the a priori estimate in eq.
13. Finally Q and R represent the process and measurement noise covariance
respectively. Q, the process noise covariance, is a 2x2 matrix that represents
the variability of the system. This value must be set manually and it is a key
parameter when considering the behavior of the KF. A high Q means that the
KF will consider the prediction as less accurate while the measurements will
be considered as very accurate. Therefore the KFs will set the Kalman gain
accordingly and each new measurement will be weighted heavier. Low values
for Q mean the opposite. We will come back to this in the results’ section.

3.3 Estimating the Utilization

Eq. 1 defines the utilization as the probability that there is at least one packet
in the queues of the path. In order to estimate the utilization of a path the
authors in [8] suggest sending a packet train (a sequence of probe packets),
end to end, and compute the fraction of packets that have experienced queuing
delay along the path. Probe packets are time stamped at the sender and at the
receiver. Then the minimum one-way delay of the set of packets is computed.
This minimum delay corresponds to the delay suffered by a packet that has not
encountered queuing delay. Therefore the fraction of packets with a greater
delay than the minimum delay is the fraction of packets that suffered queuing
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delay. Let D = {d1 · · · dN} be the set of one-way delays suffered by the packets
of the train. Then the utilization is estimated as:

ũ =
‖{di > min{D}|di ∈ D}‖

‖D‖
(15)

4 Analysis of the Probe Traffic

As we have seen if we can estimate the utilization of a path we can apply
the KF and estimate the AB through eq. 4. The utilization of the path is
estimated through eq. 15. In this section we investigate which are the optimal
parameters of the packet trains to estimate it. In the next section we analyze
if such packet trains are present in Internet traffic.

4.1 Distributions

First we are going to investigate which is the optimal distribution of the inter-
departure times of the packets within a packet train. According to the PASTA
[13] property, if a packet train is sent with exponential inter-departure times,
the packets arriving at the queuing system will sample the system queues, on
average, as an outside observer would, at an arbitrary point in time. However
F. Baccelli showed in [14] that Poisson probes are not unique in their ability
to sample without bias. That is why we evaluate other distributions in order
to analyze which one samples the queues better for our particular estimator.
All the experiments have been carried out using NS2.

We evaluate a range of different distributions by sending 104 packet trains
(of 200 packets and 1500 bytes as packet size) at different rates through a
single link fed with Poisson packet arrivals. The cross-traffic packet sizes are
distributed as in the Internet (see [15] for details): 50% (40 bytes), 10% (576
bytes) and 40% (1500 bytes). It is worth noting here that in the evaluation of
our tool (Section 6) we use also Pareto distributed cross-traffic.

The experiment is performed with different packet trains distributions: Peri-
odic, Poisson, Uniform ([0.9µ, 1.1µ]), Uniform ([0µ, 2µ]) and Pareto (α index
= 1.16) and with different link loads (utilization={0, 0.3, 0.6, 0.75, 0.9}). For
each packet train we have computed the absolute error when estimating the
utilization.

As Figure 3(a) shows the distribution that minimizes the error when estimat-
ing the utilization is the Poisson distribution whereas the worst one is the
Periodic distribution. In fact the exponentially distributed packet trains are
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Fig. 3. Analysis of the Probe Traffic

not severely impacted by the load of the link and the mean error is always
below 0.07.

The periodic and Uniform distributions ([0.9µ, 1.1µ]) create ”constant” packet
trains where the inter-departure time of the packets is very similar. The Probe
Rate Model roughly describes the behavior of these packet trains. If the rate
of the packet train is above the AB, then almost all the packets are queued
and thus, the utilization is overestimated. If the rate is below the AB, then
the packets do not congest the tight link queue and thus, the utilization is
underestimated. Regarding the Pareto and Uniform ([0µ, 2µ]) distributions,
Figure 3(a) shows that they are more accurate under high link loads. This is
because these distributions have also some ”periodicity”. When the link load
is at 90%, the cross-traffic rate congests the tight link queue and almost all
the packets are queued. This means that the utilization, for this very special
case, is accurately estimated.

From this experiments we can conclude that the optimal inter-departure time
of the trains is Poisson. This is an encouraging result since the probability of
finding exponentially distributed packet trains in the Internet traffic is higher
than for other distributions.

4.2 Length

In this subsection we evaluate the optimal packet train length. We have
sent packet trains using different lengths {10,50,100,150,200,250,300,350} in
a single-hop scenario. The link is loaded with cross-traffic {0,0.3,0.6,0.75,0.9}
and the packet trains are sent at different rates, ranging from 0.1Mbps to the
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AB rate. In this case, the distribution is fixed to Poisson and the packet size is
fixed to 1500 bytes. The rest of the simulation parameters are the same than
in the previous experiment.

Figure 3(b) (note that the X-Axis uses a log-scale for clarity) shows the results
of the experiments. Packet trains with a length lower or equal to 150 packets
suffer from a large error when estimating the utilization.

Regarding packet trains longer than 150 packets, the mean error is bounded to
0.06. In addition the accuracy is not significantly impacted by the utilization
of the link under study. In fact the error is slightly reduced as the packet train
length increases. However it is important to remark that long packet trains
suffer from one basic problem, which is that the utilization may change during
the transmission of the train and this may lead to incorrect estimates. Thus
there is a tradeoff between the accuracy of the estimations and the duration
of the measurement. Longer packet trains (250, 300, 350...) have slightly less
error, however as the figure shows, this extra accuracy is not justified since
the duration of the measurement increases dramatically (i.e. packet trains of
250 packets last 20% longer than packet trains of 200 packets). In addition
we have to take into account that larger trains have less probability of being
present in Internet traffic. That is why we believe that the optimal length for
our trains is 200 packets.

4.3 Size

At this point we have concluded that the optimal packet inter-departure time
distribution is Poisson and the optimal length is 200. The last parameter to
evaluate is the packet size. Obviously we cannot rely on any given packet size
or distribution. That is why in this subsection we analyze the impact of the
random packet sizes in our packet trains. We have used the same parameters
for this simulation than for the previous one, but the distribution is now fixed
to Poisson, the length to 200 packets and the packet sizes are randomly chosen
(uniformly) between 40 and 1500 bytes.

Figure 4 shows that random packet sizes do not impact the accuracy of the
packet trains. By analyzing the results we notice that, for small rates (less
than 5Mbps), and when the link is near congestion (90%), the estimation of
the utilization is inaccurate. This can be seen in the long tail of the CDF.
This is because for such small rates, with random packet sizes, the packet
train has very few packets able to congest the link and thus, the utilization is
underestimated.
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4.4 Design of PKBest

Figure 1 presents the main architecture of PKBest. Our tool is deployed be-
tween a sender and a receiver node that exchange data-traffic. The receiver
needs the delay of ρ consecutive packets. Then it processes these packets and
extracts ”valid” packet trains (i.e. packet trains of 200 packets which are ex-
ponentially distributed). Then for each ”valid” packet train, it estimates the
utilization, the results are fed into the Kalman Filter, and it computes the
AB. Since our methodology does not need the actual delay, but the relatives
delays, it does not require clock synchronization.

It is important to remark that the delays of the packets can be obtained in
several ways. First a generic passive measurements infrastructure can be used
[33]. This type of architectures deploy two points of capture, one at the sender
node and one at the receiving node. The points of capture, for each captured
packet, send a hash and the timestamp of the packet to a central processing
unit. This unit matches the hashes and extracts the delays of the packets. A
different approach can be used using In-Line Measurements [24]. This method
defines an IPv6 extension header that includes a timestamp and that can
be used to compute several QoS metrics. This can be easily ported to IPv4
and a timestamp can be added in a special header after the transport header
or in a new IP header using tunneling. The receiver node always removes
these headers. Since some IP packets already have the largest size (1500 bytes
in Ethernet links) we cannot always add a new header. In these cases the
timestamps can be included into the next packet that is smaller than the
MTU (along with a special identifier).

In this paper we consider this latter case for our methodology. The amount of
timestamped packets by the sender node (ρ) must be enough to extract at least
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one ”valid” packet train at the receiver node. In the next section we analyze
the number of ”valid” packet trains present in several Internet data-traces and
we discuss possible values for ρ.

5 Applicability and Limitations of our Methodology

In this section we analyze the number of ”valid” packet trains present in Inter-
net traffic. Additionally we evaluate the main limitations of our methodology.

5.1 Analysis of public data traces

In order to study if our tool will find such packet trains in real traces we
have analyzed four different public NLANR (National Laboratory for Applied
Network Research) data traces [29]. These traces, well-known in the passive
measurements research community, have been collected from a variety of links
at different research networks. The traces are public and were anonymized.

Specifically we have analyzed the CESCA-I, SanDiego-I, NCAR-I and Auckland-
VIII data traces. It is important to note that among all the public data traces,
we have analyzed all the traces that contained contiguous packets. Sampled
traces are not useful for our study.

We have processed the traces in the following way. We consider a packet
train as 200 consecutive packets within each trace. For each packet train, we
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determine if it can be considered as exponentially distributed and we compute
the number of ”valid” packet trains per second.

Figure 5 shows a CDF of the Kolmogorov-Smirnov (KS) test [26] against a
theoretical exponential distribution for each packet train. The critical value
for this test, with a 95% confidence interval, is 0.096. This means that packet
trains with a KS value below or equal 0.096 can be considered as exponentially
distributed and thus, valid for our methodology. As the figure shows all the
traces contain exponentially distributed packet trains: Auckland-VIII (8.7%),
CESCA-I (17.6%), NCAR-I (26.5%) and SanDiego-I (53.2%). This variation
of these results may arise from the different types of applications that each
link is supporting.

Figure 5 also allows us to discuss the value of ρ. For the SanDiego-I data trace
if we timestamp 400 packets we will likely have at least one valid packet train.
For the NCAR-I and CESCA-I we should timestamp 1000 packets. Finally for
the Auckland-VIII trace we should timestamp around 20000 packets.

Table 1
Ratio of ”valid” packet trains per second

Data Trace Min Mean Max Std.Dev

Auckland-VIII 0.001 0.070 3.376 0.031

CESCA-I 0.084 0.231 0.633 0.051

NCAR-I 0.004 0.095 0.874 0.072

SanDiego-I 0.13 0.037 1.523 0.036

Regarding the ratio of ”valid” packet trains per second, Table 1 shows the
results. As the table shows, in the worst case, the Auckland-VIII data trace,
our tool would find a ”valid” packet train each 3.376s. This means that our
tool can produce an estimation (roughly) each 3 seconds. We believe that
this resolution is enough for many applications. For instance PathLoad [3]
(considered as one of the most accurate tools [16]), produces an estimation
each 10-100 seconds, depending on the scenario [16]. Taking into consideration
that the ratio of ”valid” trains per second is high, we use 4 ”valid” trains to
produce an estimation.

5.2 Evaluation of the Limitations

In the previous subsection we have analyzed different data traces and evaluated
the number of ”valid” packet trains present. The remaining parameter to
evaluate is the rate of these packet trains. This is a key parameter when
considering the accuracy of our methodology. Let’s consider figure 6 as an
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Fig. 6. Limitation of our tool

example. In this case our tool is processing several packet trains to estimate
the utilization. As eq. 3 states (and the figure shows) there is a linear relation
between the rate of these packet trains and the estimated utilization. Our tool
feeds the Kalman Filter with the estimations of the utilization and the rates.
In turn the Kalman Filter estimates a and b (eq. 3). Finally using eq. 4, we
estimate the AB. The main concern, in this case, is that the rates of these
packet trains are very low (0-10Mbps in the figure) compared to the actual
AB (80Mbps). This means that the error when estimating a and b will be
”projected” to the AB point, producing a larger error. We can conclude that,
the closer we operate to the actual AB, the more accurate the estimations will
be.

In this subsection we evaluate the relation between the distance to the AB
of the rates of the packet trains and the achieved accuracy. First we need to
consider all the possible path scenarios. In Section 3.1 we assumed that any
path loaded with any cross-traffic can be modeled using eq. 3. This means that
any scenario can be represented by two parameters: a are b. The valid range of
values for b is [0, 1] since a negative utilization is not possible. Consequently

given an AB of α, a = (1−b)
α

. Thus all the possible paths are given by the
following equation:

g(α) = {(a, b)|b = [0, 1]
∧

a =
(1− b)

α
} (16)

Second we need to model the rates of the received packet trains. This is the
same as modeling the bandwidth of aggregated traffic. This bandwidth is
assumed as Gaussian in [30] based on the measurements of [31] (and the refer-
ences therein). Specifically the measurements show that the vertical aggrega-
tion of at least 25 users, with an aggregate average traffic rate of 25Mbps, is a
good fit with the Gaussian model in time scales that are longer than 128msec.

Finally we need to model the error of the estimations of the utilization. Consid-
ering all the experiments carried out in Subsection 4.3, the error can be mod-
eled as a Gaussian distribution. Specifically it can be modeled as N(0, 0.03).

Having modeled the path, the rates of the packet trains and the error of
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the estimations of the utilization, we perform the following experiment using
Matlab. We consider the paths where α = 100 and b = {0, 0.3, 0.6, 0.75, 0.9}.
For each path, we fed the Kalman Filters with packet trains at rates distributed
as N(µ, σ) We consider the following ranges: µ = [0.1α, α] and σ = [0.1µ, µ].
It is important to note that, for each rate, we compute the estimation of the
utilization affected by an error modeled as: N(0, 0.03).

Figure 7 presents the results of the experiments. The x-axis represent the
mean of the rates while the y-axis its standard deviation. Note that the mean
is related to the AB (real mean=µ × α), similarly the standard deviation
is related to the mean (real std.dev=σ × µ) Finally the z-axis presents the
accuracy of the final estimations of the AB. Specifically we present the mean

relative error (ε = min(1, abs(ãb−α)
α

)) of the accuracy. We plot a figure for each
value of b.

For low values of b the figure shows that the accuracy is not affected by σ
unless it is 0. This is because even a small amount of variability in the rates
of the packet trains is enough for the Kalman Filters. Regarding the mean, as
expected, it impacts the accuracy of the estimation in certain cases. When the
path is below 60% and the mean rate above 20% of the AB, then the achieved
accuracy is bounded at 0.01. However as the utilization increases (75% and
90%) the error, for small mean values increases. In this case the accuracy is
bounded at 0.01 when the mean rate is above 50% of the AB. In fact in theses
cases (75% and 90%) σ also affects the achieved accuracy. This is also an
expected results since a larger σ means that some trains are sent at a closer
rate to the AB.

This analysis helps us identifying the main limitations of our methodology.
When the path is not congested (below 60%) almost any packet train rates
are valid to achieve good accuracy. When the path is near congestion (above
75%), then the packet train rates must be around 50% of the AB. It is worth
to note that, when the path is near congestion the AB decreases. For instance
when a 100Mbps link is near congestion, let’s say 75%, the AB is 25Mbps. This
means that the mean rate of our packet trains should be around 12.5Mbps.
Thus, as the path utilization increases, the AB decreases and the required
rates of our packet trains also decrease.

Finally table 2 shows the mean rates of the ”valid” packet trains present in
each data trace. Since these traces have been collected during large periods of
time (days) they show a very large variability regarding the rate.
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Fig. 7. Evaluation of the limitations of our methodology
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Table 2
Rates of the ”valid” packet trains (in Mbps)

Data Trace Min Mean Max Std.Dev

Auckland-VIII 0.01 7.67 330.77 10.38

CESCA-I 84.38 230.61 633.63 50.89

NCAR-I 4.21 95.87 870.90 75.32

SanDiego-I 13.34 37.39 152.15 108.17

6 Evaluation of the Accuracy

In this section we present a complete evaluation of the accuracy of our tool. In
order to choose the evaluation scenarios we follow the methodology presented
in [28] where the authors compare the performance of different AB estimation
tools. Our evaluation is based on this methodology and on the evaluation of
PathLoad [3]. Specifically we consider the cross-traffic load similarly to [3]
while our evaluation scenarios are close to the ones depicted in [28].

In all the experiments each link is loaded with three different cross-traffic
flows with Pareto inter-departure times (α = 1.19). Each flow uses different
packet sizes (40, 576 and 1500 bytes). The amount of packets of each size is
distributed as in the Internet [15]: 50% (40 bytes), 10% (576 bytes) and 40%
(1500 bytes). We have chosen Pareto-distributed cross-traffic because it has
been shown that N Pareto flows mimics the burstiness behavior of the Internet
traffic [25]. In addition we repeat the experiments using the same setup but
with exponentially distributed cross-traffic for comparison. Each experiment
is run for 600 seconds. In the last case of the evaluation (Section 6.5), we use
NLANR data traces as cross-traffic. With this latter case we aim to test our
tool under a highly realistic scenario.

Regarding the data traces we test our tool using the NCAR-I and the CESCA-
I traces. According to the parameters evaluated in Section 5 the most suitable
trace for our tool is the SanDiego-I while the less suitable is the Auckland-
VIII. That is why we choose these two traces to evaluate the accuracy of our
tool. Since ρ does not affect the accuracy of our methodology but the amount
of estimations per second, we timestamp all the packets (i.e. ρ = ∞). The
value for the process covariance matrix Q (of the KFs) used in the evaluation
is:

Q =

 10−6 10−7

10−7 10−2

 (17)

Finally for each experiment we compare the achieved accuracy of our tool

17



Fig. 8. Single-Hop, Single-Bottleneck, same tight and narrow link scenario

with that of pathChirp [5] (considered as a state-of-the-art tool [28]). We
choose pathChirp because it is one of the less intrusive tools [28]. Since this
is also one of the main advantages of our tool we believe that this is a fair
comparison. pathChirp is evaluated under exactly the same scenarios and
the same cross-traffic: the Pareto cross-traffic and the NLANR data trace.
We have used the publically available implementation of pathChirp [32]. The
authors of pathChirp claim that the parameters of pathChirp do not need to
be set because it adapts them to the situation automatically. Therefore we use
pathChirp’s default parameters throughout the evaluation.

6.1 Single-Hop

In the first set of experiments we evaluate our tool in a single-hop scenario
(Figure 8), this scenario represents paths on which our methodology is likely to
encounter only a single congested link. In this set the cross-traffic has different
loads at the bottleneck link {0,0.3,0.6,0.75,0.9} and the capacity of the bot-
tleneck link is set accordingly {500Mbps,714Mbps,1250Mbps,2Gbps,5Gbps}.

Figure 9 shows the mean relative error. Unless noted otherwise we compute the

error as (ε = min(1, abs(ãb−ab)
ab

)). As the figure shows the Pareto cross traffic
has not a noticeable impact on the accuracy of our tool (compared to the
exponential cross-traffic). Our tool is based on a model that does not rely on
a constant-fluid cross traffic (see Section 3.1) and it is able to deal with the
burstiness of the cross-traffic. Regarding the data-traffic, PKBest achieves a
slightly higher accuracy when operating with the CESCA-I data trace. This
is because, as has already been mentioned in Section 5, the mean rates of the
CESCA-I trace are higher.

The intensity of the cross-traffic at the tight link impacts the accuracy of
PKBest. When the utilization of the tight link is high the slope of the linear
eq. 4 is close to 0, and the error of the estimations is ”projected”. This has
been analyzed and evaluated in Section 5. Regarding pathChirp’s accuracy it
is severely impacted by the cross-traffic intensity. When the tight link is at
90% of its capacity the error of pathChirp’s estimations are close to 1. In [28],
pathChirp was evaluated under a similar scenario, specifically with a link load
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(b) pathChirp’s results

Fig. 9. Results for the single-Hop, single-Bottleneck, same tight and narrow link
scenario

Fig. 10. Multi-Hop, Single-Bottleneck, same tight and narrow link scenario

of 53%, and the mean relative error was between 0.1 and 0.25. In our case
the closest scenario is when the link load is at 60% of its capacity, and the
achieved accuracy of pathChirp in our case is between 0.08 and 0.27. Thus
our results agree with that of [28].

6.2 Multi-Hop, Single Bottleneck, same tight and narrow link

In the second set of experiments we use a multi-hop scenario. Almost all the
paths on the Internet are multi-hop. In this case the experiments are intended
to evaluate the accuracy of our tool when it is affected by non-tight link cross-
traffic. In this case the tight link is located between N1-N2, the load at the
links N2-N3 and N3-N4 varies: {0,0.3,0.6,0.75,0.9}. The AB is set to 500Mbps.

Figure 11 shows the results for this scenario. PKBest’s estimates match the
AB and the error is bounded to 0.27. Non-tight link cross traffic has not a
noticeable impact in PKBest’s estimates. This is because our model sees this
cross traffic as a minor increase of b. However pathChirp is severely affected,
especially when the non-tight link cross-traffic intensity is high. It is worth
noting that these cases can be considered as extreme scenarios.
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(b) pathChirp’s results

Fig. 11. Results for the multi-Hop, single-Bottleneck, same tight and narrow link
scenario

Fig. 12. Multi-Hop, Single-Bottleneck, different tight and narrow link scenario

6.3 Multi-Hop, Single Bottleneck, different tight and narrow link

Many AB estimation tools have different accuracy depending on the location
of the tight and narrow link. In this experiment we evaluate our tool in a
scenario with different tight and narrow link (figure 12). This case may be
very common on the Internet since an ISP access link that is shared among
a large user population may have a lower AB. In this case the narrow link is
between N1-N2 and the tight link is at N3-N4. The load at the link N2-N4
varies {0,0.3,0.6,0.75,0.9} while the utilization of the tight link is always 0.625
and thus, the AB=750Mbps.

Again figure 13 shows the results of these experiments. We can see that
PKBest’s estimates agree with the AB. This scenario does not affect the ac-
curacy of our tool because the load at the tight link is reasonable low (62.5%)
and, as we have seen earlier, it is not affected by non-tight link cross-traffic.
Regarding pathChirp’s it shows a larger error. A similar scenario has also been
evaluated in [28] and the error of pathChirp increased by a factor of 2-3 com-
pared to the scenario of figure 8. Again our results agree with the evaluation
of pathChirp presented in [28].

20



0% 30% 60% 75% 90%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Load

M
ea

n 
R

el
at

iv
e 

E
rr

or

 

 
PKBest NCAR (Exp)
PKBest NCAR (Pareto)
PKBest CESCA (Exp)
PKBest CESCA (Pareto)

(a) PKBest’s results

0% 30% 60% 75% 90%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Load

M
ea

n 
R

el
at

iv
e 

E
rr

or

 

 
pathChirp NCAR (Exp)
pathChirp NCAR (Pareto)
pathChirp CESCA (Exp)
pathChirp CESCA (Pareto)

(b) pathChirp’s results

Fig. 13. Results for the multi-Hop, single-Bottleneck, different tight and narrow link
scenario

Fig. 14. Multi-Hop, Multiple-Bottleneck, two potential tight links

6.4 Multi-Hop, Multiple Bottleneck, two potential tight links

Finally most ABET assume the existence of only a single congested link on
the path. For instance Spruce [25] (a PGM-based tool), needs the a priori
knowledge of the capacity of the tight link. Therefore it may not perform
well in this scenario. Additionally it is conjectured that PRM-based tools
might underestimate the AB in the presence of multiple bottleneck links [25].
In order to study this scenario we simulate the topology of figure 14. With
this setup we evaluate our tool in an scenario with one narrow link and two
potential tight-links. On average the latter is the ”tigher link” but the data-
traffic experiences queuing at both links. In this case the utilization of the
link N2-N3 is {0,0.3,0.6,0.75,0.9} and the utilization of the latter tight link is
0.083.

Figure 15 shows the results for these experiments. In this case PKBest shows
a very good accuracy and the error is bounded to 0.17. In this scenario both
’tight links’ have a low load and, as noted before, the non-tight link cross-
traffic does not affect PKBest’s accuracy. pathChirp’s estimates also match
the AB when the non-tight link is not congested.
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Fig. 15. Results for the multi-Hop, multiple-Bottleneck, two potential tight links

Fig. 16. NLANR data traces as cross-traffic

6.5 NLANR data traces as cross-traffic

Finally in this set of experiments we setup a highly realistic environment
(Figure 16). We evaluate the accuracy of PKBest in a path with 5 hops where
each hop is loaded with a different NLANR trace as cross-traffic. This set of
experiments is intended to evaluate the performance of our tool with realistic
cross-traffic.

In this case each link is loaded with an NLANR trace as cross-traffic. The last
link is the tight link and it is loaded either with Pareto or a NLANR data
trace. Since some of the NLANR data traces have a low rate, we multiply
the inter-departure times of the packets by a scale factor to increase its rate.
This way the utilization in the last link is always around 50%. Note that the
NLANR traces have a variable rate, and that the AB varies over the time.
We run this experiment for 600 seconds and the AB=400Mbps. We use the
CESCA-I data trace.

Table 3 shows the results of this set of experiments. As the table shows the
mean estimations of the AB match with the real value (400Mbps), in fact the
mean relative error is below 0.10 in all the cases. The table also shows that
the achieved accuracy is similar when operating with realistic cross-traffic or
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Table 3
Statistics of the results (Values in Mbps)

Data Trace Min Mean Max Std.Dev

Auckland-VIII 182.38 358.31 798.97 73.79

CESCA-I 184.00 386.15 823.97 86.30

NCAR-I 185.08 387.24 813.03 87.21

SanDiego-I 185.23 384.93 839.91 85.13

Pareto 163.87 374.82 821.72 95.21
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Fig. 17. NLANR traces as cross-traffic (Results)

with Pareto cross-traffic. This is an expected result since it has been shown
that N Pareto flows mimics the burstiness behavior of the Internet traffic [25].

The figure 17 shows a CDF of the estimations, for all the cases. The figure
shows that the behavior of our tool is very similar when operating through
the different types of cross-traffic. The variability of the estimations is due to
several factors. First the AB changes during the experiment (as noted previ-
ously). Second the configuration of the process covariance matrix Q and finally
the error when estimating the utilization. As it has been stated before a high
Q means that the KF will consider the prediction as less accurate while the
measurements will be considered as very accurate. This means that a high
Q helps the KFs to better track changes of the AB, but produces less stable
estimations. A low Q means the opposite. Throughout the paper we have used
a high value for Q (eq. 17).
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Fig. 18. Summary of Results

6.6 Summary of the Results

This subsection presents a summary of the results. The figure 18 shows a CDF
of the mean relative error of both tools (PKBest and pathChirp) considering all
the cases. As the figure shows the mean relative error for PKBest is 0.12 while
for pathChirp is 0.30. For both tools the maximum error (0.66 for PKBest
and 0.99 for pathChirp) occurs when the tight link is near congestion.

7 Conclusions

The Available Bandwidth (AB) is one of the most important metrics in the
area of network measurements. Many tools have been published and most of
them use the Probe Rate Model. This model sends probe traffic at a rate
similar (or even larger) than the AB. This leads to congestion and reduces the
performance of the path under measurement.

In this paper we have presented an original passive methodology to estimate
the AB of an end-to-end path. Our methodology, intended to be applied be-
tween two separate nodes, estimates the path’s AB without introducing probe
traffic. Instead of injecting probe traffic, it relies on specific parameters of the
traffic exchanged between both nodes.

The main challenge of our methodology is that we cannot rely on any given
rate of this traffic. That is why we base our methodology on a different model,
the Utilization Model. This model states that there is a linear relation between
the rate of the traffic and the utilization of the path. We estimate this linear
equation using Kalman Filtering and we ”project” it to the AB point (i.e.
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utilization=1). Therefore if we can estimate the utilization at different rates,
we can compute the AB.

In the paper we have analyzed which are the specific conditions that the traffic
exchanged has to fulfill to estimate the utilization. Our conclusions show that
200 consecutives packets, with exponential inter-departure times, estimate the
utilization with a mean absolute error of 0.1 (in 90% of the cases). We consider
the traffic that meets these conditions as ”valid” packet trains. Then we have
investigated whether such packet trains are actually present in real Internet
traffic. We have analyzed four NLANR public data-traces (60Gb in total). Our
analysis shows that, considering all the traces and grouping the packets into
packet trains, roughly 25% of packet trains are ”valid”. Additionally we have
analyzed the amount of ”valid” packet trains per second and (on average)
there is a ”valid” packet train each 0.433 seconds.

The main limitation of our methodology is the distance between the rate of
the ”valid” packet trains and the AB. The closer we operate to the AB rate,
the more accurate the estimations will be. This is because the error of the
estimations of the linear equation is ”projected” to the AB point. We have
evaluated this limitation modeling the path, the rates of trains and the error.
Our analysis shows that when the path is not congested (below 60% of its
capacity), almost any packet train rates are valid to achieve good accuracy.
When the path is near congestion (above 75%), then the packet train rates
must be around 50% of the AB.

Finally we have designed a tool based on our methodology: PKBest (Passive
Kalman-Based estimation). We have evaluated its accuracy through simula-
tion and compared it to that of pathChirp (a state-of-the-art PRM-based
active tool). Our evaluation methodology is based on [28] where the authors
presented a methodology to compare the performance of AB estimation tools.
Our results show that PKBest’s estimation agree with the AB and, consider-
ing all the cases, the mean relative error of PKBest is 0.12 (for pathChirp is
0.30). The evaluation has shown that our methodology is not affected by non-
tight link cross-traffic, different tight and narrow link, or even multiple tight
links. When the tight link is near congestion (above 75%), the error of the
estimations is higher. This affects also pathChirp and, in general, PRM-based
tools [28].
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