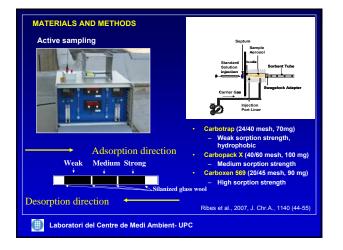
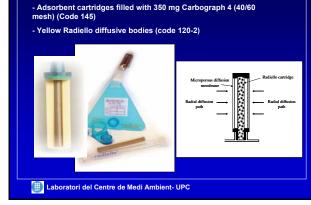
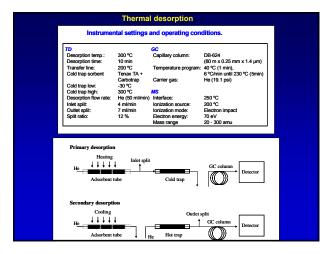
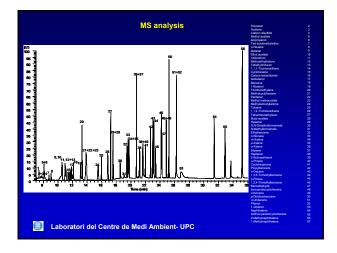

Evaluation of Radiello diffusive sampler indicated for thermal desorption for measuring VOCs in ambient air

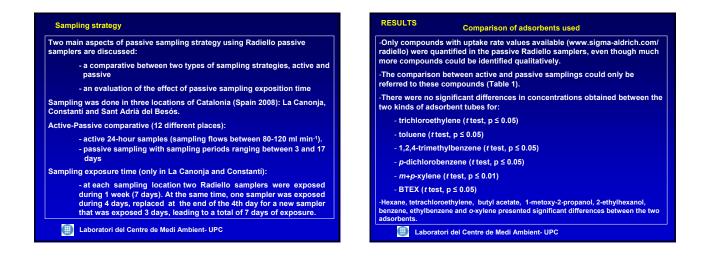
E. Gallego¹, F.J. Roca¹, F.J. Perales¹, X. Guardino²


¹Laboratori del Centre de Medi Ambient. Universitat Politècnica de Catalunya (LCMA-UPC). Avda. Diagonal, 647. E 08028 Barcelona. Phone: 34934016683, Fax: 3493401716 e-umait Lema info@ince edu

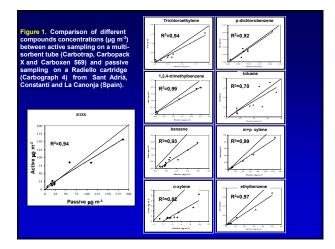

Centro Nacional de Condiciones de Trabajo. INSHT. C/Dulcet, 2-10. E 08034 Barcelona. Phone: 34932800102, Fax: 34932803642, e-mail: cnctinsht@mtin.es

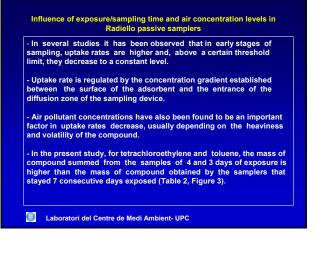






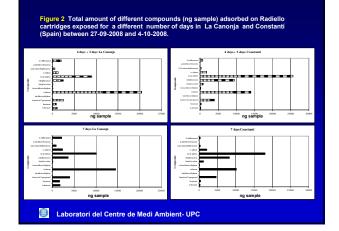
Passive sampling





Compound	Min. Value		Max. Value		Average \pm SD		Ratio	
	Multi- sorbent	Radiello	Multi- sorbent	Radiello	Multi-sorbent	Radiello	Multi- sorbent/Radiello	
n-hexane	0.39	0.49	11.25	4.38	2.63 ± 2.74	1.56 ± 1.02	1.7	
Trichloroethylene*	0.04	0.02	1.56	1.84	0.31 ± 0.44	0.41 ± 0.54	0.8	
Tetrachloroethylene	0.13	0.51	5.69	22.08	1.09 ± 1.55	3.64 ± 6.35	0.3	
Butyl acetate	0.16	0.33	5.28	5.15	0.94 ± 1.14	2.00 ± 1.38	0.5	
1-metoxi-2-propanol	0.11	4.14	5.01	19.13	0.84 ± 1.06	11.10 ± 4.72	0.1	
2-ethylhexanol	0.27	1.28	26.24	13.94	3.53 ± 5.92	5.65 ± 4.94	0.6	
p-dichlorobenzene*	0.02	0.01	0.21	0.21	0.08 ± 0.06	0.09 ± 0.06	0.9	
1,2,4-trimethylbenzene*	0.08	0.06	1.94	2.54	0.60 ± 0.76	0.68 ± 0.99	0.9	
Toluene*	4.72	7.54	71.52	72.40	26.60 ± 22.58	32.59 ± 22.03	0.8	
Benzene	0.11	0.42	1.93	3.94	0.58 ± 0.56	1.46 ± 1.06	0.4	
m+p-xylene**	2.63	2.47	92.86	125.36	21.14 ± 29.94	32.33± 40.53	0.7	
o-xylene	0.47	1.27	2.68	8.63	1.01 ± 0.73	4.20 ± 2.09	0.6	
Ethylbenzene	0.65	1.65	34.49	49.87	7.10 ± 11.50	12.30 ± 17.13	0.6	
BTEX ^{*.a}	8,58	6.30	157.61	186.12	48.26 ± 50.54	50.71 ± 60.17	1.0	

	Comparison of sampling strategy (passive and active)					
different	igreement is observed between active and passive samplings for types of compounds (Figure 1): being all studied correlations int (Pearson correlation, p ≤ 0.01).					
- The co	rrelation coefficients range from 0.70 to 0.99.					
- Obtain concent	ed passive concentrations are generally higher than active rations.					
	compounds, such as benzene and o-xylene express relevant ces between active and passive sampling strategies.					
although	e samples represent the average of 3 to 17 days' VOCs concentrations, n active samples represent the average of 24-hour's VOCs rations during a particular day.					
and pase	r studies, differences between concentrations in simultaneous active sive strategies have also been found for benzene, toluene and xylenes, lue to atmospheric chemical reactions (Pilidis et al. 2005, Sunesson					


Laboratori del Centre de Medi Ambient- UPC

Compounds		La Canonja			Constantí			
	4 + 3 days (ng sample)	7 days (ng sample)	4+3 days/7 days ratio	4 + 3 days (ng sample)	7 days (ng sample)	4+3 days/7 days ratio		
2-etilhexanol	2004.6	2105.7 ± 458.5	1.0	719.2	324.4 ± 56.7	2.3		
p-dichlorobenzene	48.0	41.7 ± 9.6	1.2	5.5	2.6 ± 0.7	2.2		
1,2,4 trimethylbenzene	554.9	903.7 ± 184.4	0.6	309.6	290.1 ± 107.3	1.1		
o-xylene	1274.4	2329.4 ± 351.6	0.6	1760.7	2126.4 ± 9.2	0.8		
m+p-xylene	9005.9	10113.4 ± 759.9	0.9	25609.6	18051.9 ± 60.1	1.4		
Ethylbenzene	2484.9	3628.3 ± 491.3	0.7	9451.9	8280.5 ± 23.2	1.1		
butyl acetate	109.1	109.5 ± 37.9	1.1	829.7	1147.1 ± 162.3	0.7		
Tetrachloroethylene	129.6	70.4 ± 7.7	1.9	199.3	128.5 ± 15.9	1.6		
Toluene	20413.0	14505.7 ± 889.1	1.4	13989.9	10186.2 ± 637.1	1.4		
Trichloroethylene	6.0	7.4 ± 3.0	0.9	15.4	14.7 ± 1.2	1.1		
1-metoxi-2-propanol	2544.4	3978.1 ± 1409.8	0.7	3947.3	4660.0 ± 611.4	0.9		
Benzene	901.0	1654.7 ± 529.6	0.6	335.6	358.9 ± 69.0	1.0		
<i>n</i> -hexane	1011.8	1750.9 ± 430.6	0.6	206.0	235.7 ± 29.8	0.9		

Laboratori del Centre de Medi Ambient- UPC

		La Canonja (µg m-3)			Constanti (µg m-3)		
Compounds	4 d	3 d	7 d	4 d	3 d	7 d	
2-etilhexanol	13.93	13.62	14.50 ± 3.16	5.54	4.32	2.27 ± 0.40	
p-dichlorobenzene	0.19	0.24	0.19 ± 0.04	0.03	0.01	0.01 ± 0.003	
1,2,4-trimethylbenzene	2.29	2.79	4.06 ± 0.83	2.29	0.22	1.32 ± 0.49	
o-xylene	4.90	5.39	9.32 ± 1.41	5.14	9.84	8.63 ± 0.04	
m+p-xylene	28.56	40.10	37.44 ± 2.81	74.38	125.36	67.80 ± 0.23	
ethylbenzene	8.35	11.18	13.90 ± 1.88	26.94	49.87	32.19 ± 0.09	
butyl acetate	0.45	0.42	0.44 ± 0.15	4.88	1.35	4.68 ± 0.66	
Tetrachloroethylene	0.46	0.56	0.27 ± 0.03	0.64	0.98	0.51 ± 0.06	
Toluene	63.19	72.40	47.61 ± 2.92	52.27	38.81	33.92 ± 2.12	
Trichloroethylene	0.02	0.02	0.03 ± 0.001	0.07	0.04	0.05 ± 0.004	
1-metoxi-2-propanol	10.58	7.77	14.73 ± 5.22	17.90	10.64	17.50 ± 2.30	
Benzene	3.94	2.13	5.86 ± 1.88	1.37	0.98	1.29 ± 0.25	
<i>n</i> -hexane	4.38	3.24	6.76 ± 1.66	0.84	0.76	0.92 ± 0.12	

	La Canon	ja (µg m⁻³)	Constanti (µg m⁻³)		
Compounds	4 d/7 d ratio	3 d/7 d ratio	4 d/7 d ratio	3 d/7 d ratio	
2-etilhexanol	1.0	0.9	2.4	1.9	
p-dichlorobenzene	1.0	1.3	3.0	1.0	
1,2,4-trimethylbenzene	0.6	0.7	1.7	0.2	
o-xylene	0.5	0.6	0.6	1.1	
m+p-xylene	0.8	1.1	1.1	1.9	
ethylbenzene	0.6	0.8	0.8	1.6	
butyl acetate	1.0	1.0	1.0	0.3	
tetrachloroethylene	1.7	2.1	1.3	1.9	
toluene	1.3	1.5	1.5	1.2	
richloroethylene	0.7	0.7	1.4	0.8	
1-metoxi-2-propanol	0.7	0.5	1.0	0.6	
benzene	0.7	0.4	1.1	0.8	
<i>n</i> -hexane	0.7	0.5	0.9	0.8	

REMARKS

- One of the key aspects regarding air monitoring is to determine the suitability of the methodology chosen.

-The comparison between validated active air multi-sorbent tubes and Radiello diffusive samplers show no significant differences between the two methodologies for several compounds studied.

-For the Radiello passive sampler, relevant differences have not been observed between the sum of two shorter sampling periods (4 days + 3 days) and a longer sampling period (7 days).

-The Radiello diffusive sampler provides satisfactory quantitative measurements and is suitable for the determination of several VOCs in ambient air.

-Radiello passive sampler coupled with ATD-GC/MS is a simple to use, sensible and cheap method to assess ambient air concentrations of VOCs.

-More research has to be done to enhance the results obtained in this study.

Laboratori del Centre de Medi Ambient- UPC