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1.- Introduction 
 
The 2006 Internet Architecture Board Routing and Addressing Workshop report [1] listed the 
alarming rate of growth of the Default Free Zone (DFZ) routing table the most important problem 
facing the Internet today. The scalability issues of the current Internet Routing architecture were 
previously recognized, and proposals already existed for future Internet architectures. Many of 
them are centered around the idea of separating the network node's identifier from its topological 
location. This report however sparked research for a solution, that would enable incremental 
deployment of the new proposed protocol, changing as little as possible current hardware, software 
and addressing schemes. The Locator/ID Separation Protocol (LISP) [2] is a promising proposal, 
pushed by Cisco and academia, that tries to meet the above mentioned goals. 
 
In LISP, each end-host has two addresses: an Endpoint Identifier (EID) that is related with the 
identity of the node, and a Routing Locator (RLOC) that it is related with the topological position of 
the network where it is attached to. The EID is only routable inside the domain while the RLOC 
outside the domain. In order to provide bindings between EIDs and RLOC, LISP employs a special 
distributed database called Mapping System (MS). 
 
Work on LISP and MS proposals is currently underway in the LISP WG of the IETF. The main 
protocol and LISP+ALT, one of the mapping systems, already have an experimental implementation 
for Cisco IOS, deployed in a testbed of about 20 nodes (lisp4.net). An open source implementation 
called OpenLISP [4] also exists for the FreeBSD kernel, implementing the main protocol and 
interoperable with the Cisco implementation. 
 
We have developed a LISP simulator (CoreSim). There is a need for such simulation because the 
above mentioned implementations help validate the good functioning of the proposals, especially at 
micro level. Nevertheless, to evaluate them at macro level, to see how they scale to the size of the 
current Internet and if they are feasible, a simulator can be a useful complementary tool. CoreSim is 
an Internet-scale LISP deployment simulator. It is able to replay a packet trace and simulate the 
behavior of a LISP Ingress Tunnel Router (ITR) and the associated Mapping Resolver, on top of a 
topology based on measurements performed by the iPlane infrastructure [7]. It reports mapping 
lookup latency, the load imposed on each node of the MS and cache performance statistics. The 
simulator implements LISP-ALT [6] and LISP-DHT. 
 
In this technical report we describe: 
  

- The general architecture of CoreSim, 
- An estimator for the latencies that does not report iPlane. 
- A validation of the LISP-DHT implementation with the UCL’s real DHT implementation 

 
2.- A short overview on CoreSim 
 
CoreSim simulates the operations of a iTR (input Tunnel Router) on an LISP-enabled Internet. On 
the one hand CoreSim emulates all the operations of an iTR (caching, buffering, lookup and 
forwarding) at a packet-level and uses an event-based simulation approach. On the other hand 
CoreSim simulates the performance of a LISP Mapping System (e.g. LISP-ALT and LISP-DHT) at an 
Internet-scale. This means that CoreSim’s assumes that the Internet is running a given MS and thus, 
it is able to provide realistic values. Due to the large-scale of the Internet, the MS is simulated using 
a time-based approach. 
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Figure 1.- CoreSim Architecture 

 
Figure 1 presents the main architecture of CoreSim. As the figure shows the simulator is composed 
mainly by two blocks, namely iTR and MS. The iTR block uses as input a real packet-trace and, for 
each packet, first it checks if it has the EID-to-RLOC binding stored at the Mapping Cache. If the 
entry is already cached, the packet is transmitted, on the contrary, if the Mapping Cache produces a 
miss, then the packet is buffered at an inFlight Buffer. At the same time, the iTR generates a 
Mapping-Request for a given EID that it is processed by the MS block. Once the Mapping-Request 
has been resolved the iTR transmits the packet. 
 
The MS block simulates the performance of a Internet-level MS. The topology of the MS is generated 
using real data, mainly BGP prefixes, which is provided by the iPlane project. This topology is 
generated only once (for each MS), and feed into the simulator. Based on this topology, the 
simulator routes the query through the MS-topology and accounts for the lookup latency and hop 
count. By accounting for the PoPs that have to route the query, CoreSim is able to provide an 
estimation of the latency using iPlane's measurements. Recall that iPlane has measured the latency 
between arbitrary pairs of PoPs. Unfortunately iPlane does not provide measurement for all pairs 
of PoPs. In this case CoreSim fills the gap estimating the latency based on the geographical distance 
between both PoPs. According to our results, roughly 65% of the latencies are resolved by iPlane, 
while the remaining ones by the estimator included into CoreSim. 
 
In particular, each CoreSim's module operates as follows: 
 
Mapping Cache: This module is responsible of maintaing the cached EID-to-RLOC mappings. Each 
Mapping-Reply is stored into the cache. The cache has a limited size and each query has a certain 
timeout. Further, the cache operates using a FIFO algorithm. This module outputs all the events 
related with the operation of the mapping cache. 
inFlight Buffer: This buffer stores packets that have produced a miss at the Mapping Cache and 
that trigger a Mapping-Request. While the query is solved the packet is stored at a buffer. Again the 
module outputs all the events related with these operations.  
Lookup Query: This module is responsible of estimating the latency of resolving a query. Each 
packet that produces a miss triggers a Maping-Requests. The module, taking into account the 
particular topology of the MS, routes the query among the responsible PoPs and estimates the 
latency and hop count. In particular it queries the iPlane database for the delay between each pair 
of PoP involved into resolving the query. As it has been mentioned before, if the iPlane has not 
measured the delay between a given pair of PoPs it, CoreSim estimates it using geographical 
information. The module outputs, for each query, the exact path that has followed the Mapping-
Request along with the latency. 
Route Query: Each query is routed through the MS and this module accounts for the amounts of 
queries routed by each node (i.e. PoP). Once the simulation finishes the module outputs this value 
for each PoP. 
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3.- Validation of tCoreSim 
 
This subsection describes the validation of CoreSim. 
 
3.1.- Latency Estimator 
 
The latency estimator is used to provide values for the cases where iPlane does not provide a real 
measurement. In order to design the latency estimator we have used a dataset that contains 
roughly 200k of latencies between arbitrary pairs of PoPs. We have divided this dataset (randomly) 
into two sets, one for training and designing the estimator and the other one for validation 
purposes.  
 
In order to design an estimator for the latencies we take into account the information that we can 
associate to each PoP. In particular we aim to correlate the the geographical distance between two 
PoPs and the latency between them. The geographical location is obtained using the MaxMind 
database. This database is open source and has an 99.8% accuracy at country level, 75% accuracy 
at city level (within a range of 25 miles), 22% accuracy at more than 25 miles, and 3% that the IP is 
not covered by such database.  
 

 
Figure 2.- 3D histogram (latency vs. distance) 

 
First, in figure 2 we show a 3D histogram of the relation between the distance and the latency of the 
training dataset. As the figure plots mostly, the samples are of PoPs which are at less than 5000km, 
and between 10.000 and 15.000km. 
 
Now, figure 3 shows a scatter plot of the distance vs. the latency, along with a linear regression 
(latency=distance 0.017203+65.968). As the figure shows there is a linear relation between both 
metrics, although the fit is not perfect. This is because the distance takes into account the 
propagation delay, however in a real path other terms affect the end-to-end latency, such as the 
queuing or processing delay. Unfortunately, at the best of our knowledge, there are no public data 
traces that include this information (i.e. number of hops) into the regression. Therefore we consider 
the linear regression as our first estimator for the latency. 
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Figure 3.- Scatter Plot and Linear Regression (latency vs. distance) 

 
We also consider another approach for the latency estimator. In this case we bin the pairs of PoPs 
depending on their distance and we compute the EDF (Empirical Distribution Function) of the 
latencies. Then, considering this training data, we estimate the delay of a pair of PoPs by first 
computing the distance between them, and then generating a random number that follows the EDF 
of the appropriate bin. In particular we consider two bin sizes: (i) (0-10km, 10-100km,100-
1000km,1000-10.000km,10.000-20.000km) and (ii) (0-10km,10-100km,100-500km,500-
1000km,1000-2500km,2500-5000km,5000-7500km,7500-10.000km,10.000-15.000km, 15.000-
20.000km). With this approach we assume that there is a correlation between the bin size and the 
latency, for instance routers that are at a range of 10km may have the same amount of hops on their 
paths. Further, we also consider this approach taking into account the particularities of their 
location at a continent-level. It is clear that the topology of the Internet is different if we consider 
North America or Europe, this is because Europe is more densely populated and routers at the 
same distance may have a larger amount of hops in between.  
 

 
Figure 4.- Error of the estimators 
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Figure 5.- MSE of the estimators 

 
Figure 4 and 5 show the error and MSE (Mean Squared Error) of the above mentioned estimators. 
As both figure shows the performance of the estimators is similar, except for the distance/c 
estimator, which always produces under-estimations. This is because it only considers the 
propagation delay, and assume that end-to-end paths are just a fiber link. Regarding the rest of the 
estimators the linear regression is slightly more accurate than the rest of them. Further, this 
estimator is very fast, and will not slow down the simulator. It is important to note that generating 
random numbers that follow a certain EDF is computationally intensive. Also, as figure 4 the linear 
regression estimator is not biased, and since we plan to carry out large-scale experiments, with a 
high amount of repetitions, it will not impact the results. 
 
4.- Validation of CoreSim 
 
We validated our implementation of the Chord protocol for LISP-DHT using the LISP-DHT 
implementation developed at Universite Catholique de Louvain, which is based on OpenChord 1.0.5 
with 50 nodes in steady state. Further, in order to validate the LISP+ALT and LISP-DHT 
implementations, we used a 35 second packet trace from UPC’s Internet link, consisting of 2 million 
packets and we obtained the following results (figure 5,6 and 7) that were discussed with Prof. 
Olivier Bonaventure. The figure shows the lookup latency, hopcount and size of the packet buffer of 
the different MS implemented at CoreSim.  
 

 
Figure 5.- Lookup Latency 
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Figure 6.- Packet Buffer 

 
Figure 7.- Hop-Count 

 
5.- Future Work 
 
Researchers from the host and home institute are preparing a joint paper resulting from the STSM. 
The paper describes a qualitative and qualitative analysis of the performance of the different 
Mapping Systems. 
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