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ABSTRACT

The closure problem for the stellar hydrodynamic equations is studied by describing the family of phase space density functions,
for which the collisionless Boltzmann equation is strictly equivalent to a finite subset of moment equations. It is proven that the
redundancy of the higher-order moment equations and the recurrence of the velocity moments are of similar nature. The method is
based on the use of maximum entropy distributions, which are afterwards generalised to phase space density functions depending on
any isolating integral of motion in terms of a polynomial function of degree 7 in the velocities. The equivalence between the moment
equations up to an order n + 1 and the collisionless Boltzmann equation is proven. It is then possible to associate the complexity of a
stellar system, i.e., the minimum set of velocity moments needed to describe its main kinematic features, with the number of moment

equations required to model it.
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1. Introduction

A maximum entropy density function was used in Cubarsi
(2010, hereafter Paper 1), to infer the stellar velocity distribution
from a finite set of moment constraints. An explicit relationship
between higher-order moments and the moment constraints was
also established. Now, as a corollary of the method, maximum
entropy distributions allow us to formulate the equivalence of the
collisionless Boltzmann equation and the stellar hydrodynamic
equations. This result could be of interest in modelling the dy-
namics of some stellar groups and may be useful as well to as-
tronomy students for clarifying some basic concepts of stellar
dynamics.

The most basic cases of dealing with the stellar hydrody-
namic equations are the continuity equation, for order n = 0,
standing for mass conservation, and the momentum conserva-
tion equation, for n = 1, also called Jeans equation. It is well
known that the infinite hierarchy of the stellar hydrodynamic
equations cannot be used as a dynamical model to study a stel-
lar system unless they are reduced to a finite number of equa-
tions and unknowns. In most applications, only the lowest order
equations are used, in addition to some particular assumptions to
restrict the number of unknowns; for example, by assuming the
epicyclic approach (Oort 1965), axial symmetry (Vandervoort
1975), or by taking a velocity distribution function depending on
specific integrals of the star motion (Jarvis & Freeman 1985). In
this way, some constraints between central moments are reached
(van der Marel 1991). Obviously, when working with the Jeans
equation alone, or with a finite set of hydrodynamic equations,
the collisionless Boltzmann equation is not generally fulfilled.
Then arises the closure problem of how the infinite hierarchy of
moment equations and unknowns are reduced to a finite subset,
which is still equivalent to the collisionless Boltzmann equa-
tion. It is worth mentioning the explicit treatment of the clo-
sure problem by Cuddeford & Amendt (1991). They adopted
some closure assumptions involving the moments of the velocity
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distribution, which did match some known constraints between
the moments of the Schwarzschild distribution, like those related
to the skewness and the kurtosis of the distribution in specific di-
rections. In this way, they made the stellar hydrodynamic equa-
tions equivalent to the collisionless Boltzmann equation, as well
as obtaining a phase-space density function which was more
general than the Schwarzschild type. However, the closure con-
ditions they found, even using up to eighth-order moments, were
only valid in a steady-state, cool, axisymmetric stellar system,
with vanishing radial mean velocity. Most of those assumptions
are already non-valid in the solar neighbourhood.

In Cubarsi (2007), hereafter Paper II, the general form of
the n-order stellar hydrodynamic equation was derived in terms
of the comoving velocity moments in a completely analytical
way and without any additional hypotheses. It was a previous
step to study the closure problem, trying to answer the follow-
ing questions: when is a finite subset of hydrodynamic equa-
tions strictly equivalent to the collisionless Boltzmann equation?
Which are the redundant moment equations? Can we explicitly
write the conditions that make them redundant? In other words,
under which assumptions is it possible to find some general
closure conditions? The answers to these questions may vary
depending on the form of the velocity distribution. A first ap-
proach to the closure problem was discussed and solved for ellip-
soidal velocity distributions. It was proven for a Schwarzschild
distribution that the whole set of hydrodynamic equations was
reduced to the moment equations of the orders n = 0,1,2,3,
which were equivalent to the collisionless Boltzmann equation.
In a more general case, for an arbitrary ellipsoidal trivariate ve-
locity distribution, some analogous closure conditions were ob-
tained. In both cases, the closure conditions were provided by
some recurrent relationships of the velocity moments, so that
moments of fourth and higher orders were determined in terms
of the lower-order moments. Therefore, it was suggested that the
closure problem was related to the macroscopic properties of
the velocity distribution, although different velocity distributions
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could have analogous closure conditions and a similar set of in-
dependent moment equations.

In the current paper, the closure problem is studied in a more
general way, by describing the whole family of phase space den-
sity functions, for which the collisionless Boltzmann equation
is strictly equivalent to a finite subset of hydrodynamic equa-
tions. In addition, it is proven that the redundancy of the higher-
order moment equations and the recurrence of the velocity mo-
ments are of similar nature. The method is based on the use of
maximum entropy distributions, which allow an easy algebraic
treatment. The closure problem is solved in two steps. First, a
family of maximum entropy distributions is considered, which
is a generalisation of an exponential quadratic function to an ex-
ponential polynomial function of degree n in the velocity vari-
ables. Second, the maximum entropy functions are taken as a
basis of square-integrable functions, to expand any arbitrary,
non-exponential function in terms of a n-degree polynomial, as a
convergent power series. For such a general family of functions,
i.e., the phase space density functions depending on any isolat-
ing integral of motion expressed as polynomial function in the
velocities, the equivalence between the first set of moment equa-
tions, up to order n+ 1, and the collisionless Boltzmann equation
is proven.

Furthermore, it is possible to associate the complexity of
a stellar system, i.e., the minimum set of velocity moments
needed to describe its main kinematic features, with the num-
ber of moment equations required to model it, as shown from
samples used in the application section of Paper I, drawn from
the HIPPARCOS and Geneva-Copenhagen survey catalogues.

The paper is organised as follows. In Sect. 2, the notation is
introduced while reviewing the basic concepts of stellar dynam-
ics to be used: the Boltzmann equation, a property of the isolat-
ing integrals of motion, and the moment equations. In Sect. 3,
a maximum entropy density function is used to obtain the fun-
damental system of equations, associated with the collisionless
Boltzmann equation, and the closure problem is solved for this
family of functions. In Sect. 4, the closure problem is generalised
to arbitrary phase density functions. Finally, some conclusions
are pointed out.

2. Basic concepts
2.1. Boltzmann equation

It is generally assumed that the Galaxy is at present in a state
in which each star can be idealised as a conservative dynamical
system to a very high degree of accuracy. In general, the forces
acting in the system can be associated with a gravitational poten-
tial function per unit mass U(t, r), so that the motion of a star is
described in a cartesian coordinates system by the Hamiltonian
system of equations

=V, V=-Ulr). (1)

For the whole stellar system, the collisionless Boltzmann equa-
tion is satisfied (see Hénon 1982, for the appropriate terminol-
ogy), so that the phase space density function f(z,r, V), with
(t,r,V) e RxT, xTy, fulfils

Df _of

—-— == Vof =V, U-Vyf=0. 2
D¢ ot +V rf r(L{ Vf ( )
This is a consequence of the Hamiltonian flow, which preserves
volume, i.e. satisfies the Liouville theorem: the density of any el-
ement of phase space remains constant during its motion. Jeans
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showed that the fundamental equation of stellar dynamics was a
particular case of the Boltzmann equation from the kinetic the-
ory of gases,

O bV 4V Wy = O, )
where the collision term of the right-hand side may be assumed
to be null in two cases. First, if the effect of the irregular forces,
such as star encounters, is negligible. Second, if the phase den-
sity is invariant with respect to the irregular forces, that is, when
the number of points leaving any space volume as a result of
encounters is balanced by those which enter the volume for the
same reason. In both cases, the Liouville theorem is satisfied.

According to Jeans’ direct problem, Eq. (2) is a linear and
homogeneous partial differential equation for f, for a given po-
tential U. An immediate consequence of the Liouville theorem
is that if I, I,...,I¢ are any six functional independent inte-
grals of the stellar motion for a given potential, according to
Eq. (1), then the phase space density function must be of the
form f(t,r,V) = f(I1, I, ..., Is), where the quantity on the right-
hand side stands for an arbitrary function of the specified argu-
ments, on the condition that the mass of the system be finite
and that the density in the phase space be non-negative. The
phase space distribution function is itself an integral of motion.
Therefore the integrals of motion univocally determine the orbit
of any star in the phase space.

2.2. Isolating integrals

The phase density, by its physical significance, must be a one-
valued function of the six phase coordinates (e.g. Ogorodnikov
1965). If the stellar system is time-independent, the phase space
remains decomposed in a set of disjoint hypersurfaces corre-
sponding to different integral values, although if the system is
time-dependent, the orbits may intersect for different times. In
any case, for a fixed time ¢y, the integrals must define a family
of level curves of the phase space. Then, only the isolating in-
tegrals, by meaning that they satisfy the condition of being one-
valued, can appear as an argument in the phase density. Analytic
integrals are always isolating, but non-classic integrals, which
are implicit in a numerical integration of an orbit, are usually
non-isolating.

When some kinematic knowledge about the stellar system
is available, such as that concerning the integrals of motion, if
the density function f is already known, Eq. (2) may be alter-
natively interpreted as a linear, non-homogeneous partial differ-
ential equation for U. For example, the velocity distribution of
some stellar groups can be assumed, after a transient period, of
Maxwell type, Schwarzschild type, or ellipsoidal shaped (e.g.
de Zeeuw & Lynden-Bell 1985). This viewpoint is a functional
approach, also known as Jeans’ inverse problem, which gener-
ally focuses on the study of a single stellar population' (or may
be used to define a statistical population), although it could be
combined with a mixture model to get a more complete portrait
of the velocity distribution (e.g. Cubarsi 1990). With this view-
point, there is no need of the collisions term. On the contrary, it
is assumed that there are sufficient collisions to keep the system
in statistical equilibrium, according to the specific phase space
density function or the particular integrals of motion. In other

! In such a case, the Newton-Poisson equation, which relates the grav-
itational potential to the total stellar density, is useless, since unknown
stellar populations, including gas and dark matter, do contribute to the
gravitational field.
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words, it is assumed that the phase space density function is in-
variant under the collisional operator C(f, ). The idea comes
from the original works on statistical dynamics (Chandrasekhar
1943), where the collisional term, accounting for diffusion and
frictional processes, is exactly what is needed to conserve the
energy of the whole system and leave the Maxwellian distribu-
tion invariant. Therefore, it is not surprising that Lynden-Bell
(1967), in studying the equilibrium distribution achieved after
a violent relaxation process, induced by rapid fluctuations of the
gravitational field, obtains a similar smooth distribution function
for a rotating elliptical system as Chandrasekhar (1942). Notice,
however, that the former uses the statistical dynamics approach,
while the latter in this case faces the problem from analytical
dynamics. Other examples are described in Ogorodnikov (1965)
when deriving the most probable phase distribution after an effi-
cient relaxation mechanism.

IfP(t, r, V) is an isolating integral of motion, continuous and
differentiable in its arguments, for any fixed time %y, the equa-
tion P(ty, r, V) = C must define a one-parameter family of five-
dimensional surfaces filling all the phase space I', x I'y, for all
the possible values of the constant C € Ip. If we assume that
the phase density can be written as f(¢,r, V) = f(P), then f(P)
is also an isolating integral of motion, which must define, for
the same fixed time 7y, another uniparametric family of curves
f(P) = K € Iyp), associated with the same set of hypersurfaces
filling ', X T'y. To each level curve of the former family corre-
sponds one, and only one, level curve of the later family, so that
K = f(C). Thus, we can assume that the inverse ! is, like f,
differentiable in the interior of its domain. Hence, the following
inequality must be fulfilled,
df®)

P #0. 4)
In other words, f(P) is a strictly increasing or decreasing,
smooth function of the argument, in any open set within the in-
terval Ip. This is a basic property used in Sect. 4 for the general
solution of the closure problem.

A typical example of this situation is the generalised
Schwarzschild distribution, with # = Q+0, where Q = u™- A, -u
is a quadratic, positive definite form depending on the peculiar
velocity u, where the second-rank symmetric tensor A, and the
scalar function o~ depend only on time and position. Then, owing
to Eq. (4), we can express the collisionless Boltzmann equation
in either of the following forms

Df®) _df(P)DP _ 0 DP _
Dr  dP Dr Dr

For the generalised Schwarzschild distribution, Chandrasekhar
(1942) obtained a system of twenty partial differential equations
for A,, o, the mean velocity, and the potential, which was equiv-
alent to the collisionless Boltzmann equation.

0. )

2.3. Moment equations

In the very beginning of the book, Chandrasekhar (1942) out-
lines the appropriate conditions to define a unique local standard
of rest for describing the motions in a given relatively small vol-
ume of the Galaxy. The conditions are related to a continuous
estimation of the centroid velocity within this volume and to a
slow varying distribution function, which could be referred to
as regularity conditions. He concludes that the stellar systems
can be divided into those for which the notion of local standard
of rest (and, by extension, higher velocity moments) is of sig-
nificance and those for which it is not. Among the latter we can

mention the systems dominated by a phase mixing process’ (e.g.
Binney & Tremaine 1987), for which a macroscopic, coarse-
grained distribution function may be defined in contrast with
the true, fine-grained distribution function, although the coarse-
grained distribution function of a mixing system would not sat-
isfy the collisionless Boltzmann equation. We shall focus on the
first class of stellar systems, for which the mean velocity and
similar statistics are meaningful.

The macroscopic properties of a stellar system are usually
described from the symmetric tensors of n-order moments m,,.
They provide indirect information of the phase space density
function f(¢,r,V) for fixed values of time and position. The
current paper follows the notation and definitions of Paper I.
Therefore, here we shall only recall that the tensor m, has

(”+2) different elements according to the expression m;j, ; =

2
(Vi,Vi, ... Vi), whose indices belong to the set {1, 2, 3}, depend-
ing on the velocity component. Instead of the component nota-
tion, namely the Latin indices notation, a notation to make the
velocity powers explicit may also be used, the Greek indices no-
tation, according to mgg, = (V{ Vf V37 ). The normalisation of the
density function is given by my = 1, and the mean velocity, or
velocity of the centroid, is given by m; = v(¢,r). In a similar
way, the symmetric tensor of n-order central moments y,, is ob-
tained from the peculiar velocity u = V — m;, with elements
Hiyiy..i, = (Wi Wi, ...u; ). In this case, yp = 1 and gy = 0.

It is well known that the stellar hydrodynamic equations,
usually referred to as the moment equations, are obtained when
above kinematic statistics are introduced into the collisionless
Boltzmann equation. By multiplying Eq. (3) by the n-tensor
power of the star velocity, and by integrating over the whole ve-
locity space we get

Df

V)" =’V = (0"
Iy

>0 6
Dt = ©)

where in the integration process the following boundary condi-
tions are assumed because there are no stars with velocity be-
yond I'y

V — oy = (V)'f(t,r,V) = (0)", n > 0. 7

It is always assumed that the foregoing integrals do exist, as
those of the velocity the moments. The moment equations are
physically meaningful when they are written in terms of the
central moments or pressures, in the reference frame associated
with the local centroid (Paper II), so that for each value of n,
the tensor equation Eq. (6) provides a conservation law along
the centroid trajectory. Indeed, the physical interpretation of the
Chandrasekhar’s (1942) system of equations is more evident
from the corresponding set of hydrodynamic equations, in terms
of mass conservation, acceleration of the centroid, and transfer
of even- and odd-order pressures, as shown in Paper II.

3. Maximum entropy function

Although the closure problem will be studied for a wider fam-
ily of density functions, a functional approach with maximum

2 For the Galaxy and, in general, for stellar systems larger than globu-
lar clusters, the forces acting on a star can exclusively be associated with
a mean gravitational field, by neglecting the random forces due to stellar
encounters. In the solar neighbourhood, assuming that the Galaxy has
reached an equilibrium configuration, the potential is usually taken as
explicitly time-independent. Then, the Hamiltonian flow possesses the
energy integral, is always nonergodic and, therefore, nonmixing (e.g.
Arnold & Avez 1968).
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entropy distributions is firstly considered. Basically, they are
generalised exponential distributions, including the exponential,
normal, lognormal, gamma, and beta as special cases. The main
properties of these density functions are detailed in Paper I. From
a thermodynamical viewpoint, a maximum entropy density is
a function (a) that depends on a linear combination of the col-
lisional invariants, i.e. mass, momentum, and energy; (b) for
which the collision term of the Boltzmann equation is exactly
zero, i.e., it is a solution of the collisionless Boltzmann equa-
tion; and (c) that minimises Boltzmann’s entropy functional.
This solution represents a local equilibrium state, in the sense
that other solutions to the Boltzmann equation become asymp-
totically close to it. But thermodynamical entropy is a particu-
lar case of information entropy. If the conserved macroscopic
quantities involve moments accounting for mass and energy,
Shannon’s information entropy takes its maximum value in the
form of Maxwellian distributions. If the conservation extends to
all the second moments, the information entropy takes the ex-
treme value for Gaussian distributions. In general, the number
of constraints may involve higher-order moments, by reflecting
a more complex situation in which the stars interact with the po-
tential and with themselves. Indeed, the moment constraints are
a direct consequence of the isolating integrals of the stellar mo-
tion, or more precisely, they reflect particular combinations of
the integrals of motion which are conserved. Therefore, we can
adopt the viewpoint of Jeans’ inverse problem.
The form of a maximum entropy function is

f(t,r,V)=e"¥, ®)

where P(V) represents a power series in the velocity components
with coefficients depending on time and position. It contains as
many terms as the number of available moment constraints, so
that each coefficient is related to a single moment constraint.

A maximum entropy distribution has a very simple func-
tional form, allowing us to show straightforwardly the equiva-
lence of the collisionless Boltzmann equation and a finite set of
moment equations. Afterwards, it can be easily generalised to
non-maximum entropy distributions. We write the phase space
density function as

— P — ayBysY
f=eP, P, = Z Aoy t,7) VEVEVY, )

a+f+y<n

where the subindex n does not represent the number of terms, but
the polynomial degree. If the velocity domain I'y is infinite, the
polynomial #,, must be upper bounded to satisfy the integrability
conditions given by Eq. (7). Otherwise, as discussed in Paper I, a
truncated bell-shaped velocity distribution might be considered.

3.1. Fundamental system of equations
The conservation of the integral of motion P, is expressed by

substituting Eq. (9) into Eq. (5), by considering Eq. (4). The
equation

DP,
_ 1
Dr 0 (10)

represents a linear and homogeneous system of partial differen-
tial equations for the coefficients of #,. Thus, taking the colli-
sionless form of Eq. (3) into account, the above equation can be
explicitly written as

67),1_'_ 67),1_%37),, ~0
ot k ory ory OV, B
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For the remaining part of this section, it is more convenient to
write Eq. (9) by using Latin indices, along with Einstein’s sum-
mation criterion for repeated indices,

Pn = /l() + /l,‘V,‘ + /l,'jV,‘Vj +...+ /lil...i,, V,‘] . V,'“. (12)

The coeflicients 4;,_;, in the term corresponding to the kth-power

of the velocities are symmetric, so that we have (kgz) different

coeflicients. Hence, up to the nth-power, it makes }};_, (kzz)

(";’3) different coefficients. The correspondence between the

Greek and Latin indices notation for the coefficients of P,, de-
pending on the use of either Eq. (9) or (12), is given by

k!
/la/ =—A 5 k= +0+y. 13
B = iy 12233 a+pB+y (13)
a B Y
Then, Eq. (11) becomes
DP, 049 04 04;; 0, .. 0y
=—+—Vi+—'ViV‘+ +—“wVi ...Vi+—V
Dt Ot Ot o 'Y o " o K
f iy Wiy ey Seny ey
al’k iVk Brk iVjVkT... Brk i Vi, Vk
ou
- (/l,»é,»k+/lij6iij+/lij6jkVi+. . .+/l,' " 5,’ kV,‘, R Vl‘
rk 1 n 1 2

(14)

To simplify the notation, by permuting some indices and consid-
ering the symmetry of the coefficients, we define the following
tensors

+...+ /l,»l,_,,‘né,‘nkv,‘] R Vl‘”_l) =0.

_o_ou
A A
i 0
A,’ = — + — 2—/1, R
ot or, on ™
oy o ou
VT Tor Ton e
(15)
0iiy.iny  OAijiy.iy ou
Ai ; — 112.-.Ip—1 112 n2_ _/lii i
Leinet at arn_l nari“ 182...ln
A = Oiiy.ciy | Oigiy.ciyy
ely — 6t 67}, ?
A _ Odijiy..,
idpyr — 67’,,4.1 >

which are also symmetric quantities (hence, it suffices to con-
sider only the indices satisfying 1 < i; < i < ... < 3).
Therefore, from Eqgs. (14) and (15), the collisionless Boltzmann
equation can be written in terms of the elements of tensors Ay as

D®P,

D1 = AO + AiVi + A,‘jViVj +...+ Ailml}m Vi1 . Vi’l” = 0, (16)
which must be fulfilled for all possible values of the velocity.
Then, since each symmetric tensor Ay, k = 0,...,n+ 1, has (kgz)

n+4

different elements, a number of ( 3

involved. They are

) scalar equations are in total

Ao =0,

Ai =0,

Ai; =0, (17
A =0.

it
In this way, the collisionless Boltzmann equation is equivalent

to the above system of partial differential equations, depending
on the variables 7 and r.
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3.2. Closure of moment equations

We are ready to see that the foregoing system of equations is
equivalent to a similar set of independent moment equations, and
that the remaining hydrodynamic equations are obtained from
linear combinations of them.

Firstly, from Egs. (6) and (10), we write the general expres-
sion of the moment equations for an arbitrary order / > 0,

o DP,
Mapy = jr‘ Vi ngg Dr

The foregoing relationship can be interpreted as the inner prod-
uct of Dg;” and an element ¢op, = VY Vf Vg » belonging to the
basis of the space of square-integrable functions in I'y, with re-
spect to the weight function e”. Hence, we can express the first
equality in a more compact form,
D®,

Maﬁy = <¢aﬁy7 E> .
We also write the left-hand side of Eq. (16) by making explicit
the velocity powers, in the Greek indices notation, similar to
Eq. (9),
DP,

Dt

V=0, a+B+y=1 (18)

19)

D1 At ViIVEV]. (20)

a+f+y<n+l

A relationship similar to Eq. (13) between capital lambdas is
hold.

Finally, by substitution of Eq. (20) into (19), we obtain how
the moment equations are related to the tensors Ay,

Maﬁy = Z <¢aﬁy7 ¢L[1V> Amv; a +B +y= L

t+pu+v<n+1

21

Notice that the above expression involves the moments
M40 Brp) rv) = (Papys By

If the foregoing system of equations is restricted to the first
set of indices, 0 < I < n+1, we get the same number of equations
as coefficients A,,,. We are therefore led to a similar situation
as in Paper I, where the above system matrix was written as a
squared matrix G, of inner products of the velocity components,

G(afy, uv) = {Popy; Q) a+p+y <n+l,i+pu+v<n+1.(22)

Then, G, is a Gram matrix, symmetric, positive definite and,
among other well known properties, is invertible. In this nota-
tion®, we write this subsystem contained in Eq. (21) as

Mgy = Z GeBy,uwv) Ay  a+B+y<n+1. (23)

t+pu+v<n+l

3 Equation (23) may be written by using Latin indices as well, similar
to Paper I (Appendix A.2), although the usual algebraic notation is also
possible, i.e., matrices depending on two indices and vectors on a single
index. To establish this exact correspondence, the summation terms of
Eq. (21) might be ordered in the following form: any quantity ¢,s, of
order k = a + 8 + y, written in Greek indices, with each index taking
values from O to k, can be sorted under a triple loop, 0 < y < k, k —
vy <B <k and k—y - < @ < k, along with increasing k. In Latin
indices, it is equivalent to writing ¢; i,i,.. With ijii3 ... € {1,2,3} and
1 <ij <i <i3 <--- < 3. For example, for order k = 4, the Greek
indices sequence {400, 310, 301, 220, 211, 202, 130, 121, 112, 103,
040, 031, 022, 013, 004} is equivalent to the Latin indices sequence
{ 1111, 1112, 1113, 1122, 1123, 1133, 1222, 1223, 1233, 1333, 2222,
2223,2233, 2333, 3333}. In general, for Greek indices, the total infinite
sequence may be represented as o, the ith-element as o[i], and a finite
sequence up to order k as 0. Similarly, in Latin indices, we could refer
to them as s, s[i], and s, respectively. By this way, each element @z,

From the above relationship, the first elementary conclusion is
that the finite system of equations,

Ay =05 t+pu+v<n+1, (24)

corresponding to the collisionless Boltzmann equation, is ful-
filled if, and only if, the finite set of hydrodynamic equations,

Mgy =0; a+B+y<n+1 (25)

is also fulfilled.

A second consequence is that Eq. (23) can be inverted, so
that the components A, can be explicitly expressed in terms of
linear combinations of the hydrodynamic equations M,g,, up to
order n + 1, according to the following relation,

Aopy = Z G Y (aBy, ) My a+B+y<n+1, (26)

t+Hu+v<n+l

where G~!(aBy,yv) is the corresponding element of the in-
verse of matrix G,. Thus, the finite set of elements Agg,,
a + B+ 7y <n+ 1, may be introduced in Eq. (21) to express the
infinite hierarchy of higher-order moment equations in terms of
the lower-order hydrodynamic equations My, t+p+v <n+1,

Magy = D (bapyrbapy) D, GUQBY ,ur) My (27)

o'+ +y' <n+1 t+u+v<n+1

fora+B+y>n+2.

The foregoing relationship clearly shows the recurrence of
the higher-order equations in terms of a finite set of the lower-
order ones. Therefore, for maximum entropy density functions,
the closure of the stellar hydrodynamic equations is proven.

4. Arbitrary function of #,

The closure of the moment equations is also valid for any ar-
bitrary density function f(#,), even if it is not a maximum en-
tropy function. By following the same steps as in Appendix B of
Paper 11, it can be shown* that any phase density f(#,), which
is a square-integrable function with respect to the weight e’ in
I'y, can be expressed as the following convergent power series

SPn) = Z Vi1 e, (28)
k=1

could be written as depending on a single index, ¢,;;, and Eq. (23)
would become

Moy = Z Gopnotg Aotks Ol € 0par.

olkl € opa1

4 Instead of repeating the full derivation for the above property, the
velocity distribution function may be written in similar terms as in
Paper II, where it was shown that any arbitrary quadratic density func-
tion f(Q + o) could be expressed as a convergent series of the Gaussian
functions e~2(@*?% with k > 1. Let us assume an infinite velocity do-
main I'y. Since P, is upper bounded, there exist a value ¢, which may
depend on time and position, such that #, < ¢ for all velocity V € I'y.
Thus, we can write P, = —%(Q,, + o) with Q, = —=2(P,, — {) a positive
definite form, and o = —2{. Hence, we are in the appropriate conditions
to show that any function f(Q, + o) can be expressed as a convergent
. . 1 . . P
power series in terms of e72@*), The case of a finite velocity domain is
quite similar but with the corresponding changes concerning the domain
of the variables. Thus, if {; < P, < {3, then the variable 7 = %(Q,, +0),
defined in Paper II, belongs to the interval I = (—={>, —{), and the vari-
able n = €7 belongs to the interval J = (e72,e7¢1).
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where the coefficients y;_; are constant, and f depends on time,
space, and velocity through #,, as in Eq. (9). If we assume that
the distribution function is continuously differentiable in the in-
terior of I'y, this generalised Fourier series can be integrated
or differentiated term by term without loosing its convergence
property.

On the other hand, due to the boundary conditions, Eq. (7),
when the velocity V approaches the boundary domain I'y, then

P, — —oo and f(P,) — 0. According to Eq. (4), since

f(#y,) > 0, f must be an increasing function of #,, so that

df(®n)

_— 2
P, > 0, (29)

in the interior of the domain I', X I'y, for any fixed time.

4.1. Moment equations

By taking derivatives in Eq. (28),

df (P, =
S )=Zyk-1ke”’“,

(30)
de, —
and bearing in mind Eq. (5), we have
Df(P)) < wp, DkPy)
— ~ T 31
Dr ;Yk 1€ Dr 3D

Then for any k# 0, Egs. | (12) and (16) are also fulfilled with
SD =kP,, /l = k A;, and A = kA,, smce P, is hnearly depen-
dent on the tensor elements A;,
lated. Then, each term of the above serles satlsﬁes the collision-
less Boltzmann equation, so that a linear relationship, similar to
Eq. (23), holds. Therefore, for each term of the series Eq. (31),
we get the integrals

Dk
- [ o B v aapiret o
Iy

and we sum up, according to the coefficients of the series, so that
we obtain

= > Dk ®P,)
Z Yi-1 M;[;y f bapy Z Yi-1 “Dr et ddv.
k=1 Ly k=1

Hence, according to Eq. (31), we are led to the general expres-
sion of the moment equations, which generalises Eq. (18)

Df(P,
aﬁy f ¢aﬁy f( )d3V 0.

For any order / = @ + 8 + vy, the [-order moment equation is ob-
tained as linear combination of the moment equations associated
with each term of the series Eq. (31),

k
Maﬁy = Z Yi-1 fo[?’y
k=1

(33)

(34)

(35)

4.2. Equivalence

The relationship between the hydrodynamic equations and the
collisionless Boltzmann equation is now established by substitu-
tion of Eq. (20) in (33),

aﬁy f ¢aﬁy Z'y}( 1 [
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> A ¢W)k 7 V. (36)

tHu+v<n+1

By reordering terms,

Maﬁy = Luv

L+/J+V<n+1

f Bapy Pur [Z Ve k e’”’"] d’v} . (37)
and bearing in mind Eq. (30), we may also write

df (P,
|:f ¢aﬁy ¢zyv f( ) ] Azyv- (38)

Therefore, if only orders @ +B+7y < n+ 1 are considered, we are
led to a similar relationship as Eq. (21), but with the inner prod-
uct calculated with the weight function given by Eq. (29), which

will be notated with a Gram matrix G,. The resulting integrals
are some generalised velocity moments, so that when f(%?,) is
a maximum entropy function then f(#,) = % and the gen-
eralised moments become ordinary velocity moments. Thus we

write
Mgy = Z Gy y1v) Ay @ +B+y <n+ 1.
t+u+v<n+1l

Mapy =

L+/1+v<n+1

(39)

The relationship between a finite set of hydrodynamic equations
and the collisionless Boltzmann equation, given by Egs. (23)-

(25), is now expressed as M,.; = GyA,1, so that A,y =
0n+1 — Mn+l = 0n+1o

Therefore, for any density function depending on an n-
degree polynomial function #,, there is a finite set of indepen-
dent moment equations, for the ordersi = 0, 1,...,n+1, which s
equivalent to the collisionless Boltzmann equation. Furthermore,
a recurrence law for moment equations similar to Eq. (27), but
with the weight function given by Eq. (29), is satisfied.

Similar to Paper I, but for the general case of a non-
maximum entropy function, it is possible to prove the linear rela-
tionship between the coefficients of the polynomial function #,
and a finite set of extended velocity moments (see Appendix A).
Also, as commented in Paper I, for a given density function, the
quantities A, k < n, are univocally related to the minimum set of
moments my, k < n, so that all the higher-order moments could
be computed from the former set. However, the proven linear
relationship makes use of an extended set of moments up to an
order 2(n — 1). Only for n = 2, the minimum and the extended
set of moments match up. For this case, the moment recurrence
was explicitly used in Paper II to derivate the redundancy of the
higher-order moment equations. However, for n > 2, the ex-
istence of a general analytical relationship involving only the
minimum set of moments should be further investigated.

5. Concluding remarks

The description of how the Galaxy relaxes towards a steady state
is still a matter of debate, but there are two processes that likely
play an important role: phase mixing and violent relaxation.
Lynden-Bell (1967), in a seminal work, gave a statistical descrip-
tion of how a rapid fluctuating gravitational field produces a re-
laxation mechanism under the collisionless Boltzmann equation,
which involves phase mixing, by changing the coarse-grained
phase-space density near the phase point of each star, and violent
relaxation, analogous to collisions in a gas, by changing the en-
ergy per unit mass of a star. Lynden-Bell’s approach leads, for a
non-degenerate stellar system, to a Maxwell-Boltzmann macro-
scopic distribution. Improvements to the previous approach (e.g.
Chavanis et al. 1996; Chavanis 1998) take into account, among
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other aspects, the self confinement of the Galaxy, which is re-
lated to the incomplete relaxation problem due to the hypoth-
esis of ergodicity; the maximum-entropy production principle
to obtain a closure of the relaxation equation of diffusion type
(non collisionless) for the coarse-grained distribution function;
and the estimation of the diffusion current, which generalises the
Chandrasekhar (1943) and Lynden-Bell (1967) equations. These
and similar approaches, from a statistical viewpoint, and follow-
ing the Jeans’ direct problem, lead to the most probable distribu-
tion function for an equilibrium configuration of the Galaxy, and
provide information about the functional form of the distribu-
tion function, or about the conserved quantities along the stellar
motion, by leading to a distribution function that may take the
form f(P,).

In this stage, once the system has achieved relaxation, and
according to Jeans’ inverse problem, the situation can be re-
versed. It can be approached not from the statistical dynamics
viewpoint but from analytical dynamics, by assuming the reg-
ularity conditions about the definition of the local standard of
rest, the continuity and differentiability of its velocity, and the
existence of higher-order velocity moments. We then ask under
which circumstances the collisionless Boltzmann equation ad-
mits a solution of the form f(#,). This is indeed the appropriate
context to study the motion of the centroid and the admissible
form of the potential function. Therefore, dissipative forces are
not considered in the collisionless Boltzmann equation, but are
indirectly connected with the functional form of the distribution
function. This situation can be also tackled by using the stellar
hydrodynamic equations, which explicitly involves the velocity
moments. Then, the closure problem necessarily arises of how
the infinite hierarchy of moment equations is related to the finite
character of the collisionless Boltzmann equation.

In this context, the equivalence of Boltzmann and moment
equations had already been investigated for n = 2. In this case,
Eq. (17) corresponds to the Chandrasekhar’s (1942) system of
equations, which allows us to obtain, under a time-dependent
model and different symmetry hypotheses, a quite general so-
lution for the collisionless Boltzmann equation, with the pos-
sibility of describing a stellar system with arbitrary mean ve-
locity and orientation of velocity ellipsoid (Sanz-Subirana &
Catala-Poch 1987; Sala 1990; Juan-Zornoza & Sanz-Subirana
1991; Juan-Zornoza 1995). In this case, de Orts (1952) proved
that if the Chandrasekhar’s equations are fulfilled, the continuity
equation and the Jean’s equation are also satisfied. In the same
vein, working from velocity moments up to fourth-order, Juan-
Zornoza (1995) showed that Chandrasekhar’s equations could
be derived from the first four hydrodynamic equations. A more
general result, for generalised Schwarzschild distributions, was
derived in Paper II: the first four hydrodynamic equations, along
with a moment recurrence relationship acting as closure con-
dition, make the infinite hierarchy of hydrodynamic equations
equivalent to the collisionless Boltzmann equation. Now, the
above results have been generalised to any velocity distribu-
tion function depending on a polynomial function in the velocity
variables.

The degree of this polynomial function, which is an isolat-
ing integral of the stellar motion, may be used to quantify the
complexity of the velocity distribution. In Paper I, under a max-
imum entropy approach, this complexity was in some way mea-
sured in terms of the necessary set of velocity moments, for ob-
taining a good fit of the velocity distribution. In the most basic
situations, the stellar systems can be approximated by an ellip-
soidal distribution, such as for the thin disk, thick disk, or halo,
as independent Galactic components (Cubarsi & Alcobé 2004;

Alcobé & Cubarsi 2005; Cubarsi et al. 2010). Those systems are
well described with moments up to second order and, therefore,
according to our results, they can be modelled by using the mo-
ment equations up to third order, or the system of Chandrasekhar
equations, equivalent to the collisionless Boltzmann equation.
Other stellar systems have a slight deviation from the ellip-
soidal hypothesis, such as the whole Galactic disc. In Paper I,
two samples, namely Sample I from the HIPPARCOS catalogue
(ESA 1997) and Sample II from the Geneva-Copenhagen sur-
vey (GCS) catalogue (Nordstrom et al. 2004), were drawn to be
representative of the local Galactic disc. The detailed analysis
is found in the application section of Paper I. For them, a good
fit of the velocity distribution was obtained for a fourth-degree
polynomial function. Then, the modelling of the Galactic disc
would require accounting for the hydrodynamic equations up to
order five, or the equivalent set of equations in Eq. (17). On the
other hand, to study large enough stellar groups conforming disc
substructures, like those obtained in Paper I from finite veloc-
ity domains, i.e., Sample III from the HIPPARCOS catalogue
and Sample IV from the GCS catalogue, or such as the samples
drawn from limited stellar eccentricity, in particular, for planar
eccentricities lower than 0.15 with a local standard of rest veloc-
ity of (-9.72,-11.45,-6.65) km s~! referred to the Sun, which
gave a satisfactory representation of the dominant local mov-
ing groups, it was then necessary to approach the velocity distri-
bution with a sixth-degree polynomial function. For these more
complex systems, the modelling would require at least moment
equations up to the seventh-order.

As a conclusion, we summarise the main results of the paper.
The following statements are equivalent:

(a) The velocity distribution depends on an integral of motion
which is a polynomial function of degree n.

(b) There is an independent set of velocity moments, up to an
order n, so that the higher-order moments can be expressed
in terms of the independent moments.

(c) The collisionless Boltzmann equation is given by a set of
differential equations expressed from symmetric tensors of
rankup ton + 1.

(d) The independent moment equations are those of an order of
upton+ 1.

(e) The hydrodynamic equations of an order higher than n + 1
are redundant.

Acknowledgements. The author thanks the anonymous referee very much for
the comments that helped to clarify the appropriate context of the results.

Appendix A

As in Paper I (Appendix A.1), but now for the general case of an
arbitrary density function f(%,), we compute the coefficients A,
1 < k < n, of Eq. (12), in terms of an extended set of moment
constraints, by integrating

f Uy [V F@)] &V = (0! (40)

Iy

as a result of applying in the integration process the bound-
ary conditions given by Eq. (7). The resulting Gramian sys-
tem matrix G, is now a matrix of inner products associated
with the basis ¢op, = V| Vf V3, with regard to the weight given
by Eq. (29).
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We write the integrand of Eq. (40) in Greek indices, accord-
ing to Eq. (9), and we assume o+ 8 +y=m,0<m <n-—1.
By taking the V,-derivative, we have
AVEVEVY f(P)
oV,

- o 0Py df(Pn)
a VIVEVI fP)+VEVEV) p ];7)

a VeTIVEVI F(P)

df(P,)

FVIVEVE T Ay e VITIVAYY T

t+u+v<n

The last summation can be carried out from ¢ > 1 instead of
¢ > 0. Thus, by noting ¢ — 1 as ¢, we then have

AVOVEVY f(P,)) .
T 261;] = aVIT'VEVIF(P)
df (P,
FVEVEVE T Ay @+ DVIVEYS {1(@ L
t+pu+v<n—1 n
Similarly, the other derivatives are
AVyVRVI F(P) §
— Gy = BVIVY Vi)
o sy 9 Pn)
FVEVEVE T Ay e+ D VIVAV] ];90 ,
t+p+v<n—1 n (42)
AVEVEVY f(P)) P
— Gy = YV
o Ly 9 Pn)
FVEVEVI DT Ay D VIRV {150 .

t+u+v<n—1

Then, if the above expressions are substituted into Eq. (40), by
using the notation of Eq. (39), we get

@ M-1)8y = ZH’/J-H/S}’L—] a(aﬁyv LMV) (L + 1) /l(H-l)/,lV’
B Ma@-1yy = ZL+y+v$n—l FGv(aﬂYs ) (u+ 1) Ay (43)
Y Mapy-1) = ZH’#'H’SH—] FGv(aﬂYs L,uV) (V + 1) /lty(v+1)-

According to this notation, all the moments with a negative index
must be considered null. The elements of tensors A, 1 < k < n,

involved in Eq. (9) (4 is the normalisation factor), are explicitly
obtained in terms of the generalised moments up to an order
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2(n — 1), as well as of the ordinary velocity moments up to an
order n — 2, by inverting the above system of equations:

Aa+ipy = 537

=1

Zt+y+v§n—1 G_I(CY,B% L/JV) LM —1yuvs

/lﬂ(ﬂ"'l))’ = B+1 ZL+ﬂ+V£n—1 G_l(aﬂy’ L,uV) M My(u—1yvs
-1 ~—

/lﬂﬂ(}""l) = Y+1 Zt+y+v§n—1 G l(aﬂYs L,uV) V Myy(v-1)-

(44)

The foregoing expressions are valid fora +8+7y <n -1, and
G~ '(aBy, yuv) is the corresponding element of the inverse of the

matrix Gj.

Once the polynomial coefficients are calculated, it is possi-
ble to express the higher-order generalised moments in terms of
them, making use of Eq. (43), for @ + 8 +y > n, by using the
corresponding inner products {¢.gy, ¢,y With the new weight,
instead of G(afy, tuv).
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