Effects of heating and hydraulic cycling on the stiffness response of a rigid anisotropic clay: preliminary results

G. Mitaritonna^[1,2], J. A. Pineda^[1], E. Romero^[1] and M. Arroyo^[1]

¹¹ Department of Geotechnical Engineering and Geosciences, Universitat Politécnica de Catalunya, Barcelona, Spain ^[2] Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Bari, Italy

The poster presents the results of an experimental investigation aimed at evaluating the effects of heating and hydraulic cycling on the small-strain stiffness of a rigid Jurassic clay (Opalinus clay, Jura Mountains, Mont Terri Underground Laboratory, Switzerland). This clay was subjected to thermal loads during an in situ heating experiment (HE-D). After the test, intact samples were retrieved and analysed at laboratory scale. The influence of thermal loads was studied using basic characterisation, microstructural techniques (MIP) and non-destructive techniques (ultrasonic pulses). The retrieved samples were then subjected to wetting and drying paths. The hydraulic effects were tracked using basic characterisation (water content and porosity) and non-destructive techniques (ultrasonic pulses and bender elements). Test results showed a higher sensitivity of stiffness on suction increase for the material less affected by the thermal load (far from heater). Tests are currently being carried out on a new and fully instrumented high-pressure triaxial cell to monitor degradation effects induced by hydraulic cycling under a controlled stress field. Degradation is monitored by horizontal and vertical bender elements to track different directions.

Laboratory characterisation of Opalinus clay

Opalinus clay is a very low permeable soft ock of marine origin, composed of 40-80% lay minerals, with clay mineralogy onsisting mostly of kaolinite and illite.)d (Mg/m3)	ρs (Mg/m3)	w (%)	Total suction, Ψ (MPa)	n	Sr	wL (%)	PI (%)	
	Average value	2.22-2.33¶	2.73± 0.01*	4.2 -8¶	10–16*	0.13–0.18¶	0.83-0.93*	-	-	
	Samples tested	2.28±0.01	2.73± 0.01	5.8 - 6.5	22-28	0.163	0.83	41	24	¶ data from Gens et al (2007) * data from Muñoz (2007)

function,

density

size (

0,6 (x60)p/m9-)

0,2 Pore

3. Pore size distribution PSD (MIP tests)

100

Entrance pore size, x (nm)

1000

Previous heating process induced moisture loss near the heater.

Water retention curves showed a

No appreciable effects on PSD

imilar response although a higher water retention capacity was obtained at 0.5m from heater (macrostructural effect?).

I. Influence of in-situ heating

2. Water retention properties 1. Water content variations (WP4 psychrometer) (MPa) % suction Fotal 12 Water content, w (%) Horizontal distance from the heater borehole (m) 4. Stiffness evaluation (ultrasonic pulse tests)

II. Influence of hydraulic cycling: one wetting-drying cycle with bender element (BE) measurements 3. Influence of total suction on elastic parameters 2. Water content and porosity evolution 1. Set up for hydraulic paths

