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Abstract

The purpose of this paper is to investigate the evolution of patent value

and technological usefulness over time using longitudinal structural equa-

tion models. The variables are modeled as endogenous unobservable vari-

ables which depend on three exogenous constructs: the knowledge stock

used by companies to create their inventions, the technological scope of

the inventions and the international scope of protection. Two set-ups are

explored. The first longitudinal model includes time-dependent manifest

variables and the second includes time-dependent unobservable variables.

The structural equation models are estimated using Partial Least Squares

Path Modelling. We showed that there is a trade-off between the exoge-

nous latent variables and technological usefulness over time. This means

that the former variables become less important and the latter more im-

portant as time passes.

Keywords: Patent value, longitudinal structural equation models, partial

least square, PLS path modelling
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1 Introduction

In this paper we explore a predictive dynamic model that considers patent

value as an unobservable variable. The patent value model has been previously

presented as a first and a second-order structural equation model (Mart́ınez-

Ruiz & Aluja-Banet, 2008, 2009). The structural equation model (SEM) was

based on the theoretical background and an extensive review of the literature.

The patent value was modeled as an endogenous unobserved variable depend-

ing on the following four exogenous constructs: the knowledge stock used by

a firm to create the invention, the technological scope of protection, the inter-

national scope of protection and the technological usefulness of the inventions.

The latter is also an endogenous latent variable depending on the first three

exogenous constructs. Each latent variable was estimated using a set of mani-

fest variables or indicators constructed mainly from the information contained

in patent documents.

Now we introduce the dynamic aspects of the model, since patent value

has an intrinsic life cycle. This means that over time, the value first increases

and then reaches a stage where the size of the increments become smaller and

smaller. We attempt to capture this phenomenon and to estimate the evolu-

tion of the value over time. We explored two models. The first one considers

time-dependent indicators for technological usefulness; this allows us to obtain

a global estimation of the patent value as a weighted sum of the manifest vari-

ables at different time points. In the second model, technological usefulness is

modeled as an unobservable variable which changes over time (time-dependent

latent variable); and each of these constructs is estimated by a group of mea-

sured manifest variables within the corresponding time period. Both models

allow the analysis of loadings and path coefficients over time, but the second

also measures the changes of the lagged endogenous latent variable. This ap-

proach has been followed by Jöreskog & Wold (1982) to model longitudinal

data in structural equation models, and we use it in a PLS Path Modelling

framework.

2 Patent Value

Patents are intellectual assets that do not necessarily have an immediate

return. A patent may protect a product that can be manufactured and sold.

But a patent may also protect technologies which, together with other tech-

nologies, enable the manufacture of a final product. In both cases, obtaining

an economic value of patents may be extremely difficult. In studying patent
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value, different approaches have been taken throughout the literature. Some

of the approaches focus on the private value of a patent while others concen-

trate on a patent’s social value. Lanjouw et al. (1998, p. 407) defined the

private value of a patent in terms of “the difference in the returns that would

accrue to the innovation with and without patent protection.” The magnitude

of this difference would be crucial in applying or renewing the protection. Re-

itzig (2004) also focused on the private value of patents, and specifies the need

to consider the patent value as a construct. Technical experts were surveyed

and, according to them, the research showed that the factors that determine

patent value are: state of the art (existing technologies), novelty, inventiveness,

breadth, difficulty of inventing, disclosure and dependence on complementary

assets. Additionally, Trajtenberg (1990) showed that patent data was highly

correlated with some indicators of the social benefits of innovations. Guellec

& van Pottelsberghe (2000) presented a value scale proposing that technology

increases its own value as it passes through different stages: from invention

to application, examination, publication and decision to grant, and finally to

the high value stage if the patent is granted. The distinction is made between

the intrinsic value of the patent simply for being granted (and thereby having

proven novelty, inventive activity and applicability) and the potential value of

technology (dependent on its potential for generating future returns). On the

other hand, Lanjouw & Schankerman (2004) constructed an index for patent

quality, emphasizing “both the technological and value dimensions of an inno-

vation” (p. 443). Using factorial analysis, the researchers model patent quality

as an underlying construct that explains a set of patent indicators (forward

citations, backward citations, family size and number of claims). The latent

variable is computed as a “linear combination of the set of indicators, where

weights depend on the factor loadings” (p. 449). One of the main results of

this research is that the use of a latent variable model significantly reduces the

variability of the construct.

Some patent indicators have been used to directly infer the patent’s value,

such as forward citations or family size. Even though this may be useful and

may give an approximation of the patent value, many elements may affect the

invention and protection process. We consider some of these factors based on

the background, and represent their interactions proposing a multidimensional

analysis of the problem. It is worth noting that this research does not seek

to determine the value of an individual patent or to obtain a monetary value

of the assets. Rather, the patent value is proposed in terms of the technolog-

ical usefulness of the inventions. This model, however, allows us to compare
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and rank the value of a company’s patent portfolio. We addressed the ques-

tion of what variables determine the patent value and how they relate to each

other. These variables are modeled as unobserved variables. So, they and

their relationships set up a structural model. Little research has reported on

the structural relationship among latent variables which influence patent value

using a multidimensional approach. The recent investigations of Harhoff et al.

(2003), Harhoff & Reitzig (2004), Reitzig (2003), and Reitzig (2004) used a large

number of indicators of patent value which were aimed mainly at estimating

the probability of opposition to a patent. In most cases, analytical approaches

have been based on standard econometric analysis techniques (probit or logit

models) or survey analysis. One reason that could explain why a multidimen-

sional and structural approach has not been applied to technology/patent value

is that the more general structural models are based on maximum likelihood

estimation and the multivariate normal distribution of data. Patent indicators

are very heterogenous and asymmetric, and, in general, they exhibit a large

variance and skew. Consequently, assuming that this type of data has a mul-

tivariate normal distribution may lead to biased results. PLS Path Modelling

overcomes this drawback because it is an iterative algorithm that makes no

assumptions about data distribution.

3 Longitudinal Nature of Patent Indicators

A fundamental feature of longitudinal data is that the same measurement

is obtained on different occasions for the same individuals. So, the aim of a

longitudinal study is to assess the changes between occasions and explain these

changes based on theoretical grounds. It is important to emphasize that the

patent indicators described above have a temporary nature. The number of

inventors, applicants, cited patents, claims and IPC codes are determined at

the time of the patent filing or during the patent examination process. We may

assume that they are determined at the instant zero. However, this assumption

is not valid for forward citations and family size. Both, the family size and

the forward citations, are variables with a longitudinal character. Usually, the

companies first protect their inventions in their local countries and then in

others within a period of time. So, the family size is an indicator that may

change over time. Harhoff et al. (2003, p. 1360) said that this indicator “may

be available around the time of application.”

In addition, it is known that the number of forward citations is an indicator

that may vary over time, since a patent may receive citations over a long period.
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As a first attempt –and given the complexity of recovering some data– we

retrieve the number of yearly citations received for patents belonging to the

sample. This allows us to assess the implications on the results by considering

the longitudinal nature of the data in the estimated models. We are also aware

that longitudinal data have an intrinsic autoregressive nature. So, in this way,

we also explore the robustness of the proposed structural models.

4 Patent Value Models for Longitudinal Data

In order to model the patent value over time, we explore two longitudinal

models (see Figure 1). The first longitudinal model A (Figure 1(a)) considers

three exogenous constructs –knowledge stock (KS), technological scope (TS)

and international scope (IS)– at time point zero. The knowledge stock rep-

resents the base of knowledge that was used by the applicant to create an

invention. This would be the content domain. This existing knowledge encour-

ages the inventive activity and may come from within or outside the company.

Since we are considering the patent document as the main data source, the

applicants and inventors, who have contributed their knowledge to the creation

of the invention, may be considered as having formed this construct. The same

applies to backward citations. The previous works, cited in the patent docu-

ment, are the scientific and technical knowledge units that must exist before

the creation of an invention, and they may be used as knowledge inputs within

the invention process (Narin et al. , 1997). Moreover, backward citations rep-

resent the prior art, and demonstrate that the invention has not previously

been protected. These three indicators have been related to the patent value

by other authors (see for instance Reitzig (2004)). However, they still have

not been used to estimate an unobserved variable as they are in a structural

equation model1. The technological scope of the invention is related to the

potential utility of an invention in some technological fields. So, the manifest

variables for this construct are the number of four-digit IPC classes where the

patent is classified (Lerner, 1994), and the number of patent claims (Tong &

Frame, 1994). The IPC classes allow us to know the technical fields related to

the invention, and therefore the number of potential application fields. This

does not mean that an invention’s ultimate use is restricted to a determined

area. A company may protect an invention for strategic purposes, for exam-

ple to prevent its being used by a competitor. Here, the underlying issue is

that a larger number of classification codes corresponds to a larger number of

1See Mart́ınez-Ruiz & Aluja-Banet (2009) for a discussion on the reflective and formative
nature of measurement models.
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potential application fields, and hence, the technological scope of the patent

is greater. On the other hand, and according to Tong and Frame (Tong &

Frame, 1994, p. 134), “each claim represents a distinct inventive contribution,

so patents are, in effect, bundles of inventions”. Moreover, it has been shown

that patents with a large number of claims have a higher likelihood of being

litigated, so they can be considered more valuable Harhoff & Reitzig (2004);

Lanjouw & Schankerman (2001); Reitzig (2004). Claims are a description of

what the inventors actually claim to have invented and describe the potential

application of the invention. As seen in the literature review, the number of

claims should reflect the inventive activity of the invention. So, under the as-

sumption that a highly sophisticated invention will require much inventiveness,

the patent will also have a considerable amount of claims. Thus, this variable

will also give information about the technological scope of the patents. It is

arguable that this is not always so. Probably there are sophisticated inventions

that have not required a large number of claims to be protected. But this may

be unusual in the field of renewable energy. For instance, as seen in Table 4

below, the number of claims is a skewed variable (skewness = 2.25, kurtosis =

8.64, sample 1), with median 10. International scope refers to the geographic

zones where the invention is protected. Inventions are usually protected in

the local country first and then in others, as part of the companies’ patent-

ing strategy. All the patents considered in the sample are granted in the U.S.

So, we defined two dummy variables that consider whether the invention had

been protected in Japan (priority JP) or in Germany (priority DE) during the

priority period. Japan and Germany are large producers of renewable energy

technologies. Hence, it is interesting to examine whether these variables affect

the patent value. Variables indicating whether inventions have been protected

through the European Patent Office (EPO) or by the World Intellectual Prop-

erty Organization (WIPO) have been excluded from the analysis because they

provide little information. This means that for the international scope, not all

the variables that could form the construct are being considered.

The endogenous latent variable, technological usefulness (USE), is measured

by time-dependent manifest variables. The indicators of this variable are the

number of forward citations per year. So, by capturing the longitudinal nature

of forward citations through an unobservable variable, we “average” the contri-

bution of the longitudinal indicators. For USE, we also consider the previously

defined dummy variables (JP, DE and EP). The patent value (PV) is mod-

eled as an endogenous latent variable formed by the weighted contribution of

knowledge stock, technological scope, international scope and the technological
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(a) Model A: Time-dependent man-
ifest variables

(b) Model B: Time-dependent latent
variables

Figure 1: Patent value structural models for longitudinal data. In model A,
the forward citations measured at different time points (FCti), the family size
and the dummy variables (JP, DE, EP) are manifest variables of the latent
variable, technological usefulness. In model B, technological usefulness is a
time-dependent latent variable, each measured by a set of indicators.

usefulness. Hence, this model gives an overall measure of the patent value.

The second longitudinal model B (Figure 1(b)) considers: (1) the same

aforementioned exogenous constructs, (2) an auxiliary endogenous construct2

(USE-INT) clustering the family size and the dummy variables JP, DE and

EP, and (3) the technological usefulness (USE) as a set of time-dependent la-

tent variables, each one measured by blocks of observed variables at different

time points. We modeled seven different time periods: 1992-1993, 1994-1995,

1996-1997, 1998-1999, 2000-2001, 2002-2003, and 2004-2005. In model B, the

patent value (PV) is also formed by the weighted sum of all the constructs and

latent variables, but now the model allows for the analysis of changes in the

technological usefulness over different time periods.

5 The Patent Sample

In order to analyze whether it is possible to find a pattern in the parameter

estimates, the proposed models were estimated with time-period data. We

established some criteria for retrieving data from the Delphion database. We

used the International Patent Classification (IPC) codes for renewable energies

listed by Johnstone et al. (2007). Hence, patents are classified in codes related

2This latent variable groups the measures related to family size and the international
protection of patents. Initially, when the model did not consider variations in time, the
variables were considered as indicators of technological usefulness. However, it is now necessary
to rethink this formulation.
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to wind, solar, geothermal, wave/tide, biomass and waste energies. All patents

were granted in the U.S. We arbitrarily chose: (1) a set of 359 patents applied

for in the years 1989-1990-1991 (sample 1), (2) a set of 129 patents applied for

in the years 1995-1996 (sample 2), and (3) a set of 179 patents applied for in

2000 (sample 3). According to the Delphion database, these data sets represent

41.74%, 35.15%, and 51.29% of all patents applied for in the U.S. in the field

of renewable energy during the selected time periods, respectively. Due to the

manner in which the sample was selected, the sample is homogenous in terms

of technological area and the country where the patents were granted. At any

rate, it is worth noting that at this stage, the patent value model is being tested

in general at the level of renewable energy technologies.

Table 4 in section 9 provides descriptive statistics for patent indicators for

each patent data set. The results indicate that some variables are very hetero-

geneous and asymmetric, and they also exhibit large variance. So, normality

is not a recommended assumption. Positive values of skewness indicate posi-

tive/right skew (notice how the medians are always smaller than the means).

Likewise, positive kurtosis indexes show distributions that are sharper than the

normal peak.

All forward citations received by patents per year were retrieved from the

United States Patent and Trademark Office (USPTO) database from 1992 to

2005. Figures 2 and 3 show the number of citations received by year and the

accumulated citations received by year, respectively, for patent applications in

1989, 1990, 1991, 1995, 1996, and 2000. These figures show an increase in the

number of citations over time. Figure 2 shows that the number of citations

reaches a peak then decreases. The patents applied for in 1989 are the most

cited. The patents less cited are those applied for in 1991 and 1996.

6 PLS Path Modelling for Longitudinal Data

PLS Path Modelling is a component-based procedure for estimating a se-

quence of latent variables developed by the statistician and econometrician

Herman Wold. During the last few years, it has proved to be useful for es-

timating structural models, in marketing and information systems research in

particular, and in the social sciences in general. Some of its features have en-

couraged its use, such as: (1) it is an iterative algorithm that offers an explicit

estimation of the latent variables and their relationships, (2) it works with fewer

cases and makes no assumptions about data distribution, and (3) it overcomes

the identification problems when formative measurement models are included.
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Figure 2: Number of citations received by year, patents applied for in 1989,
1990, 1991, 1995, 1996 and 2000
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Figure 3: Accumulated citations received by year, patents applied for in 1989,
1990, 1991, 1995, 1996 and 2000

Wold’s basic-design of PLS Path Modelling does not consider higher-order la-

tent variables. Therefore, in Wold’s algorithm each construct must be related

to a set of observed variables in order to be estimated. However, Lohmöller

(1989) proposed a procedure for the case of hierarchical constructs; that is to

say, for cases where there is a construct with no block of manifest variables, or

more simply: it is only related to other constructs. In hierarchical component

modelling, manifest variables of first-order latent variables are repeated for the

second-order latent variable. So, a set of “auxiliary” variables is introduced

for estimation purposes. After that, the model is estimated using PLS Path

Modelling in the usual way.

In a more traditional way, structural equation models with longitudinal data

consider the repetition of the structural and measurement models in each of
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the years under study. Therefore, when the model is tested, the whole model is

estimated at the same time. So, both background variables and initial measures,

as well as the final status are included in the model. Wold (1982) and Scepi

& Esposito Vinzi (2003) followed this approach, but the latter also introduced

multi-table analysis with an aim toward identifying temporal components in the

data structure. We addressed the more traditional approach in order to estimate

the longitudinal patent value models. As a PLS Path Modelling procedure is

used, the aforementioned autoregressive process is also implemented.

7 Results

Model assessment. We first assess the internal consistency of reflective outer

models by using Cronbach’s alpha coefficient (should be > 0.7). All reflective

measurement models are unidimensional. Cronbach’s alpha coefficients of tech-

nological usefulness are 0.91, 0.94 and 0.82 for models A with samples 1, 2, and

3, respectively. Cronbach’s alpha coefficient for the auxiliary latent variable in

model B is 0.80 and Cronbach’s alpha range is from 0.94 to 0.99 for the differ-

ent time points of technological usefulness. We computed the average variance

extracted (AVE) to assess the extent to which measures of a given construct

differ from measures of other constructs (discriminant validity). As suggested

by Fornell & Larcker (1981), the percentage of variance captured by the con-

struct in relation to the variance due to random measurement errors should be

greater than 0.5. The AVE of technological usefulness is 0.58, 0.65, and 0.53

for samples 1, 2, and 3, respectively, in models with time-dependent manifest

variables. Thus, the latent variable is capturing on average more than 50% of

the variance in relation to the amount of variance due to measurement error.

For the model with time-dependent latent variables, the AVE of technological

usefulness ranges from 0.95 to 0.99 at the different time points.

Tables 5 and 6 in section 9 report the cross loadings –or correlations between

manifest variables and constructs– for a reflective block of variables in models

A and B in the three analyzed time-periods. As shown, each observed variable

is correlated more with its corresponding construct. Thus, for instance, in the

longitudinal model with time-dependent latent variables, the family size and

the dummy variables JP and DE are more related with the auxiliary variable

USE-Int than with the technological usefulness in the different time-periods.

This empirical evidence supports the relationships between latent and manifest

variables as proposed in the models.

Loading estimates for reflective models A and B are reported in Tables 7
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and 8 in section 9, respectively. Loadings indicate how much variance each

indicator shares with the latent variable (reliability). A rule of thumb generally

accepted is 0.7 or more (Hulland, 1999). A low value in a loading factor suggests

that the indicator has little relation to the associated construct. As shown in

the tables, all loading estimates are significant at the 0.01 level3. For models A,

the loadings of time-dependent manifest variables, that is, the forward citations

for the different time periods, range from 0.776 to 0.955. Thus, the technologi-

cal usefulness is reflected in reliable time-dependent indicators, and the latent

variable explains the correlations among the manifest variables. Although sig-

nificant, the loadings for the family size and the dummy variables (Germany

and Japan) are less than 0.7. This situation changes when the time-dependent

latent variable model is considered. For model B, loadings are always greater

than 0.7. In this case, the family size and the dummy variables (DE and JP) are

reliable indicators of the auxiliary latent variable USE-Int, and the construct

explains the correlation among the indicators. We have not given a definitive

name to this latent variable. “International patenting strategy” would describe

the concept formed by the family size and the dummy variables JP and DE.

These indicators measure whether the inventions have been protected interna-

tionally, particularly in the major countries which produce renewable energy

technologies. Hence, these variables may change over time. This is what makes

the construct different in regards to an international scope.

The reliability of formative outer models –knowledge stock, technological

scope, international scope– was assessed by examining weight estimates and

the correlations between the constructs and their corresponding manifest vari-

ables. Manifest variables in formative measurement models do not have to

be intercorrelated. In fact, Pearson correlations between patent indicators are

small and medium,4 ranging from 0.04 to 0.255. However, the indicators should

be correlated with the constructs which are related, because the manifest vari-

ables are supposed to contribute to the formation of the unobservable variable.

Tables 5 and 6 show the correlations between knowledge stock, technological

scope and international scope, along with their corresponding manifest variables

(models A and B, and samples 1, 2, and 3). Tables 7 and 8 in section 9 show the

estimates for outer relationships. For models A, of which there are three, the

weight estimates are in line with the correlations between constructs and indica-

3The t-values were computed by bootstrapping with 200 bootstrap resamples; t-value >
1.65 significant at the 0.05 level; t-value > 2 significant at the 0.01 level.

4Cohen (1988) suggests that correlations of 0.1, 0.3, and 0.5 express small, medium and
large effect sizes, respectively.

5Correlations between the number of inventors, backward citations, the number of IPC
codes, the number of claims, and the dummy variables.
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tors. For samples 1 and 2, there are medium and large correlations between the

knowledge stock and its indicators. The weight estimates are positive, and the

number of inventors indicates a significant relationship with the construct. The

same happens with the technological scope and international scope. For model

A with sample 3, the weight estimates are negative as well as the correlations

between the constructs and their corresponding indicators. Thus, weight esti-

mates and correlations between each formative construct and its corresponding

indicators vary in the same way, validating the formative constructs. Negative

correlations are attributed to the fact that the sample corresponds to patents

applied for in 2000. As discussed below, forward citations influence the model

estimates in a meaningful way. These variables are less informative for sample

3, affecting the estimation of the unobservable variables for that year. The

results for model B suggest that a model with time-dependent latent variables

may reveal significant relationships in the formative outer models. The num-

ber of IPC codes, the number of claims, and the dummy priority variables JP

and DE are strongly and significantly related to their constructs. The same

was found in Mart́ınez-Ruiz & Aluja-Banet (2009). The relationship between

knowledge stock and the number of inventors is also significant.

Since multicollinearity is a problem in multiple regression –and the ba-

sic design of PLS Path Modelling uses multiple regression to estimate inner

relationships– we calculated the correlations between the estimated constructs

and the variance inflation factor6 so as to perform a collinearity diagnostic.

The variance inflation factors for the regression coefficients of the technological

usefulness range from 5.18 to 89.88 from 1992-1993 to 2002-2003, respectively.

Moreover, we calculated the mean communalities to test for the discriminant

validity of unobservable variables. Tables 9 and 10 in section 9 report the

results. The mean communalities of each construct are larger than the correla-

tions between the construct and other unobservable variables (models A and B,

samples 1, 2, and 3). So, the constructs share more variance with its block of in-

dicators than with another construct representing a different block of manifest

variables. In addition, there was no evidence of collinearity between knowl-

edge stock, technological scope, and international scope, nor between these

constructs and the auxiliary latent variable USE-Int and technological useful-

ness. However, and as expected, technological usefulness for the different time

periods is highly correlated. Therefore, we estimated the inner relationships by

6The square root of the variance inflation factor tells you how much large the standar
error is, compared with what it would be if that variable were uncorrelated with the other
independent variables in the equation. A common rule of thumb is that if VIP(regression
coefficient) > 5 then multicollinearity is high.
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using multiple regression and PLS regression. The latter is recommended to

avoid multicollinearity problems among inputs.

Multiple regression to estimate structural relationships. Once the la-

tent variables were obtained with PLS Path Modelling, we estimated the struc-

tural relationships by using multiple regression in the usual way. Tables 1

and 2 show the standardized path coefficients of the longitudinal model with

time-dependent manifest variables for the three-analyzed samples, and with

time-dependent latent variables for sample 1, respectively. These tables also

report the significance of each estimate.

The relationships between patent value and the exogenous constructs are

all significant at the 0.01 level (models A and B, samples 1, 2, and 3). The

magnitude of the regression coefficients and the t statistic reveal the con-

tribution of each variable to the patent value. Path coefficients of model

B show how technological usefulness is reflected over time (β92−93 = 0.131

t − value = 23.16,...,β04−05 = 0.145 t − value = 19.73) while the regression

coefficient in model A (βsample3 = 0.856, t− value = 18.53) is “averaging” the

contribution of the change in forward citation over time. In addition, when

considering forward citations as longitudinal manifest variables of technological

usefulness, the regression coefficient between technological scope and techno-

logical usefulness is 0.049 (t − value = 2.28, sample 1). However, this value

changes when the technological usefulness is modeled as a time-dependent la-

tent variable. In model B, the regression coefficient between technological scope

and USE 92-93 is 0.210 (t− value = 2.08). This relationship is smaller in sub-

sequent years. So, this result suggests that the relative contribution of the

technological scope of protection –determined when the invention is classified

in some IPC codes and the number of claims– is larger in the first stage of the

life cycle of patents, and then it declines. The knowledge stock and the inter-

national scope also appear to add more to the patent value in an early stage.

The inner relationship between the auxiliary latent variable USE-Int and the

patent value is also significant.

These results are similar to those obtained in Mart́ınez-Ruiz & Aluja-Banet

(2009). However, the effects captured by the structural model are smaller,

mainly among the formative constructs and the technological usefulness. This

may be due to the fact that considering the longitudinal nature of forward cita-

tions helps to reveal the relative weight that this variable has on the estimate of

patent value. Figure 4 shows the evolution of loadings, which describes the rela-

tionship between forward citations and patent value for model A and samples 1,

2 and 3. The Figure clearly shows how the patent value increases, stabilizes and
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Table 1: Standardized path coefficients of the A-structural model (longitudinal
model with time-dependent manifest variables) for samples 1, 2, and 3; t-values
in parenthesis, ** at the 0.01 significance level, * at the 0.05 significance level.

Sample 1: 1989-1990-1991 Sample 2: 1995-1996 Sample 3: 2000

Construct
Technological Patent Technological Patent Technological Patent

Usefulness Value Usefulness Value Usefulness Value

Knowledge stock 0.140 0.146 0.239 0.121 0.193 0.192
(1.4605) (4.952**) (2.299**) (7.638**) (1.860*) (3.148**)

Technological scope 0.049 0.133 0.214 0.117 0.041 0.201
(2.283**) (4.944**) (2.721**) (7.494**) (0.554) (3.390**)

International scope 0.251 0.131 0.106 0.0779 0.169 0.166
(0.637) (4.267**) (0.908) (4.491**) (1.921*) (2.346**)

Technological usefulness 0.888 0.897 0.856
(26.851**) (52.024**) (18.538**)

Table 2: Standardized path coefficients of the B-structural model (longitudinal
model with time-dependent latent variables) for sample 1; t-values in parenthe-
sis, ** at the 0.01 significance level, * at the 0.05 significance level.

Sample 1: 1989-1990-1991

Construct
USE-Int USE USE USE USE USE USE USE PV

92-93 94-95 96-97 98-99 00-01 02-03 04-05

Knowledge stock 0.095 0.111 0.050 0.001 -0.040 0.003 -0.002 -0.005 0.028
(1.110) (1.303) (1.348) (0.032) (1.328) (0.155) (0.151) (0.387) (3.710**)

Technological scope 0.186 0.210 0.022 0.054 -0.020 -0.029 -0.007 -0.011 0.034
(1.990*) (2.082**) (0.607) (1.396) (0.758) (1.289) (0.427) (0.737) (4.017**)

International scope 0.340 -0.022 -0.031 0.032 0.007 -0.018 -0.019 -0.019 0.018
(2.989**) (0.320) (1.071) (0.750) (0.189) (0.912) (1.147) (1.376) (2.390**)

Auxiliary construct USE-Int 0.069
(3.612**)

Technol. Usefulness 92-93 0.883 0.131
(35.097**) (23.167**)

Technol. Usefulness 94-95 0.911 0.146
(32.888**) (25.194**)

Technol. Usefulness 96-97 0.952 0.160
(51.654**) (21.377**)

Technol. Usefulness 98-99 0.968 0.154
(68.869**) (14.214**)

Technol. Usefulness 00-01 0.980 0.163
(93.416**) (14.649**)

Technol. Usefulness 02-03 0.985 0.154
(118.539**) (15.350**)

Technol. Usefulness 04-05 0.145
(19.738**)

then decreases over time. Figure 5 shows the evolution of the standardized path

coefficient, which describes the relationship between knowledge stock, techno-

logical scope and international scope, and technological usefulness, as well as

between the latter and the patent value for model B. The results suggest a trade-

off between exogenous constructs and technological usefulness. This means that

the knowledge stock, the technological scope and the international scope con-

tribute more to the patent value at time equal to zero while the technological

usefulness determines the patent value in subsequent time-periods.

Finally, the determination coefficients R2 for technological usefulness in

models A are 0.09, 0.15, and 0.06 with samples 1, 2, and 3, respectively. The

R2 in model B is close to 0.8 for technological usefulness and 0.17 for the aux-
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Figure 4: Evolution of standardized loadings of the longitudinal model with
time-dependent manifest variables (model A) and samples 1, 2 and 3. The
loadings describe the relationships between forward citations and patent value.

iliary latent variable. So, this suggests that the data is better explained by a

longitudinal model with time-dependent latent variables.

PLS regression to estimate structural relationships. Since there is mul-

ticollinearity between the technological usefulness for the different time-periods,

we also estimated the structural relationships by using PLS regression. The

number of significant components th were determined by leave-one-out cross

validation. The marginal contribution of each PLS component th to the pre-

dictive power of the regression model was estimated using the Q2
h index and

redundancies7.

The patent value was regressed on the knowledge stock, the technological

scope, the international scope, the technological usefulness for the different time

periods and the auxiliary variable USE-Int, a total of 11 regressors. By default,

7For each h-component, the Q2
h index is defined as Q2

h = 1 −∑q
k=1 PRESSkh/

∑q
k=1 RSSk(h−1), where PRESS is the Predicted REsidual Sum of

Squares, and RSS is the Residual Sum of Squares of the latent variable Yk when the regres-
sion model is estimated considering h− 1 components. The rule is to retain the h-component
when Q2

h ≥ 0.0975. The redundancy coefficient measures the amount of explained variance
in the indicators for the endogenous construct, explained by the set of manifest variables of
the exogenous constructs. It is defined as, Rd(Y, th) = 1

q

∑q
k=1 cor

2(yk, th), where q is the
number of endogenous variables.
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Figure 5: Evolution of standardized path coefficients of the longitudinal model
with time-dependent latent variables (model B) and sample 1 (1989-1990-1991).
The path coefficients describe the relationships between knowledge stock, tech-
nological scope and international scope, and the technological usefulness (USE),
and between the latter and the patent value.

the PLS regression holds as many components as there are independent vari-

ables in the model. For patent value PLS regression, however, two components

can predict about 68% of the variation of the regressors (see Table 11 in sec-

tion 9). Thus, a two-component model would be sufficient to describe the patent

value in terms of the exogenous latent variables and constructs. Nonetheless,

we report the results for models with one, two, three and four components.

Figures 6 shows the correlations between latent variables and the first four PLS

components. As shown in Figure 6(a) for instance, the patent value, the tech-

nological usefulness for the different time periods and the technological scope

are highly correlated with the first component whereas the international scope

and the auxiliary latent variables USE-int are correlated more with the second

component. The knowledge stock and also the technological scope are corre-

lated with the third component. The forth component helps to explain the

auxiliary latent variable USE-Int and the international scope.

Table 3 shows the PLS-regression coefficients considering one, two and three

component models and the variable importance in the projection (VIP index)

17



Table 3: PLS-regression coefficients for 1-component, 2-component and 3-
component models, and variable importance in the projection (VIP index) for
model B and sample 1.

PLS Regression Variable Importance
Path Coefficients in the Projection (VIP)

Construct 1 Comp 2 comp. 3 Comp. 1 Comp 2 comp. 3 Comp.

Knowledge stock 0.029 0.033 0.027 0.241 0.241 0.242
Technological scope 0.044 0.040 0.034 0.364 0.364 0.364
International scope 0.007 0.023 0.020 0.059 0.084 0.085
Auxiliary latent variable USE-Int 0.040 0.062 0.067 0.324 0.335 0.336
Technological usefulness 92-93 0.133 0.132 0.132 1.092 1.092 1.092
Technological usefulness 94-95 0.147 0.145 0.145 1.201 1.200 1.200
Technological usefulness 96-97 0.157 0.156 0.156 1.283 1.282 1.282
Technological usefulness 98-99 0.159 0.159 0.159 1.302 1.301 1.301
Technological usefulness 00-01 0.157 0.157 0.158 1.288 1.287 1.287
Technological usefulness 02-03 0.154 0.153 0.154 1.257 1.256 1.256
Technological usefulness 04-05 0.149 0.148 0.148 1.219 1.219 1.219

for model B and sample 18. As shown, and according to the results of the

2-components PLS model, the regression coefficients are very similar to those

obtained with multiple regression. However, the technological usefulness in the

different time points is the variable that most contributes to the prediction of

the patent value.

8 Final Remarks

It seems reasonable to think that if a company has invested a lot of knowl-

edge in the creation of an invention, this invention will tend to have a larger

value. In the same way, a technology with multiple potential applications would

be more valuable than one that can only be applied in a more limited area.

The same applies for the international scope of protection. An invention with

broader protection is presumably more valuable than one without it. The es-

timation results of the patent value models for longitudinal data suggest that

the contribution of the knowledge stock used by companies to create their in-

ventions, the technological scope of the inventions and the international scope

of protection are variables that contribute little to the patent value when com-

pared to the technological usefulness. As expected, this is more evident in model

B than in model A. Based on the PLS regression findings, for the model with

8The VIP index reflects the influence of the explanatory variables in the h-component
model. For a jth independent variable, the V IPhj =

√
( p
Rd(Y ;t1,...,th)

∑h
l=1 Rd(Y ; tl)w

2
lj).

The contribution of variable j to the construction of the component tl is measured by the
weights w2

lj . The variables that have larger VIP (> 1) are more important for predicting the
dependent variable.
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time-dependent manifest variables (model A), about 56.97% of the patent value

is explained by the technological usefulness of patents and 43.03% by the other

exogenous constructs (sample 1), whereas in the model with time-dependent

latent variables (model B), these percentages are 89.40% and 10.60%, respec-

tively.

Forward citations are the most widely used measures for assessing the im-

portance or value of patents. This variable can be used as an indicator for a

construct whose contribution to the patent value can be weighted –as was done

in the case of technological usefulness. However, the value provided by this

indicator is a later value or a posteriori value, which can be estimated once

time has elapsed; and this could be too late if technology decisions must be

made immediately. The benefit of using longitudinal models is that considering

the time factor and the longitudinal nature of forward citations help to reveal

when each of the construct and latent variables is important. Hence, exogenous

constructs may be good indicators of value in the first stage of the life cycle of

patents.

From a statistical standpoint, there are some aspects that have to be con-

sidered. First, these models were estimated with small samples. PLS Path

Modelling is known for its ability to build a set of unobservable variables and

estimate the structural relationships between them when small samples are

available (Chin & Newsted, 1999; Tenenhaus & Hanafi, 2010). However, esti-

mating the models with a larger sample, or even considering the population,

would help to confirm the exploratory results presented here. In addition, it

is well known that for consistency at large, PLS Path Modelling requires three

or more indicators per construct –for reflective outer models at least. Sim-

ulation studies support this claim (Chin & Newsted, 1999). However, recent

investigations have shown that the estimates of formative relationships with few

indicators are fairly robust. On the other hand, considering longitudinal data

requires caution when assessing results. As expected, the forward citations per

year are highly correlated indicators; that is, the value of the variable at time

ti will influence the value of the variable at time ti+1. This may not affect the

estimates of the relationship in the outer model –because these models are mod-

eled in a reflective mode– but this can affect the stability of the estimates of the

structural relationships. This problem is solved using PLS regression instead

multiple regression in the second stage of the PLS Path Modelling procedure.
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Figure 6: Correlations between latent variables and PLS components. The
patent value (PV) is regressed on the knowledge stock (KS), the technological
scope (TS), the international scope (IS), the technological usefulness (USE) for
the different time periods and the auxiliary variable USE-Int (USE-Int).
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9 Appendix: Tables
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Table 5: Cross loadings of indicators for A-measurement models and samples
1, 2 and 3.

1989-1990-1991 1995-1996 2000
Indicator KS TS IS USE KS TS IS USE KS TS IS USE

Backward citations 0.277 0.107 -0.127 0.056 0.156 0.189 -0.088 0.044 -0.992 -0.162 0.048 -0.193
Number of inventors 0.932 0.088 0.364 0.142 0.992 0.283 0.133 0.316 -0.034 -0.210 0.031 0.009
Number of IPC codes 0.098 0.817 0.103 0.195 0.147 0.434 0.024 0.120 -0.178 -0.997 -0.111 -0.096
Number of claims 0.080 0.606 -0.154 0.159 0.278 0.936 -0.010 0.271 -0.168 -0.157 0.089 0.003
Priority JP 0.302 -0.008 0.994 0.048 0.181 0.038 0.772 0.091 0.139 -0.015 -0.055 -0.045
Priority DE 0.014 0.011 -0.013 0.002 -0.044 -0.049 0.574 0.094 0.023 -0.098 -0.978 -0.153
Family size 0.125 0.179 0.194 0.223 0.312 0.339 0.029 0.371 -0.241 -0.236 -0.089 -0.243
Dummy JP 0.252 0.186 0.365 0.316 0.401 0.241 0.370 0.462 -0.012 -0.147 -0.133 -0.198
Dummy DE 0.121 0.148 0.151 0.148 0.365 0.228 0.276 0.413 -0.112 -0.001 -0.297 -0.347
Forward citations 1992 0.130 0.217 0.030 0.755
Forward citations 1993 0.127 0.222 -0.004 0.831
Forward citations 1994 0.157 0.223 -0.011 0.866
Forward citations 1995 0.160 0.227 0.008 0.900
Forward citations 1996 0.178 0.257 0.030 0.931
Forward citations 1997 0.140 0.260 0.043 0.947 0.157 0.112 0.133 0.766
Forward citations 1998 0.116 0.232 0.025 0.958 0.175 0.180 0.084 0.855
Forward citations 1999 0.108 0.210 0.016 0.957 0.184 0.211 0.071 0.906
Forward citations 2000 0.098 0.187 0.010 0.954 0.191 0.213 0.079 0.936
Forward citations 2001 0.112 0.182 0.012 0.943 0.234 0.250 0.083 0.952 0.149 0.084 0.092 0.820
Forward citations 2002 0.097 0.171 -0.006 0.930 0.214 0.223 0.057 0.932 0.175 0.042 0.054 0.921
Forward citations 2003 0.094 0.172 -0.014 0.920 0.218 0.226 0.030 0.927 0.155 0.017 0.084 0.928
Forward citations 2004 0.084 0.158 -0.028 0.899 0.257 0.232 0.020 0.925 0.120 0.021 0.120 0.929
Forward citations 2005 0.079 0.157 -0.032 0.896 0.262 0.249 0.001 0.907 0.103 0.067 0.141 0.925
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Table 7: Standardized weights and loadings of the A-measurement models ac-
cording to the type of constructs and for samples 1, 2, and 3; t-values in paren-
thesis, ** at the 0.01 significance level, * at the 0.05 significance level.

Construct Indicator
Sample 1 Sample 2 Sample 3

1989-1990-1991 1995-1996 2000

Knowledge Backward citations 0.269 (0.914) 0.125 (0.639) -1.004 (3.225**)
stock Number of inventors 0.987 (4.225**) 0.988 (11.432**) -0.131 (0.402)

Technological Number of IPC 0.872 (3.427**) 0.353 (1.549) -0.991 (3.304**)
scope Number of claims 0.459 (1.563) 0.905 (6.145**) -0.081 (0.271)

International Priority JP 0.984 (4.170**) 0.821 (3.078**) -0.211 (0.682)
scope Priority DE 0.330 (1.098) 0.637 (2.164**) -1.011 (3.062**)

Technological Forward citations 1992 0.776 (10.285**)
usefulness Forward citations 1993 0.837 (15.605**)

Forward citations 1994 0.867 (21.051**)
Forward citations 1995 0.886 (25.339**)
Forward citations 1996 0.912 (56.225**)
Forward citations 1997 0.942 (73.476**) 0.766 (17.085**)
Forward citations 1998 0.954 (101.785**) 0.855 (26.683**)
Forward citations 1999 0.955 (96.355**) 0.906 (35.718**)
Forward citations 2000 0.954 (91.283**) 0.936 (53.855**)
Forward citations 2001 0.944 (80.711**) 0.952 (66.227**) 0.819 (16.468**)
Forward citations 2002 0.933 (66.253**) 0.932 (57.330**) 0.921 (23.904**)
Forward citations 2003 0.924 (58.308**) 0.927 (56.315**) 0.928 (22.558**)
Forward citations 2004 0.905 (41.677**) 0.925 (66.034**) 0.928 (21.922**)
Forward citations 2005 0.902 (40.289**) 0.907 (51.682**) 0.925 (22.181**)
Family size 0.355 (2.426**) 0.371 (4.065**) -0.243 (1.742*)
Dummy JP 0.439 (2.894**) 0.462 (4.634**) -0.198 (1.377)
Dummy DE 0.256 (1.929*) 0.413 (3.457**) -0.347 (2.455**)

Patent value Backward citations 0.046 (0.435) 0.076 (0.871) -0.381 (2.549**)
Number of inventors 0.361 (3.029**) 0.447 (4.299**) -0.029 (0.179)
Number of IPC 0.357 (2.377**) 0.183 (1.681) -0.333 (2.377**)
Number of claims 0.177 (1.496) 0.384 (5.268**) -0.070 (0.512)
Priority JP 0.259 (2.147**) 0.177 (1.783*) 0.018 (0.121)
Priority DE 0.045 (0.493) 0.106 (0.998) -0.317 (2.295**)
Forward citations 1992 0.763 (14.561**)
Forward citations 1993 0.829 (18.958**)
Forward citations 1994 0.859 (22.806**)
Forward citations 1995 0.891 (30.297**)
Forward citations 1996 0.923 (46.023**)
Forward citations 1997 0.935 (54.846**) 0.732 (13.267**)
Forward citations 1998 0.942 (63.915**) 0.818 (20.821**)
Forward citations 1999 0.940 (61.484**) 0.866 (25.174**)
Forward citations 2000 0.936 (55.249**) 0.896 (30.605**)
Forward citations 2001 0.928 (49.439**) 0.920 (40.372**) 0.770 (7.959**)
Forward citations 2002 0.914 (41.874**) 0.895 (36.354**) 0.845 (8.707**)
Forward citations 2003 0.905 (37.838**) 0.888 (35.426**) 0.848 (9.107**)
Forward citations 2004 0.884 (29.482**) 0.892 (41.528**) 0.849 (8.682**)
Forward citations 2005 0.880 (28.566**) 0.877 (36.892**) 0.856 (8.126**)
Family size 0.375 (2.526**) 0.406 (4.146**) -0.299 (1.950*)
Dummy JP 0.498 (2.926**) 0.519 (5.076**) -0.194 (1.177)
Dummy DE 0.277 (1.973*) 0.456 (3.655**) -0.354 (2.382**)
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Table 8: Standardized weights and loadings of the B-measurement models ac-
cording to the type of constructs and for sample 1; t-values in parenthesis, **
at the 0.01 significance level, * at the 0.05 significance level.

Construct Indicator Sample 1: 1989-1990-1991

Knowledge stock Backward citations 0.427
(1.344)

Number of inventors 0.943
(3.411**)

Technological scope Number of IPC codes 0.763
(3.110**)

Number of claims 0.619
(2.172**)

International scope Priority JP 0.893
(3.107**)

Priority DE 0.570
(1.892*)

Usefulness Int. Family size 0.895
(5.129**)

Dummy JP 0.886
(4.382**)

Dummy DE 0.746
(2.606**)

Technological usefulness Forward citations 1992 0.974
1992-1993 (100.067**)

Forward citations 1993 0.976
(146.971**)

Technological usefulness Forward citations 1994 0.989
1994-1995 (275.169**)

Forward citations 1995 0.989
(301.685**)

Technological usefulness Forward citations 1996 0.988
1996-1997 (159.570**)

Forward citations 1997 0.987
(158.284**)

Technological usefulness Forward citations 1998 0.994
1998-1999 (447.793**)

Forward citations 1999 0.993
(437.170**)

Technological usefulness Forward citations 2000 0.996
2000-2001 (806.005**)

Forward citations 2001 0.996
(818.647**)

Technological usefulness Forward citations 2002 0.998
2002-2003 (1564.357**)

Forward citations 2003 0.998
(1559.498**)

Technological usefulness Forward citations 2004 1.000
2004-2005 (8624.720**)

Forward citations 2005 1.000
(8526.497**)
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Table 11: Percentage of variation accounted for by partial least squares com-
ponents, both individual and cumulative, and Q2

h index. The patent value is
regressed on the knowledge stock, the technological scope, the international
scope, the technological usefulness for the different time periods and the auxil-
iary variable USE-Int.

Redundancy
Component Q2

h index Individual Cumulative

1 0.999 55.327 55.327
2 0.869 12.973 68.300
3 0.632 8.570 76.870
4 0.041 6.517 83.387
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