
XtreemOS Application Execution Management: A
Scalable Approach

Ramon Nou1,2, Jacobo Giralt1, Julita Corbalan1,2, Enric Tejedor1,2,

J. Oriol Fitó1,2, Josep M. Perez1,2, Toni Cortes1,2

Barcelona Supercomputing Center1, Technical University of Catalonia(UPC)2

Barcelona, Spain

Email: {ramon.nou, jacobo.giralt, julita.corbalan, enric.tejedor, josep.oriol, josep.m.perez, toni.cortes}@bsc.es

Abstract—Designing a job management system for the Grid
is a non-trivial task. While a complex middleware can give a
lot of features, it often implies sacrificing performance. Such
performance loss is especially noticeable for small jobs. A Job
Manager’s design also affects the capabilities of the monitoring
system. We believe that monitoring a job or asking for a job
status should be fast and easy, like doing a simple ’ps’. In
this paper, we present the job management of XtreemOS - a
Linux-based operating system to support Virtual Organizations
for Grid. This management is performed inside the Application
Execution Manager (AEM). We evaluate its performance using
only one job manager plus the built-in monitoring infrastructure.
Furthermore, we present a set of real-world applications using
AEM and its features. In XtreemOS we avoid reinventing the
wheel and use the Linux paradigm as an abstraction.

Keywords: Grid Middleware, Monitoring, XtreemOS, Scala-
bility

I. INTRODUCTION

Current Grid middlewares suffer from the lack of a global

view of the system in several parts of their interface. There

are also some semantic problems confusing the non-expert

users who are accustomed to work with Linux-like systems.

Having the concept of process related to a job can offer the

Grid user an experience similar to the one he has in a Linux

box, where the well-known process-thread pattern is present.

The entities of jobs and processes seem more natural to the

user than having multiple jobs spawned over several nodes.

Working on the Grid should not be different from using ’ps’

or calling perror inside a C program. A job and their processes

should be connected and the user should be able to find all

the related info seamlessly.
When a user executes jobs inside the Grid, he also needs

to check their status. For that purpose, we need a monitoring

infrastructure that is easy to use, fast and scalable. In other

words, monitoring should be able to answer the question

“What is my job doing?” fast. This is accomplished in AEM,

where a job can have multiple processes running on different

nodes. With this Job-Process concept, a user only has to check

the job status to see whether all the processes are finished or

some of them are still running.
The contributions of Application Execution Management

(AEM) are the following:

• The concept of job with several processes related to it,

similar to the Linux process-thread paradigm.

• Linux signals can be sent to jobs and processes.

• Processes can be dynamically generated and destroyed,

even from other jobs.

• We can dynamically increase or decrease job resource

reservations from inside or outside the job.

• Monitoring with user metrics and several degrees of

information, i.e., jobs, processes and threads.

• Jobs can be tagged with user dependences and several

operations, i.e., monitoring, signals, can be applied to

them at once.

• User-defined callbacks for several events are implemented

in the monitoring system.

• Kernel collaboration, via Kernel connectors, to know

when a process is created or destroyed, i.e., with fork().

• The whole system presents a scalable design integrated

inside XtreemOS.

• Services can be replicated. The load can be distributed

while keeping a global view using distributed hash tables

(DHT).

In this paper we present AEM running inside XtreemOS [1].

XtreemOS is a Linux-based operating system designed to

work with Grids in a transparent and scalable way and with

the support of Virtual Organizations (VO), a set of users

that offer resources and exploit them for a common goal.

XtreemOS goal is to build a user-friendly environment, which

should be extensible and powerful. This paper presents the job

management infrastructure with monitoring of AEM using the

concept of Job-Process. AEM performance and scalability on

job management are analyzed, too.

II. RELATED WORK

There are two widely used Grid environments, Globus [2]

and UNICORE [3]. None of them can run a job with multiple

processes, i.e., a job is the smallest unit they can handle. Nev-

ertheless, UNICORE supports multiple job execution using

the Network Job Supervisor (NJS), a workflow manager. Re-

garding job scheduling, neither Globus nor UNICORE include

it directly. They implement some kind of resource manager

(GRAM in Globus, RMS in Unicore) that relies on external

job schedulers or batch queuing systems like Condor [4],

Torque [5] or SGE [6]. As it will be explained later, AEM

follows an integrated approach that provides a good enough

978-1-4244-9349-4/10/$26.00 © 2010 IEEE 11th IEEE/ACM International Conference on Grid Computing49

scheduling, without using global schedulers. Instead it uses

local schedulers and each of them operates on a part of the

system jobs. This design decision is key for scalability, as it

would be impossible to get the best system schedule while

keeping performance and scalability.

With respect to monitoring, there are similar infrastructures

like MDS [7], which provide monitoring in a Globus Grid,

even with aggregation and accounting.

On the contrary, in AEM we separated job monitoring from

resource monitoring and discovery. Job status monitoring in

XtreemOS is comparable to the one in Globus GRAM service,

but the former also provides some of the features seen in MDS

like aggregation of monitoring information and offers more

metrics to the user.

Concerning the AEM internal structure, the integrated ap-

proach is again present. Where Globus MDS offers a pluggable

architecture and collecting services, we have a hierarchical

organization following the Job-Process paradigm. AEM dis-

tributes monitoring data at different scopes, always choosing

the one that is closest to the source on a job basis, as opposed

to the resource-based approach.

About monitoring capabilities of multijobs in current Grid

middlewares, they are inefficient. Monitoring a job in Globus

ends up in the GRAM5 service of a specific node. UNICORE

uses NJS and the UNICORE client to monitor jobs, but NJS

is not able to give a global view directly. Only a VSite

(UNICORE Virtual site) can be checked on each call. There

is a lot of overhead to ask for a job status, more costly or

impossible if we want to know what is the basic Linux status

of a process of the job. Extensibility is also different from other

approaches. We offer a flexible API that allows applications to

specify and update values to its own metrics associated to the

job. The ability to trigger callbacks for user-specified events

is also an important feature.

The XtreemOS monitoring API has been designed based

on our experience in earlier works such as the HPC-Europa

project [8]. The aim of this project was to put together several

middlewares in a single API. With this objective, we designed

multiple XML schemas and templates that join different

sources of information. Other projects such as SAGA [9]

introduced the idea of providing callbacks associated to met-

rics. Our work is also based on more traditional monitoring

mechanisms such as the /proc filesystem [10] in Linux or

the API for monitoring in queueing systems such as IBM

LoadLeveler [11].

Accessing the Grid as an interactive system is an important

feature of XtreemOS. We believe that current middlewares

have too many layers, which reduce their usability. AEM has

some unique features. It allows one to execute interactive jobs

in addition to batch jobs. Jobs, and their processes, can receive

Linux signals. It also has the concept of tagged dependencies

with no predefined semantic, which helps managing related

jobs together. AEM provides advance reservation features

and, unlike other implementations, those are dynamic. This

means resources can be added at any time to a currently

alive reservation, even if it is already in use. That’s not the

case in Condor [4] or Portable Batch System (PBS) [12], for

example, and Globus does not implement them on its own. The

scheduler can also be made aware of the files a job uses by

specifying them on submission. In that case it tries to allocate

processes near the nodes where files are stored.

III. XTREEMOS

In Figure 1 we show the global architecture of XtreemOS,

designed with abstraction in mind. A normal user does not

see any difference from a traditional Operating System, and

accesses the Grid seamlessly. XtreemOS has two layers, Foun-

dation Layer (F-Layer) and Grid Layer (G-Layer); The F-layer

supports Virtual Organizations and checkpointing, while the

G-layer provides a set of services to the application layer. In

this paper, we focus on the Application Execution Manage-

ment module responsible for the execution and management

of Jobs, their local schedule and their monitoring. AEM is not

a front-end for submitting and managing jobs, it is a part of

XtreemOS, a complete Linux-based Operating System. One of

the key points of AEM is the support from the system kernel

to increase its performance.

Grid Applications

XtreemOS API (SAGA)

VO & Security Management Application Execution Management Data Management (XtreemFS)

Infrastructure for Highly Available Scalable Services

Extensions to Linux for VO Support

Linux LinuxSSI Embedded Linux

Cluster

�
��

�
�

�
�

�
	

�
��

�
�

�
�

�
	�

�
��

�
�

�
�

�
�

�

�

��
�

Mobile DevicePC

Fig. 1. XtreemOS architecture.

Details of other components can be checked on: XtreemFS,

a distributed filesystem [13], checkpointing [14], resource

discovery (with overlays from ADS/RSS [15], Scalaris [16]

and SRDS [17]) and SAGA API [18], which provides the

XOSAGA high level abstraction.

IV. APPLICATION EXECUTION MANAGER (AEM)

The Application Execution Management module covers job

management, job execution, monitoring and resource man-

agement on the Grid among other functionality. AEM is the

access point to submit and control jobs in XtreemOS and

is composed of different asynchronous distributed services.

Depending on the set of services appearing in a node we can

classify the XtreemOS node in three classes: core, resource

node and client. Clients simply access the XtreemOS system.

Resource nodes provide execution and storage capabilities.

Finally, core nodes offer VO administration, job management,

and eventually can export resources as well. However, each

node can be particularly configured outside this classification.

We can distribute the load by running the same service in

different nodes. We can find similarities with web servers and

the distribution of load among them.

AEM design conforms to a distributed architecture at-

tempting to achieve a high degree of scalability. Centralised

50

databases are forbidden and it handles load balance by spawn-

ing several service instances on different nodes. Shared view

among them is implemented by using DHTs. This design

has proved to be very convenient for extensions such as the

replication mechanism currently under development in order

to achieve fault tolerance on scheduler services.

A. Jobs

AEM defines a hierarchy of entities composed of the job,

job unit and process (also threads). The latter is directly a

UNIX process while a job unit is the set of processes of the

same job running on a node. A job is owned by a user, who is

identified by a set of credentials. Other users can do operations

on this job if they have the needed credentials. Processes can

be created (even using fork) or destroyed dynamically, they

will be attached to the correct job unit. Linux signals can also

be issued to a job, job unit or a particular process of it. If

the job depends on others (via dependences), operations can

affect all of them.

B. Resources

A resource is where a job (and their processes) is executed,

the job can use more than one. To use a resource, a user

should reserve it. A resource can be shared among other

users or jobs or be exclusive. Finally, a reservation contains

a set of resources that can be used by the user (in any job)

inside a period and it is identified by a ReservationID. The

reservation can be grown or shrunk dynamically by the user.

To reduce complexity for the normal user, reservations can

be automatically created when submitting a job and will be

released when the job is finished.

C. AEM Services

The main services that we find inside AEM are:

• Job Manager [Core]: provides all the job management

features. It communicates with the Resource Manager /

Reservation Manager to get resources and with the Exe-

cution Manager to execute jobs. It has several scheduling

algorithms, always on a subset of the resources as there

are no global scheduling policies. It stores Job related

monitoring information (job status, submit time, . . .).

• Job Directory [Core]: Distributed storage of all JobID

and the address of the JobMng that controls each job.

• Execution Manager [Resource]: Manages execution of

the jobs. Execution is performed at the process level with

the Grid user credentials. Its basic unit is the job unit.
ExecMng (Execution Manager) stores all the monitoring

information related to them, this goes from process status

(e.g. R for running, Z for zombie, S for sleep,. . .) to

user and system time. Internally the Execution Manager

service gets information about its processes from the

kernel using kernel connectors. ExecMng is informed of

any fork in its job units, binding automatically the newly

spawned process to the correct job unit. At the kernel

level we also know when a process ends, allowing to

accelerate the notification to all related processes and to

send more detailed information.

• Reservation Manager [Core]: The Reservation Manager

is similar to a Job manager for resources. It provides

reservations, allocations of resources. However we use a

cache, to improve performance as it is a very used oper-

ation when submitting a set of jobs and their processes.

• Resource Allocator [Resource]: Stores details about the

reservations of the current node. A reservation is built

upon a set of local resource allocations.

• Resource Manager [Core]: Provides the resource match-

ing routines with the discovery mechanism through

DHTs. For example, if we are looking for machines with

a least 4 GB of memory, we can specify it in JSDL format

in the submit file. The Resource manager will query the

DHT with the given restrictions and will return a set of

machines.

D. Job Submission and Execution Flow

Figure 2) shows a typical job execution flow inside AEM:

Fig. 2. Simplified Job Flow inside AEM.

1) The User submits a JSDL file to a node (Core or Re-

source). 2) The node contacts/looks for a Job Manager service

(maybe on another node). 3) JobManager creates a JobID

and stores it in the JobDirectory. 4) A resource reservation

is created, empty, as this will be an automatic reservation.

5) The created job starts to run. 6) The Job Manager asks for

resources and updates the empty created reservation. We obtain

resources from a DHT (Dynamic Hash Table) infrastructure

(RSS). 7) The First process of the job is created into the

selected resource node (using ExecMng service). 8) Resource

nodes (Execution Manager) detect when the process is finished

through the kernel connectors. 9) Execution Manager sends

the finished state event to the Job Manager. 10) Job Manager

detects that no more processes (job units) are running on the

job, signaling the job as finished.

We can consider additional steps here, first a process can

create a fork() or call createProcess to start a new process. The

new process will be related with the Job. This relation in the

case of the fork will be acknowledged via kernel connectors

to the ExecMng.

E. Monitoring in XtreemOS

In this subsection we will detail the monitoring infrastruc-

ture which is distributed between the Job and Execution Man-

ager. As a summary, monitoring has the following features:

System metrics and user defined metrics, different levels of

51

information (from jobs to process and threads), buffering and

callbacks.

The monitoring infrastructure provides a set of features

not fully supported in other middlewares. The XtreemOS

philosophy is to offer an experience similar to a normal Linux

system: getting job status should be as easy as doing a ’ps’ in a

Linux box. The monitoring system tries to mimic this with the

Job-Process concept. XtreemOS monitoring should be easy for

the user, but powerful for the system and extensible for both.

The ability to include user metrics inside the system provides

with a valuable resource for research in performance. One of

the recent extensions that made use of this, is the publication

of GPS coordinates from a mobile device [19] and access them

from any job. The same API used for internal tools is offered

to the user to instrument its applications.

��������	
��

�	��������	�	��������
���
�
��	���������
��	
��	�
������
��	����	���	��

�	������	

�����	�	��
	���	��������
���
����������
��	
��	�
���������
	���	��

�	������	

�	��������	�	��������
���
�
��	���������
��	
��	�
������
��	����	���	��

�	������	

�	��������	�	��������
���
�
��	���������
��	
��	�
������
��	����	���	��

�	������	
��

�	��������	�	��������
���
�
��	���������
��	
��	�
������
��	����	���	��

��	

�	��������� � ���!"�#��$	�	���

%�$

��
���	�

&���	
���

&���	
���

Fig. 3. Monitoring infrastructure

We will introduce some of the monitoring semantics (met-

rics, levels of information and scope):

A metric is the description of a kind of monitoring data. It

can be created by the user or by the system. A metric has a

description, a value type (boolean, integer, timestamp, . . .) and

a scope. A scope (JOB, JOBUNIT or PROCESS) is the place

where the info belongs. A PROCESS scope metric is stored

in the Exec Manager, as the value is related to a process, in a

similar way a JOB scope metric is stored in the Job Manager.

The AEM monitoring service is used by different types

of jobs which require different levels of information and,

potentially, by other XtreemOS services. There are three levels
of information (JOB, PROCESS and KERNEL). Each level

adds extra cost to access the information as AEM needs

to collect it from an additional source. For example, the

KERNEL level needs support from the kernel via PAPI [20]

or LTTng [21].

When we ask for a metric value we go through the Job

Manager to get the list of available metrics. Job Manager

contacts all involved Execution Manager in parallel to get the

values. Like all services in AEM, if the contacted instance

of JobMng does not contain the requested information, the

request is redirected in a implicit way to the appropriate one.

Metrics, ranging from job status to the distributed information

about processes and threads running in the Grid, are stored

in several services depending on their nature, as shown in

Figure 3. This division is natural and helps to distribute the

job information among the nodes involved in the job life cycle.

With AEM monitoring we can get information about job sta-

tus (Submitted, Running, Done, Failed, Suspended) and pro-

cess status. Process status, among other configurable features,

could be obtained via LTTng providing a lot of information

with a low overhead. This feature is unimplemented since it

requires heavy changes to the kernel. Nevertheless, reading

LTTng buffers will be easy to implement as an extension when

available. Currently, we get process status from a daemon in

the nodes reading /proc/pid and storing the resulting values.

Users and the middleware can augment the monitoring

information with their own metrics, as we introduced before.

A user can register a new metric into the Job Manager

or Execution Manager, depending on the scope, and pushes

metric values that will be read by other processes of the same

job, by another job of another user (based on permissions in

the Virtual Organization), or appear in some system utilities.

The access to this information is granted on a per job and

user certificate basis. These metrics behave like the predefined

system ones, so they will get all the features of this design.

A practical example of this feature could be instrumenting

an application with PAPI and exporting its counters to the

monitoring infrastructure. An advanced user could write a

workflow manager that accesses to this information and takes

decisions based on it towards the instrumented job, like

modifying its resource allocation. Subsection VI-B proposes

a prototype for a web server scheduler.

We can also enable buffering for a metric. This way a

circular buffer is allocated for that particular metric and the

user who requested it. Buffering increases the scalability of

the system while reducing the system overload that polling

would generate if a user wouldn’t want to miss any value, i.e.,
tracing utilities. Since buffers can become full, a user may

program a callback to signal when a buffer is being almost

full. We can also set callbacks on events like “Value X is

greater than Y”. Having the monitoring interface integrated

into the system is a key point. XtreemOS system utilities like

xtrace and xps can use those values and generate a global trace

of the jobs of an application (from job to thread level) that can

be analyzed inside a graphical utility like Paraver [22]. With

this tracing feature implemented inside the system we give

users a powerful capability to analyze the behaviour of their

jobs. Due to its XML nature this monitoring information can

be easily stored as a trace.

The user interface is simple and is shown in Table I. The

XML format offers the user (and system utilities) an easy

way to build tools using monitoring information. XML is used

for interoperatibility, more performance could be obtained if

a non-XML solution is used.

V. AEM PERFORMANCE

In this section we will analyze how AEM by itself (with-

out DHTs) scales to hundreds heterogeneous nodes (results

presented with a hundred nodes) while offering a set of

features not available in other software such as the job-

process paradigm, kernel integration and convenient monitor-

ing. Beyond that, in very large systems (thousands/millions

52

TABLE I
MONITORING INTERFACE METHODS

Method Description

getJobsInfo(jobIds, flags, infoLevel, metrics) Gets XML with requested information, detail level and metrics.

getJobMetrics(jobId) Returns the list of available metrics for a specific job.

setMetricValue(jobId, metricName, resourceID, pid, value) Sets the value of a Metric.

setMonitorBuffering(jobId, metricName, resourceID, pid, flags) Switches on and off buffering for the specified metric.

addJobMetric(jobId, MetricsDesc) Adds a new user defined metric to the job.

removeJobMetric(jobId, metricName) Removes a user defined metric from the job.

addMonitoringCallback(String jobId, MetricEvent metricEvent) Adds a monitoring callback expecting an event to fire.

of nodes), our system scales adding more jobMng (among

other) instances which keep a shared view of the Grid using

DHTs (Distributed Hash Tables). We provide performance and

scalability results for job submission and job status query.

The performance targets of AEM are being as efficient as

Globus [23] in the aspects with similar features and yielding

similar efficiency for improved ones.

We describe in the next subsection our test environment plus

the different experiments.

A. Environment

Our first scenario uses a Grid5000 (G5K) node with

an installation of Globus Toolkit 5 (out-of-the-box) and an

XtreemOS core node. It shows a basic and comparable unit of

execution for XtreemOS and Globus. The node is a quad-core

with an Intel Xeon at 2.33GHz processor. The second scenario

uses a setup formed by 100 heterogeneous nodes where we

deploy one XtreemOS core and 99 resource nodes. On this

second scenario we run scalability tests. We don’t compare

directly with Globus as we make use of different features. C.i.

of 95% are used for the intervals.

B. Job submission and execution experiments description

Fig. 4. Job submission scalability test diagram.

In this subsection we will describe the job submission and

execution experiments using environment 1 for performance

and environment 2 for scalability. The first test compares the

submission and execution time with XtreemOS and Globus.

This test only uses features available in both. More precisely,

XtreemOS is not using resource location services, XtreemFS,

reservations nor the Job-process paradigm. The test measures

the performance of the middleware by submitting a job that

just runs /bin/true.

The second test, presented in Figure 4, compares the scal-

ability on the submission of a job with n processes in n re-

sources. 95% confidence intervals are used on all evaluations.

�

��

��

��

��

��

��

	�

�

�� �� �� �� 	� ��

�

�
�
��
�
�
�
�
�
�
�

�������������������������

�� � �!"� #$%&��&�����'���%()�����#���)����#�&'*�

�� �+��"� #$%&��&���&����
�����

Fig. 5. Job Submission scalability (Parallel - Sequential).

1) Submission and Execution Results: The performance

results in terms of job execution compared to Globus Toolkit 5

in the first environment are the following: the execution time

is lower in XtreemOS for the same job. We have [0.9885,

0.9921] seconds for Globus and [0.5471, 0.5537] seconds for

XtreemOS. Note that Globus Toolkit 5 already reduced by half

the time of submission from version 4.2.

In Figure 5, we show the scalability results in the sec-

ond environment. This test uses the automatic reservation

mechanism. In these results we have the resource discovery

and reservation overhead for the 100 nodes, plus XtreemFS

mounting. When submitting a process, a suitable node from

the reservation must be found and selected. We use a random

scheduler but others, such as Round Robin or Least Used

Resource, are also implemented. The lower line shows the

results of the same test submitting the n − 1 processes in

parallel in an eight core XtreemOS node for reference. In

summary, the cost of sequential job submission is 0.0062x2

for a random scheduler in the actual scenario (where x
is the number of processes created). This x2 constant cost

will be reduced with some optimizations inside the code

such as reducing credentials checking using Single Sign On

technology. However it will be difficult to reduce the x2 bound

without reducing features. This cost is produced mainly by

the resource timetable checking, as resources and reservations

are dynamic and cannot be centralized for scalability reasons.

Nevertheless, submitting jobs without processes reduces those

checks and lowers x2 bound. Scalability in the x2 scenario is

obtained distributing the jobs load between different jobMng,

53

for example a VO can have his own JobManager and still have

a Global view of the system via the Job Directory (DHT). The

cost is based on local network times, and is bounded by its

latencies. To reproduce a similar scenario in Globus we would

need a Job queueing system like Condor and multijobs (GT5

capability). But XtreemOS provides the Job-Process concept

relating job to their processes, and Globus considers them

different jobs. However we included Globus in the results

subsection when submitting a single job.

C. Job Status experiments description

�

����

���

����

���

����

���

����

���

�� �� �� 	�
� ��

�

�

�
��

�
�
�
�
�
�
�

�������������������� �������

��!�����"�������#������ ��������#�$�

%���

Fig. 6. Scalability of a status query.

The critical path for a workflow manager is to find, quickly,

if the submitted job has finished to avoid a delay of the

whole workflow manager. To test the features of XtreemOS

in this part, we used the first environment to compare the

performance of obtaining the job status of a large job (sleep)

between Globus and XtreemOS and the second environment to

measure the scalability of asking for the job and process status

of a job (master process) and its n − 1 processes distributed

along n nodes. In the second test, the user request goes to the

JobMng for the whole job status and through all the nodes in

the system (ExecMng) for the process status. In this occasion

again, Globus is not comparable in the second environment.
1) Job Status Results: The results of a single job status

query in the first environment are the following: with GT5

we have [0.014006, 0.014041] seconds, in XtreemOS we

have [0.024236, 0.024551] seconds. Means are, 0.014023 and

0.024393 respectively. GT5 also improved job status one order

of magnitude over GT4.2. However, its job status reply is for

one job and does not give more information than “ACTIVE”.

XtreemOS gives extra information such as submit time, pro-

cess status, CPU time and user id in the same call. Without

process status, we obtain mean times of 0.012 seconds.

Figure 6 shows the time of getting the process status as the

number of processes increases. In Globus we would have to

make one job status query to each node with a different JobID.

Additionally, in XtreemOS, as Execution Manager requests

are done in parallel, the time to ask all involved Execution

Manager, in order to gather results from each individual

process, is reduced. This is why the time is lower than O(n).
Checking job status in a loaded system does not imply an

overhead as far as we distribute the load between different

Job Managers. The result does not depend on the number

of jobs running in the system but only on the number of

nodes used for each job. It’s worth noting that we can also

ask only for job status. To do so, we select a smaller metrics

set as explained in IV-E. Removing the communication with

Execution Manager, the line is constant and independent on

the number of processes.

VI. APPLICATIONS

In this section we will introduce a couple of applications

which have been ported to XtreemOS and AEM.

A. COMP Superscalar (COMPSs) - hmmpfam
COMPSs [24] is a framework that facilitates the develop-

ment and execution of Grid-unaware Java applications. It is

composed of a programming model and a runtime.
In the COMPSs programming model, the user selects a set

of methods of a sequential Java application for them to be

run on the Grid. At execution time, COMPSs instruments the

application and automatically replaces the local invocations to

these methods by the creation of remote tasks.
The COMPSs runtime is in charge of optimizing the per-

fomance of the application by exploiting its inherent con-

currency. It receives the tasks from the application, checks

the data dependencies between them and decides which ones

can be run at every moment and where, considering task

constraints and performance aspects.
In order to test COMPSs on top of XtreemOS we chose

hmmpfam, a bioinformatics application for protein sequence

analysis. Hmmpfam is computationally intensive and em-

barassingly parallel, which makes it a good candidate.
1) Test Results: In order to evaluate COMPSs-hmmpfam on

top of XtreemOS-AEM, we conducted some tests to measure

the execution time of the application. For the executions,

we used one machine as master node (hosting the COMPSs

runtime) and a variable number of worker nodes (resources

that run the application tasks). Besides, to compare the

XtreemOS performance, we ran the same series of tests using

two different configurations: first, the COMPSs runtime ported

to XtreemOS, making use of the AEM Java-XATI API and,

second, the original COMPSs runtime, using the JavaGAT

interface and its SSH adaptor to submit jobs and transfer files,

thus obtaining a lower bound.

10
20
30
40
50

2 3 4 5 6 7 8 9 10

m
in

ut
es

worker processors

AEM
SSH

Fig. 7. Execution times of the hmmpfam application on top of COMPSs,
both with the XtreemOS and the SSH flavours.

Figure 7 shows the execution times of running COMPSs-

hmmpfam, both using XtreemOS and JavaGAT-SSH, with

54

a range of two to ten worker resources. We see how the

results are quite similar for both configurations. For two

processors, there is a small difference in the execution time

which is progressively reduced for higher numbers of worker

processors. Given that in all the executions the number of

submitted jobs is the same, the number of job-to-job transitions

that occur at each worker resource decreases as the number of

workers increases. Since the slight difference in performance

between SSH and AEM takes place at job transitions, the

difference in execution time is more noticeable when the

number of workers is low.

In light of these results, we can conclude that AEM is able

to keep up with SSH job submission, while offering more

functionality like resource management.

B. On-demand performance scalability of web servers

The job management and monitoring infrastructures inside

AEM offer a spectrum of possibilities regarding web server

management, operation and performance. As a matter of fact,

on-demand scalability of those servers, according to typical

time-varying workloads of web applications, is a research

challenge that needs to be addressed by the community. For in-

stance, Fito et al. [25] address web servers elasticity in a Cloud

environment. In this sense, we contemplate XtreemOS as a

distributed and scalable Grid operating system which allows

us to scale the performance offered by web servers according

to the changing demands of web applications deployed on

them. The approach presented leads to the elasticity enactment

of web servers into a Grid environment. Figure 8 shows the

architecture of the system proposed here. Mainly, we present

an intermediate layer between clients and web servers running

on a pool of Grid resources. This in-between layer is composed

by two interconnected components: Proxy and Scheduler. On

one hand, the proxy server is in charge of balancing the clients’

requests between the available web servers. On the other hand,

the scheduler has a key role in the system, i.e., implements

the dynamic resource management policies and communicates

with AEM-XOSD component to: ask for monitoring informa-

tion, request for resources reservations needed, and update

these reservations according to the requirements of the web

applications deployed on the servers. For our purposes, we

take advantage of AEM monitoring capability through the

definition of the following user metrics: utilization of the CPU,

memory, network and I/O devices of each web server. The

description of these high-level metrics allows the scheduler to

be aware of resources constraints and to properly act to solve

the undesired situations of web servers overload that affect

the performance growing. Furthermore, by using the buffering

mechanism of AEM we do not lose any monitoring event.

With this information, the scheduler is able to take scalabil-

ity decisions, i.e., scale up and down the total number of web

servers in order to meet the web applications’ demand. This

scaling operation is done by updating the resource reservation.

In fact, when the scheduler asks for more or less resources,

the AEM-XOSD returns a list of available resources. Then,

the web server, as a new process running inside the job, will

��������

	

��

���������
�����

����������������

������������ ������������ ������������������������

!
"
�
#
�

��
��

�
��

�
��

�
�

#
�
#
$
�
�

�
�
��

�#
"
�
�

	�
%" ��&������

'
��
�#�#$��

��() �%���
�#�#$��

*�����#��
��
�#�#$��

���#��+�����
"

Fig. 8. Dynamic resource management layer architecture

automatically run on this new reserved resource due to the

usage of the scheduling hint ONE PER NODE. Therefore,

by using XtreemOS capabilities we are able to overcome a

current web applications’ limitation: non-scalability.

1) Results: We perform a vertical scalability of the server

when reserving resources with different number of processors,

thereby obtaining the most representative web server’s perfor-

mance metrics, i.e., throughput and response time. The testbed

is a set of 12 nodes with XtreemOS.

 0
 50

 100
 150
 200

re
pl

ie
s/

s 1 CPU
2 CPUs

 0
 2
 4
 6
 8

 10

 200 400 600 800 1000 1200 1400 1600 1800 2000

se
co

nd
s

simultaneous sessions

Fig. 9. Banking throughput (request per second) / response time (in seconds)
when running with different number of processors

Figure 9 illustrates the servers throughput and response time

if we scale vertically the number of available processor units.

Note that the results were extracted from a server which runs

in previously reserved XtreemOS resources.

Throughput and response time metrics are regarding the

banking application of the SPECweb benchmark [26], and are

expressed as a function of simultaneous user sessions emulated

by the clients of the benchmark. The bottleneck resource in

this application is the processor unit. It is noteworthy that the

throughput of the server increases proportionally to the number

of user sessions until a saturation point is reached. The same

pattern of quality of service degradation is observed in the re-

sponse time metric: it remains more or less linear, but increases

sharply when the server becomes overloaded. Moreover, there

is another possible scenario: the horizontal resource scalability,

i.e., replication of load balanced web servers. In this case, the

performance of a single web server is multiplied by the total

amount of servers minus the overhead introduced by the proxy

to make the load balancing between them. Anyway, the results

show the performance scalability that could be achieved by

55

using the dynamic resource management approach presented.

Conclusively, we demonstrate how the proposed system

is able to provide web servers’ performance scalability by

using both job management and monitoring mechanisms of

AEM. This preliminary results demonstrate the motivation and

feasibility of the use-case scenario described above.

VII. CONCLUSION

In this paper we presented AEM, a job management infras-

tructure designed to be highly scalable and with features not

found in other similar middlewares, like including user metrics

in the job scope in a simple way. We can retrieve all job and

their processes information faster.

XtreemOS is using this Application Execution Management

component to offer a seamless experience to the user. This

Grid system behaves at user level as a Linux box. In particular

the Job - Process management provides a powerful set of

capabilities, like monitoring all job processes at once, enabling

more performance and lowering the load in the system.

We presented a preliminary evaluation of the system. We

achieve more performance than Globus with a similar set of

features except for Job status in one node, although we offer

also process information. The additionally included features

scale in a controlled way.

The different tests done in this paper, and the real use of

the system during the implementation phase, marks a tendency

that scalability will be as good as was designed for. More pre-

cisely the decentralized design of job metrics inside JobMng

and processes of a job unit inside its ExecMng node, decouples

information providing a higher throughput. Only jobs with a

higher number of processes, distributed among a large number

of nodes, may be affected. When this situation is produced,

the user can reduce the depth of the information and obtain

job status without process status; this will cut the utilization

from n nodes (ExecMng) to 1 (JobMng) and get faster if

the job is running or not. This decentralization is followed

in every layer of the AEM, avoiding scalability problems.

Features like monitorization from job-level to thread-level plus

buffering allow more flexibility to the users while keeping the

complexity and requirements of their software low as they

are integrated in XtreemOS. In particular, buffering and call-

backs implementation cut the system overload in general and

increase the scalability of the system. Also collaboration with

the kernel via kernel connectors gives a valuable information

to track processes inside jobs, even when they are created via

a fork. Advanced features like applying Linux signals to jobs,

tagging jobs with user dependencies or creating user metrics

that can be checked and updated by the user, are integrated in

AEM. This integration gives a seamless Linux-box experience

for the novice user, but working on the Grid.

ACKNOWLEDGMENT

This work was partially supported by the EU IST program
as part of the XtreemOS project (contract FP6-033576), by the
Spanish Ministry of Science and Technology under the TIN2007-
60625 grant, and by the Catalan Government under the 2009-SGR-
980 grant. Experiments presented in this paper were carried out

using the Grid’5000 experimental testbed, being developed under
the INRIA ALADDIN development action with support from CNRS,
RENATER and several Universities as well as other funding bodies
(see https://www.grid5000.fr).

REFERENCES

[1] T. Cortes, C. Franke, Y. Jégou, T. Kielmann, D. Laforenza, B. Matthews,
C. Morin, L. P. Prieto, and A. Reinefeld, “XtreemOS: a Vision for a
Grid Operating System,” 2008. [Online]. Available: http://xtreemos.eu/
publications/research-papers/xtreemos-cacm.pdf/download

[2] I. Foster, “Globus Toolkit Version 4: Software for Service-Oriented
Systems,” in IFIP International Conference on Network and Parallel
Computing, Springer-Verlag LNCS 3779, 2005, pp. 2–13.

[3] UNICORE - Uniform Interface to Computing Resources. [Online].
Available: www.unicore.eu

[4] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: the condor experience: Research articles,” Concurr. Comput. :
Pract. Exper., vol. 17, no. 2-4, pp. 323–356, 2005.

[5] G. Staples, “Torque resource manager,” in SC ’06. New York, NY,
USA: ACM, 2006, p. 8.

[6] W. G. S. Microsystems), “Sun grid engine: Towards creating a compute
power grid,” in CCGRID ’01. Washington, DC, USA: IEEE Computer
Society, 2001, p. 35.

[7] A. Chervenak, J. M. Schopf, L. Pearlman, M.-H. Su, S. Bharathi,
L. Cinquini, M. D’Arcy, N. Miller, and D. Bernholdt, “Monitoring the
Earth System Grid with MDS4,” in E-SCIENCE ’06, 2006, p. 69.

[8] FP 6 EU Project-HPC-Europa. [Online]. Available: www.hpc-europa.eu
[9] SAGA Web Page. [Online]. Available: saga.cct.lsu.edu

[10] /proc information. [Online]. Available: propcs.sourceforce.net/
[11] loadLeveler job queue. [Online]. Available: www.ibm.com/systems/

software/loadleveler
[12] B. Bode, D. M. Halstead, R. Kendall, Z. Lei, and D. Jackson, “The

portable batch scheduler and the maui scheduler on linux clusters,” in
ALS’00, 2000, pp. 27–27.

[13] F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender, E. Focht, M. Hess, J. Malo,
J. Marti, and E. Cesario, “The XtreemFS architecture—a case for object-
based file systems in Grids,” Concurr. Comput. : Pract. Exper., vol. 20,
no. 17, pp. 2049–2060, 2008.

[14] J. Mehnert-Spahn, T. Ropars, M. Schoettner, and C. Morin, “The
Architecture of the XtreemOS Grid Checkpointing Service,” in Euro-
Par ’09, 2009, pp. 429–441.

[15] P. Costa, J. Napper, G. Pierre, and M. van Steen, “Autonomous Re-
source Selection for Decentralized Utility Computing,” in ICDCS ’09,
Washington, DC, USA, 2009, pp. 561–570.

[16] T. Schütt, F. Schintke, and A. Reinefeld, “Scalaris: reliable transactional
p2p key/value store,” in ERLANG ’08, 2008, pp. 41–48.

[17] E. Carlini, M. Coppola, P. Dazzi, D. Laforenza, S. Martinelli, and
L. Ricci, “Service and Resource Discovery Supports over P2P Overlays,”
in IEEE International Conference on Ultra Modern Communications,
2009.

[18] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, G. V. Laszewski,
C. Lee, A. Merzky, H. Rajic, and J. Shalf, “SAGA: A Simple API for
Grid Applications. High-level application programming on the Grid,”
2008.

[19] A. Martnez, S. Prieto, N. Gallego, R. Nou, J. Giralt, and T. Cortes.,
“XtreemOS-MD: Grid computing from mobile devices,” in Mobilware
2010, 2010.

[20] J. Dongarra, J. London, S. Browne, N. Garner, K. London, and P. Mucci,
“A portable programming interface for performance evaluation on mod-
ern processors,” 2000.

[21] Linux trace toolkit manual. [Online]. Available: lttng.org
[22] Paraver - trace visualization and analysis tool. [Online]. Available:

www.bsc.es
[23] X. Zhang, J. L. Freschl, and J. M. Schopf, “A Performance Study of

Monitoring and Information Services for Distributed Systems,” in HPDC
’03, 2003, p. 270.

[24] E. Tejedor and R. Badia, “COMP Superscalar: Bringing GRID super-
scalar and GCM Together,” in CCGRID’08, May 2008.

[25] J. O. Fitó, I. Goiri, and J. Guitart, “SLA-driven Elastic Cloud Hosting
Provider,” in PDP’10, February 17–19 2010.

[26] SPECweb2005 benchmark. [Online]. Available: www.spec.org/web2005

56

