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Abstract: In this paper, a leak detection, isolation and estimation methodology in pressurized water pipe 

networks is proposed. The methodology is based on computing residuals which are obtained comparing 

measured pressures (heads) in selected points of the network with their estimated values by means of a 

Linear Parameter Varying (LPV) model and zonotopes. The structure of the LPV model is obtained from 

the non-linear mathematical model of the network. The proposed detection method takes into account 

modelling uncertainty using zonotopes. The isolation and estimation task employs an algorithm based on 

the residual fault sensitivity analysis. Finally, a typical water pipe network is employed to validate the 

proposed methodology. This network is simulated using EPANET software. Parameters of LPV model and 

their uncertainty bounded by zonotopes are estimated from data coming from this simulator. A leak 

scenario allows to assess the effectiveness of the proposed approach. 
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1. INTRODUCTION 

Water system networks are used to supply water for industrial 

and domestic use. Those systems include sources, treatment 

works, pump stations, reservoirs, pipes, control valves and 

demand sectors (nodes). Moreover, water systems networks 

are large scale systems. In those systems, frequently, leaks 

are present. Therefore, leak detection and isolation methods 

must be employed to localize leakages. Model-based leak 

detection and isolation techniques based on pressure 

measurements and sensitivity analysis have been studied 

(Perez et al., 2009). These techniques are based on the use of 

the non-linear model of the network. However, the parameter 

estimation of non-linear models of water networks is not an 

easy task (Brdys and Ulanicki, 1994). This is why this paper 

proposes alternatively to use a non-linear model with LPV 

structure whose parameters can be more easily estimated 

using least-squares algorithms as the one proposed by 

Bamieh and Giarré (2002), among others. 

Linear Parameter Varying (LPV) models have recently 

attracted the attention of the Fault Detection Isolation (FDI) 

research community. Such models can be used efficiently to 

represent some non-linear systems (Shamma and Cloutier, 

1993). This has motivated some researchers from the FDI 

community to develop model-based methods using LPV 

models (see Bokor et al. (2002), among others). But even 

with the use of LPV models, modeling errors are inevitable in 

complex engineering systems. So, in order to increase 

reliability and performance of model-based fault detection, 

the development of robust fault detection algorithms should 

be addressed. The robustness of a fault detection system 

means that it must be only sensitive to faults, even in the 

presence of model-reality differences according to Chen and 

Patton (1999). One of the approaches to robustness, known as 

passive, is based on enhancing the robustness of the fault 

detection system at the decision-making stage. The aim with 

the passive approach is to determine, given a set of models, if 

there is any member in this set that can explain the 

measurements. A common approach to this problem is to 

propagate the model uncertainty to the alarm limits of the 

residuals. When the residuals are outside of the alarm limits, 

it is argued that model uncertainty alone can not explain the 

residual and therefore a fault must have occurred. This 

approach has the drawback that faults that produce a residual 

deviation smaller than the residual uncertainty due to 

parameter uncertainty will not be detected. 

The typical fault isolation approach proposed in the FDI 

community uses a set of binary detection tests to compose the 

observed fault signature. When applying this methodology to 

leak isolation, since they may exhibit symptoms with 

different sensitivities, the use of binary codification of the 

residual produces loss of information (Puig et al., 2005). 

Alternatively, it is possible to use other additional 

information associated with the relationship between the 

residuals and faults, as the residual fault sensitivity, to 

improve the isolation results (Meseguer et al., 2006). 

The innovation of this paper is to present a new leak 

detection, isolation and estimation method for water 

distribution systems that can be described by LPV models. 

The fault detection methodology is based on comparing on-

line the real system behaviour of the monitored system 

obtained by means of sensors with the estimated behaviour 

using an LPV model. In case of a significant discrepancy 

(residual) is detected between the LPV model and the 

measurements obtained by the sensors, the existence of a 

fault is assumed. To take into account the effect of the 

uncertain parameters in the detection module, the outputs of 

LPV models are bounded by a zonotope to avoid false 

alarms. Analyzing in real-time how the faults affect to the 
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residuals using the residual fault sensitivity, it is possible, to 

isolate and estimate the leaks. 

The structure of this paper is the following: Section 2 

presents the modelling principles of water distribution 

networks and how to obtain LPV models to represent their 

dynamics. In Section 3, the model identification is presented. 

Section 4 presents the zonotope-based leak detection 

methodology while Section 5 presents the leak isolation and 

estimation methodology using sensitivity analysis. Finally, in 

Section 6, an application case study based on a hypothetical 

water distribution network is used to assess the validity of the 

proposed approach. 

2. MODELLING WATER DISTRIBUTION NETWORKS 

USING LPV MODELS 

2.1 Physical modelling principles 

The physical components that constitute a water distribution 

system are given by a set of pipes, pumps and control valves 

connected by means of nodes that represent junctions with or 

without demands and also tanks and reservoirs (Brdys and 

Ulanicki, 1994). Nodes are points in the network where pipes 

are joined and where water enters or leaves the network. The 

reservoirs are nodes that represent an infinite external source 

to the network, for example, rivers, lakes, groundwater 

aquifers, and also input points to other systems. The tanks are 

nodes with storage capacity, where the volume of stored 

water can vary with time. The pipes transport water from one 

point in the network to another. Flow direction is always 

from the end at higher hydraulic head (pressure) to at lower 

head. The hydraulic head lost by water flowing in a pipe due 

to wall friction can be computed using the Hazen-Williams 

(H-W) formula (Brdys and Ulanicki, 1994): 

( ) ( ) ( )
a

i j ij ijh k h k R q k− =                       (1) 

where: hi is the pressure at the node i, hj is the pressure at the 

node j, Rij is the resistance coefficient, qij is the flow rate 

through the pipe, a is the flow exponent and k denotes the  

time time. 

In each node, the flow continuity law must be fulfilled 

indicating that sum of flows in a node must be zero 

( )( ) ( ) 0ij iq k d k− =∑                           (2) 

where the contribution of di is negative because the demand 

goes out of the node and qij are the flows that are considered 

positive if go into the node. Otherwise, they are considered 

negative. The set of equations that describes the water 

network dynamics can be represented as nodes head function. 

Solving Equation (1) with respect qij the following flow 

expression is obtained 

( )( ) ( ) ( ) /a
ij i j ijq k h k h k R= −                         (3) 

Then, the set of equations that represent the water network 

dynamics is obtained by replacing (3) in (2). This set of 

equations is non-linear since 1a ≠  and can not be solved 

analytically to obtain the node heads, but instead numerical 

methods should be used. This non-linearity also makes 

difficult to estimate the parameters of the network (as, f.e. the 

pipe resistances). For all these reasons, the non-linear model 

of the network is not very useful for FDI purposes. 

2.2 LPV models for water networks 

In this paper, is alternatively proposed a LPV model of the 

water network. LPV models consist of a linear lumped 

parameters in which the parameters are not constant and 

depend on system state and/or operating point. There are 

several ways to obtain an LPV model (Shamma and Cloutier, 

1993) (Bamieh and Giarré, 2002). Here, the LPV model 

structure of the water distribution network is obtained using 

physical modeling and linearisation around a generic 

operating point as suggested by Shamma and Cloutier (1993). 

Parameters are estimated using LPV identification methods 

(Bamieh and Giarré, 2002). Thus, the water distribution 

network model can be written using the following LPV 

MIMO model 

ˆ( ) ( ) ( ) ( ) ( ) ( )kk k k k k= + = +Φ θ py e y e                (4) 

where 

- ( )ky  is the output vector of dimension 1yn × . 

- ( )kΦ  is the regressor matrix of dimension yn nθ×  which 

can contain any function of inputs ( )ku  and outputs ( )ky . 

- ( )k kp p≜  is a vector of measurable process variables of 

dimension 1pn ×  that define the system operating point. 

- ( )k k∈θ p Θ  is the LPV parameter vector of dimension 

1nθ ×  whose values can vary according to the system 

operating point following some known function 

( ) ( )kk g=θ p . 

- kΘ  is the set that bounds parameter values that can vary 

according to the system operating point as well.   

- ( )ke  is a vector of dimension 1yn ×  that contains the 

sensor additive noises whose components are bounded by 

constants ( )i ie k σ≤ , 1,..., yi n= . 

 

In this paper, the uncertain parameter set kΘ  is described by 

a zonotope centred in the nominal LPV model : 

{ }0 0( ) ( ) :n n
k k k= ⊕ = + ∈Θ θ p H θ p Hz zB B              (5) 

where  

- 0 ( )
n

k ∈θ p ℝ θ  is the centre of the zonotope and corresponds 

to the nominal LPV model.  

- 
n nθ×∈H ℝ  is the shape of the zonoopte (usually n n

θ
≥ and 

as the bigger n is the more complicated relations between 

uncertainty component parameters can be taken into 

account). 

- 1n n×∈ℝB  is a unitary box composed by n unitary 

( [ ]1,1= −B ) interval vectors.   

- ⊕ denotes the Minkowski sum. 
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3. MODEL IDENTIFICATION 

3.1  Worst-case approach 

Let us consider a sequence of M regressor matrix values 

( )kΦ  in a fault free scenario and the model of the water 

network parameterised as in (4). The aim is to estimate 

nominal  model parameters 0 ( )kθ p  and their uncertainty 

(model set)  defined by the matrix H  in such a way that all 

measured data in a fault free scenario will be covered by the 

worst-case predicted output ( )kϒϒϒϒ  (“worst-case model”),  that 

is  

( ) ( )k k∈ ϒϒϒϒy   1,...,k M∀ =                           (6)  

where   

ˆ( ) ( ) yn
k k= ⊕ϒ ϒ Εϒ ϒ Εϒ ϒ Εϒ ϒ ΕB                              (7) 

with 

{ }ˆ ˆ( ) ( ) ( ) ( ), ( )k k kk k k= = ∈Φ θ p θ p Θyϒϒϒϒ             (8) 

and ( )1
, ,

yn
diag= σ σ⋯ΕΕΕΕ . 

The worst-case approach was first suggested by Ploix (1999) 

in the context of fault detection. Further works using this 

approach are Calafiore et al. (2002) and Campi et al. (2009). 

In the particular case of representing the uncertain parameter 

set kΘ  using a zonotope, as in (5),  (8) can be rewritten as 

follows                      
0ˆ ( ) ( ) ( ) ( ) n

k
k k k= ⊕Φ θ p Φ HBϒϒϒϒ                        (9) 

Consequently, ( )kϒϒϒϒ  can be rewritten as follows: 

0 ˆˆ( ) ( ) ( )k k k= ⊕ϒ Γϒ Γϒ Γϒ Γy                                (10) 

where 
0 0ˆ ( ) ( ) ( )

k
k k=Φ θ py                              (11) 

and 

( )ˆ ( ) ( )  yn n
k k

+
= Φ H E BΓΓΓΓ                      (12) 

Notice that ( )kϒϒϒϒ  is a zonotope centred in the nominal output 

estimation 0ˆ ( )ky  and with a shape defined by ˆ ( )kΓΓΓΓ . Thus, 

condition (6) can be rewritten as  
0 ˆˆ( ) ( ) ( )k k k− ∈ ΓΓΓΓy y     1,...,k M∀ =                 (13) 

3.2  Worst-case parameter estimation 

Considering that the parameter set kΘ  can be described as 

the zonotope (5), the optimal zonotope that fulfils the “worst-

case condition” (6) is the one that minimizes the size of the 

predicted output along the considered set of data as follows 

1

ˆ( ( ( ))
M

k

J vol k
=

=∑ ϒϒϒϒ                         (14) 

where vol is the volume of the output zonotope, considering 

only uncertainty in parameters, ˆ ( )kϒϒϒϒ . This optimization 

problem with no knowledge assumptions about matrix H is 

in general very hard to solve even in the single output case 

(Campi et al., 2009). In order to reduce the complexity, the 

zonotope that bounds kΘ  can be parameterised such that 

0= λH H
*
, as proposed in Blesa et al. (2009), that 

corresponds to a zonotope with predefined shape (determined 

by 0H ) and a scalar λ . Then (14) can be rewritten as follows 

1

ˆ( ( )) ( )
M

k

J vol k v
=

= = λ∑ ϒϒϒϒ †
                 (15) 

and the worst-case optimization problem can be formulated as 

Problem 1: “Worst-case Parameter Estimation”  

1

ˆmin ( ( )) min ( )
M

k

vol k v
λ λ

λ
=

=∑ ϒϒϒϒ  

subject to: 
0

1 1 1 0 1

0

0

ˆ( ) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( ) ( ) ( )
y y y yn n n n

y k y k k k e k

y k y k k k e k

− = λ +

− = λ +

φ H z

φ H z

⋮ 1,...,k M∀ =  

( )1( )  , , ..., y

y

nn t
nk e e∈ ∈z EB B  and 0≥λ  

where 
1

( )
n

i
k θ×∈φ ℝ  1,..., yi n=  and 

1
( )

( )

( )
yn

k

k

k

 
 

=  
 
 

φ

Φ

φ

⋮  

Problem 1 is a non-linear polynomial optimization problem 

that can be solved globally as proposed by Henrion et al. 

(2009). 

4. LEAK DETECTION METHODOLOGY 

The leakage methodology is based on the evaluation of the 

residual obtained from the difference between measurements 

and model prediction using (4) 

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )kk k k k k k k= − − = − −e er y y y θ pΦΦΦΦ          (16) 

Ideally, the residual given by (16), known as parity equation 

(Iserman, 2006), in case of neglecting modelling errors and 

noise, it should be different from zero in a faulty scenario and 

zero, otherwise. However, because of modelling errors and 

noise, the detection test can be translated to check the 

following condition 

( )k∈0 Γ                                  (17) 

where  

( ) ( ) ( ) ( ) ( ),
( )

( ) , ( ) y

k

n

k k

k k k k
k

k

= − −  
=  

∈ ∈  

r y θ p

θ p Θ B

e

e

ΦΦΦΦ
ΓΓΓΓ

ΕΕΕΕ
              (18) 

and 0 is a vector ( 1yn × ) of zeros   ( )= 0 0
t

0 ⋯ . 

Taking into account (4) and (5), ( )kΓ can be parameterized 

as a zonotope  

 ( )0 ˆˆ( ) ( ) ( ) ( )k k k k= − ⊕Γ ΓΓ ΓΓ ΓΓ Γy y                  (19) 

where 0ˆ ( )ky  and ˆ ( )kΓΓΓΓ  are defined as in (11) and (12). Then, 

test (17) is equivalent to test (6) and involves checking if the 

point 0 belongs to the zonotope ( )kΓΓΓΓ . Considering matrix H 

is parameterized as was proposed in Section 3.2 (i.e., H=λH0, 

                                                 
*
 

0H can be obtained using physical knowledge of the system or by the 

method proposed by Bhattacharyya (1995).   

†
 For example if 

0( )kΦ H  is a square matrix: 0

1

( ) 2 det( ( ) )

M
n

k

v kλ λ
=

= ∑ Φ H      
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with λ and H0 known), the detection test can be implemented 

by determining if the following constraint satisfaction 

problem is feasible. 

Problem 2: “Fault detection test”  

 
0

1 1 1 0 1

0

0

ˆ( ) ( ) ( ) ( ) ( ) 0

ˆ( ) ( ) ( ) ( ) ( ) 0
y y y yn n n n

y k y k k k e k

y k y k k k e k

− − λ − =

− − λ − =

φ H z

φ H z

⋮  

( ) nk ∈z B   and  ( )1 , ..., y

y

nt
ne e ∈ EB  

For every instant k, the feasibility of Problem 2 can be 

verified solving a linear programming problem with no 

objective function. 

5. LEAK ISOLATION AND ESTIMATION 

METHODOLOGY 

The proposed leak isolation and estimation method is based 

on sensitivity analysis of residual (16) to the different leaks.  

The fault sensitivity transfer function matrix, indicates in 

what way faults affect into residual and, according to Gertler 

(1998), can be calculated as 

( )1( )
f1 n

q f f− = ∂ ∂ = ∂ ∂ ∂ ∂S ⋯r/ f r/ r/                     (20) 

where 1q−  is the shift operator. 

Notice that this sensitivity depends on the parameters θ  and 

faults f when applied to residual (16) coming from the LPV 

model (4) of the water network. This dependency is the 

denoted as 1( , , )q− fS θ .Thus, residual can be expressed as  

1( ) ( , , ) ( ) ( )k q k + k−= f f er S θ                      (21) 

where  

- ( )kf  is the vector of possible faults of dimension 1fn ×  

- 1( , , )q− fS θ  is the matrix sensitivity fault of dimension 

y fn n× .  

Considering that leaks are located in the nodes and can be 

modeled as single abrupt additive faults represented as a step 

of amplitude f     

( )

( )

0 0 0 ,       
( )

0 1 0 ,   

t

fault

t

fault

k < k
k

f k k




= 
≥

⋯ ⋯

⋯ ⋯

f   

the problem of fault isolation and estimation implies solving 

Problem 3, for faultk k≥ , i.e., once the fault has been 

detected by solving Problem 2. 

Problem 3: “Fault isolation and estimation”  

{ }
{ }

1

1
,...,

1,..,

arg min ( ), ..., ( )
nf

f

i nf
f f

i n

f J f J f
∈

=      with 

( )
,min( 1)

2
1

0 1

( ) min ( ) ( , , )
fault y

i

k k n

i j ji i
f

l j

J f r k l S q f

− −
−

= =

  
= − − 

  
∑ ∑ θ

ℓ

f

where  
1

( , , ) ( ) /ji j iS q k f
− = ∂ ∂θ f r   and ℓ  is time moving 

horizon that minimizes the noise effect. 

Notice that Problem 3 implies determining the minimum of nf 

values obtained by solving nf optimization problems. 

6. APPLICATION CASE STUDY 

6.1 Description 

The application case study is based on the water distribution 

network presented in (Fig. 1). In this particular case, the 

water network is composed by the following elements: Two 

reservoirs, three pipes and two nodes with demands d1 and d2 

expressed in m
3
/s. Head sensors (hn1 and hn2) (expressed in 

m ) are located in the two nodes. The possible leaks are f1 and 

f2 that are also located in the nodes. The pipe resistance 

coefficients 1R , 2R  and 3R  in the H-W formula (1) are given 

by ( )10 4.871.2216·10 / aR L C D= where L is the pipe length in 

meters (m), D is the pipe diameter in millimetres (mm) and a 

is the flow exponent (a = 1.852). The pipes length are L1 = L2 

= 1000m and L3 = 2000m respectively and the diameters are 

the same in all pipes D1 = D2 = D3 = 200mm. 

 
Fig. 1. Water network proposed as case study 

 

Applying the flow Equation (2) to the network under study, 

the set of equations that describes the flow behaviour is 

obtained: 

1 2 1 1 0q q d f+ − − =                            (22) 

3 2 2 2 0q q d f− − − =                            (23) 

Analogously, the application of the pressure Equation (3) in  

(22) and (23) leads to 

( )( ) ( )( )
1 1

1 1 1 2 1 2 1 1/ / 0
a a

d n n nh h R h h R d f
− −

− + − − − =     (24) 

( )( ) ( )( )
1 1

2 2 3 2 1 2 2 2/ / 0
a a

d n n nh h R h h R d f
− −

− − − − − =  (25) 

 

This model is used to develop a high-fidelity simulator using 

a standard water network simulation software (EPANET). 

6.2 LPV Modelling and identification 

To obtain the LPV model structure of this network, the non-

linear MIMO model defined by (24) and (25), considering no 

fault is present, is linearised around the operating point 

characterized by the head measurements ( 0
1nh  and 0

2nh ) in 

nodes. Leading to the following LPV model 

1 13 1 211 1 2 12 1 2 1

23 1 221 1 2 22 1 2 22

ˆ ( , )( , ) ( , )

ˆ ( , )( , ) ( , )

n

n

h a d da d d a d d d

a d da d d a d d dh

     
  = +           

  (26) 

where  12 1 2 21 1 2( , ) ( , )a d d a d d= . 
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Considering bounded additive noise in the pressure sensors  

ˆ
ni ni ih h e= +    where i ie ≤ σ   for 1, 2i =            (27) 

 

11 1 2

12 1 2
1 1 2 1

22 1 2
1 22 2

13 1 2

23 1 2

( , )

( , )
0 1 0

( , )
0 0 1

( , )

( , )

n

n

a d d

a d d
h d d e

a d d
d dh e

a d d

a d d

 
 
     
 = +             
 
 
 

      (28) 

and considering parametric modelling uncertainty with no 

dependences between parameters, then uncertainty can be 

parameterized as follows 
0 0

1 2 1 2 1 2( , ) ( , ) , ( , )ij ij ij ij ija d d a d d a d d ∈ − λ + λ           (29) 

 

Equation (28) can be rewritten in regressor form (4) as 

follows 

1

2

( )
( )

( )

n

n

h k
k

h k

 
=  
 
 

y , 
1 2

1 2

( ) ( ) 0 1 0
( )

0 ( ) ( ) 0 1

d k d k
k

d k d k

 
=  
 

Φ ,  

( )11 12 22 13 23( ) ( ) ( ) ( ) ( ) ( )
t

k k k k k ka a a a a=θ p p p p p p  

where 
1

2

( )

( )
k

d k

d k

 
=  
 

p , 
1

2

( )
( )

( )

e k
k

e k

 
=  
 
 

e  and 

0 5( )k k= ⊕Θ θ p HB   

with  11 12 22 13 23( , , , , )diag=H λ λ λ λ λ  and 

 ( )0 0 0 0 0 0
11 12 22 13 23( ) ( ) ( ) ( ) ( ) ( )

t

k k k k k ka a a a a=θ p p p p p p   (30)  

 

The parameter identification of model (4) has been carried 

out in two steps: first estimation of nominal parameters (30)  

and second estimation of its uncertainty defined by H . 

 

For the nominal parameter estimation, the LPV parameter 

estimation algorithm proposed by Bamieh and Giarré (2002) 

has been applied to a set of head/demand data registered in 

the network in a non-leak scenario. The parameter 

dependence of this model with the demand has been 

parameterized as follows 

1 2ij ij ij ija d d= α + β + γ                           (31) 

Once the nominal LPV model has been estimated, parametric 

modelling uncertainty H  has been obtained solving Problem 

1 considering 0= λH H  with 0 =H I  (i.e, the same weight of 

uncertainty in every parameter), giving λ = 2.05·10
-5

. 

6.3 Leak detection and isolation/estimation implementation 

Figure 2 shows the scheme of the leak detection, isolation 

and estimation procedure described in Sections 3 and 4. The 

faults to be detected, isolated and estimated are the leaks in 

nodes 1 and 2. These faults can be interpreted as unknown 

changes in demands d1 and d2. The demands considering the 

leaks are denoted as: 1 1 1fd d f= +  and 2 2 2fd d f= + , 

respectively. 

 

Combining (28) with (16), residuals are obtained. Then, the 

residual leak sensitivity transfer function matrix (20) is 

11 12

21 22

S S

S S

 
=  
 

S                          (32) 

with 

11 11 1 2 1 11 2 12 13( , )f fS a d d d d= + α + α + α  

12 12 1 2 1 12 2 22 23( , )f fS a d d d d= + α + α + α  

21 12 1 2 1 11 2 12 13( , )f fS a d d d d= + β + β + β  

22 22 1 2 1 12 2 22 23( , )f fS a d d d d= + β + β + β  

Remark: Only single faults have been considered. 

 
Fig. 2. Scheme of leak detection, isolation and estimation 

procedure 

6.4 Leak scenario 

To show the effectiveness of the proposed method a leak 

scenario corresponding to a leak  f1=0.5 l/s is present in the 

node 1 at time 1.7·10
5
s. Figure 3 shows the residuals 

(difference between the real and predicted head 

measurements using the  LPV  model (26)) in the leak 

scenario.  

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

-0.04

-0.02

0

0.02

r 1
(m

)

time (s)

Residuals evolution

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

-0.03

-0.02

-0.01

0

0.01

r 2
(m

)

time (s)

 
Fig. 3. Residuals evolution 

 

Figure 4 shows the set Г, defined by (19), at the fault 

appearance instant. Notice that since the set Г does not 

contain the point (0,0). Thus,  the leak is detected according 

to (17).  

 

-0.045 -0.04 -0.035 -0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0
-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

r
1
(m)

r 2
(m

)

Direct test: Space Γ at the fault instant appearance (t=1.7·105s)

 
Fig. 4. Leak test in fault scenario 
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Once the leak has been detected, it should be isolated and 

estimated. Figure 5 shows the minimum optimization cost 

functions (J(f1) and J(f2)) defined in Problem 3.  
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Fig. 5. Optimization cost functions  

 

As J(f1) is smaller than J(f2) 
51.7·10k s∀ ≥ , then a leak is 

located in node 1. Thus, the leak magnitude f1, presented in 

Figure 6, is obtained as the minimiser of J(f1) that results 

from solving Problem 3. 
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Fig. 6. Fault estimation 

 

7. CONCLUSIONS 

In this paper, a leak detection, isolation and estimation 

method for water pipe network system described by means of 

LPV model has been proposed. The leak detection 

methodology is based on checking if head measurements are 

inside the prediction bounds provided by a zonotope LPV 

model. The leak isolation and estimation module has been 

implemented using fault residual sensitivity analysis. This 

concept has been used to provide additional information to 

the relationship between residuals and leaks. Moreover, it 

allows obtaining a leak estimation. Satisfactory results have 

been obtained using the water pipe network case study. As a 

further research, the proposed methodology will be applied to 

a real network. 
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