Temporal statistics of the beam-wander
contribution to scintillation in ground-to-satellite
optical links: an analytical approach
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The beam-wander contribution to the scintillation in a ground-to-satellite free-space optical link is one of
major importance. An analytical model, based on the duality between beam wander and angle-of-arrival
fluctuations, is proposed for the temporal statistics. The expression of the probability density function of
the log-amplitude fluctuations is first obtained. Then, the expressions of the spatial and temporal
autocovariances are also obtained. We present plots of the beam-wander contribution to the log-
amplitude variance, as a function of the transmitter aperture size and the turbulence accumulated in the
propagation path. We also present the angular fluctuation and log-amplitude scintillation spectrum plots

for some selected cases.
OCIS codes:

1. Introduction

The atmospheric refractive turbulence is the main
responsible for the limitations that arise in free-space
optical communications, especially in links between
ground terminals and satellites. In uplinks (between
a ground-terminal transmitter and a spaceborne ter-
minal) the effect of beam wander must be carefully
considered. The authors have previously reported the
results of simulations in which the importance of
beam wander was stated.!

Beam wander is commonly attributed to the pres-
ence of large eddies in the turbulence structure,2-4
which cause some degree of refraction in the entire
optical beam that crosses them, deviating from its
original path. This deviation can produce a noticeable
loss at the receiver aperture if it amounts to a signif-
icant portion of the beam width at that point.

Most of the previous literature4-1° focuses on the
deduction of the variance of the angle fluctuations,
without obtaining temporal statistics.
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We have made use of the Gaussian properties of
the planar components of the deviation angle, and the
duality between the angle-of-arrival fluctuation effect
(in satellite-to-ground links) and the beam wander,
as it had been proposed by Sasiela® and Tyson.® Thus,
we can calculate spatial autocovariances and, by us-
ing Taylor’s hypothesis,?? temporal autocovariances
and spectra.

2. Theory

According to some authors,56 the beam-wander sta-
tistics can be dealt with as the dual of angle-of-arrival
fluctuations in a receiver, substituting the diameter
of the collecting aperture by the beam diameter at the
transmitter location. This can be used to obtain the
complete statistics, including the temporal ones.

A. Probability Density Function

We will call a the instantaneous beam deviation from
the nominal pointing direction produced by the atmo-
spheric refractive turbulence. This total angular
deviation of the beam can be written as «
= o, + o, where o, and «, are the angular devi-
ations along two mutually perpendicular axes. If o,
and «, are independent Gaussian random variables
with zero mean, to simplify the notation, we will call
o2 the variances of both o, and o,’; thus, a is a
Rayleigh-distributed random variable, with probabil-
ity density function given by
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Drawing upon the duality between angle-of-arrival
fluctuations for a ground receiver and the beam-
wander fluctuations for an uplink, ¢,? can be esti-
mated as%7-10

, 613
g, = 7k2W01/3r05/3’ (2)

where the receiver aperture diameter has been re-
placed by 2W,, W, being the beam-waist radius of
the assumed collimated Gaussian beam at 1/e of its
on-axis intensity. k& is the wavenumber, and r, is the
Fried’s coherence diameter, which can be calculated

as’
L -3/5
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where C,2(z) is the structure constant of the fluctua-
tions of the index of refraction, as a function of the
path z and L is the overall path length.

We will assume that, as far as the turbulence-
induced mispoint effect is concerned, the beam reach-
ing the satellite can be considered as a Gaussian one
with an angular intensity profile given by

10) = Ie s, 4)

where I, is the maximum (on-axis) intensity and A6
is the rms angular radius at 1/e of the maximum
intensity, taking into account the short-term beam-
spread effects. AB can be calculated as

B W(L)

Af = T, (5)

where W(L) is the rms radius at 1/e of the maximum
intensity of the transmitted Gaussian beam at a dis-
tance L and can be calculated as*:
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The parameter p, corresponds to the short-term co-
herence radius, and it can be calculated!! as

pe \'?
Pst = pc[l + 0.33<VVO) ] (7

The parameter p, corresponds to the long-term coher-
ence radius for a collimated beam, and it can be cal-
culated!? as
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where 0, is the diffraction-limited angular radius of
the transmitted beam at 1/e of the maximum inten-
Sity, 60 = )\/"TWQ.

The intensity reaching the satellite receiver as a
function of «, the instantaneous mispointing, is

I=TIe 1. 9)

The log-amplitude fluctuation, with respect to the
maximum level, due to the turbulence-induced beam
wander, is related to the instantaneous mispointing
through

1 o
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With the relationship xw = fla) given by Eq. (10), the
probability density function of xy, f,,,(xw), can then be
derived from the probability density function of «,

fi(a), using??

flf O]
IFIf o]l

Employing Eqs. (1) and (10) in Eq. (11), the probabil-
ity density function of xy is readily found:

Foxw) = (11
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FewXw) =< ) e(aQ)XW, with xw=0. (12)
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Expression (12) is an exponential probability law
with mean —(o,/A6)? and variance (o,/A6)* (see, for
example, Ref. 14).

B. Temporal Statistics

To calculate the temporal autocorrelation of the log-
amplitude fluctuations, C, (1), we will use the Tay-
lor’'s hypothesis, relating temporal covariance
functions to spatial ones. The previous step will then
be to calculate C, (p) at the plane of the transmitter,

CXW(P) = <[XW(p, +p)— MXW][XW(I),) - p‘XW]>

= (xwlp’ + pxw(p)) — iy’ (13)
where spatial homogeneity has been assumed. ., is
the mean value of the log-amplitude of the fluctuation
due to beam wander.

Let us concentrate on the spatial correlation func-
tion for the log-amplitude fluctuation associated with
beam wander:
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Fig. 1. Geometrical arrangement for the computation of the joint
probability density of the angular fluctuations. The plane z = 0
corresponds to the location of the transmitting aperture. We use
the classical approach of considering two apertures, separated by
a distance p to calculate the spatial autocorrelation.

R, (p)= {xwlp' + p)xwlp")

= (flalp’ + p)fla(p")]), (14)
where xy = fla) given by Eq. (10) is assumed.
By definition we have

flalp” + p)flalp)]) =

J J’ fla)fla)f oo, ag; p)dayda,,  (15)
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where f,.(a, as; p) is the joint probability density
function for the angular deviation of beams with axes
separated a distance p at their output.

Figure 1 shows the arrangement made for the com-
putation of the joint statistics. The transmitting ap-
erture is located at z = 0 plane, and a second
transmitting aperture (located at a distance p) is con-
sidered. To determine £, (a;, ay; p) we start consider-
ing the joint probability density function for the
angular deviations along perpendicular directions X
and Y of beams with axes separated a distance p. Let
us call these deviations ay,, oy, and ay,, o, respec-
tively, where f,.(a4, as; p) is the joint probability den-
sity function for the angular deviation of beams with
axes separated a distance p at their output. We obvi-
ously have

withi=1, 2. (16)

= oy 2 2
O = \ Oy +0Liy ’

This situation can be considered as the dual of two
apertures receiving wavefronts affected by turbu-
lence. The angles along the perpendicular directions
can be considered as joint normal zero-mean random
variables. Calling «;, and «;, the angular deviation
along the directions X and Y, respectively, for the
beam i (i = 1, 2), the joint probability density for the
four angles under consideration can be written!3
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with @ the vector @” = [ay, ay, oy, @y,] and C the
covariance matrix with elements

Ciqu(p): <0Lipajq>; (18)
with 7,7 — 1,2 and p,q = x,y. The isotropy of the
turbulence entails c;,;,(p) = 0 for p # g, and cy,2,(p)
= Cyu2.(p). Drawing on the duality between angle of
arrival and beam deviation, and working out the ex-
pression for the image centroid position in a receiving
system found in Ref. 7, we obtain

L )
1612
Cruou(p) = W2 X 0.033 J’ C,f(z)j K83

0 0 0

X o 2(WOK)J( K)dKdz (19)
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where W, is the beamwaist radius of the assumed
Gaussian beam at 1/e of its on-axis intensity. Obvi-
ously ¢1,0,(0) = 0.2, the variance of the angular fluc-
tuations of the beam axis.

The general expression (17) then reduces to

fulxalyuszLQy((xlx, Ol1y, Oloy, aZy; P) =

1 7p(a112+a1y2+a2x2+a2y2)+2q(a1xa2x+a1yu2y)
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(20)
with
o2
— 7"" (21)
p O-a4 - CluZuQ(p)
C1u24(p)
g=— 1u2 (22)
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We can derive the joint probability density function of
«; and a, by noting that

2

ol + alyz + o>+ oy = a2+ oy’ (23)

(24)

01, Og, + 00, = g0t COS(H — ).

We take into account that the joint probability den-
sity function of o; and «, is defined by



faa(ab Qg; p)dalda2 =
plog <ay <oy t+doy, ap<ay <oy +dag}, (25)

and substituting Eqgs. (23) and (24) into Eq. (20), we
find

fualay, a; p)dadas
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But

27
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0
and substituting Eq. (27) into Eq. (26), we obtain

1
ot = clu2u2(p)
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where the expressions (21) and (22) for p and g have
been substituted. Expression (28) corresponds to a
joint Rayleigh probability density function.®

Substituting expressions (10) and (28) into (15),
one finds

R —
XW(p) 4A4e[o_a4 _ clu2u2(p):|

joc Jm . { 0'a2((112+0L22)

X Qp Og €XPYy — 4 2
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which after some rather cumbersome manipulations
(that can be found in Appendix A) yields the surpris-

ingly simple expression

R (p) =" [0.* + cra’ ()] (30)

A

Then, using Eq. (13) and taking into account that
My = — a,2/A?, the following expression is found for
the spatial covariance function of the power log-
amplitude fluctuations due to the beam wander:

clu2u2(p)

i (31)

Colp) =

Using the Taylor’s hypothesis, the temporal covari-
ance of the log-amplitude fluctuations due to beam
wander is found by replacing p - vt in Eq. (31), with
v the transverse component of wind velocity, to obtain

clu2u2(T)

A9

C(M) = (32)

where an abuse of language has been tolerated when
using the same symbols to denote spatial and tempo-
ral covariances.

From Eq. (32), the temporal spectrum of log-
amplitude fluctuations due to the turbulence-induced
beam wander can be computed through the Fourier
transform.

3. Numerical Example

We have performed some numerical computations to
predict the beam-wander values of an optical link
established between a transmitter located in a
ground station and a geostationary satellite. A com-
plete description of one actual implementation of
such terminals can be found in Refs. 16 and 17.

The turbulence has been characterized according
to the results of a measurement campaign that took
place in the Izana observatory, Tenerife Island,
Spain, in May 1995.18.19 For weak turbulence condi-
tions, the structure constant of the index of refraction
fluctuations can be modeled by the following expres-
sion”:

, h\—2/3
CnO (hs)

C.xh)=14 C,y

h=h,
hy<h<h, (33)

10h

S P AR
C.ene n +Cye m+Cy 3Wz<h> e n h>h
t
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Fig. 2. Structure constant of the fluctuations of the index of re-
fraction as a function of height over sea level, using Ref. 18.

where A is the height above the terrain; 2, = 4 m is
the surface layer height (typically of few meters);
C.2 =95 x 10 ®m %% is the structure constant
value assumed uniform throughout the inversion
layer extending between the heights A, and 5;
=30m; C,%> = 45 X 10 " m %2 is the structure-
constant characteristic value for free atmosphere; A,
= 1,500 m is the height characterizing the exponen-
tial fall-off of the structure constant in the free-
atmosphere region; W = 30 m/s is the root-mean-
squared wind velocity averaged over the 5 to 20 km
altitude interval, and A4, = 13,000 m is the tropopause
height. Figure 2 shows the dependence of C,”> with
height over sea level.

We have considered several values for the elevation
angle of the link path: 5°, 15°, 30°, 45°, 60°, and 90°,
and transmitting aperture diameters between 1 cm
and 1 pm. For the application of the Taylor hypoth-
esis, a 5 m/s wind speed has been considered. A 1 pm
wavelength was used in all the computations.

Figure 3 shows the variation of the beam angular
width with the transmitter aperture diameter, for
different elevation values of the link path. For small
values of the diameter, the behavior is that from a
Gaussian beam: the angular width falls with increas-
ing diameter, showing that the turbulence effect is
very weak. This decreasing behavior stops at a given
value (that depends on the length of the path inside
the atmosphere and, thus, on the elevation angle) and
remains constant, revealing that the turbulence ef-
fect is limiting the effective aperture.

The combination of the results of the beam-wander
angular variance (according to expression (2)) with
the values shown in Fig. 3 can be used to compute the
variance of the log-amplitude fluctuations of the op-
tical intensity at the receiver plane due to the beam-
wander effect, as it was expressed in Subsection 2.A,
after Eq. (12) or also according to expression (30),
taking p = 0. Figure 4 shows the dependence with the
transmitter diameter, for different elevation angles.
The result shows, coherently with Fig. 3, a pesimum
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Short exposure mean angular width (rad)

10° 10" 10
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Fig. 3. Short-exposure beam-spread mean value, as a function of
the transmitter aperture size, for different path elevation angles.

value for the aperture diameter, which depends on
the elevation angle of the link path and is responsible
for the behavior that is observed in the following
figures. The presence of a pesimum effect has also
been reported by Baker et al.20

Figures 5, 6, and 7 show the temporal spectra of the
angular fluctuations for different aperture diameters
(1 ¢cm, 10 cm, and 1 m) and considering different el-
evation angles (5°, 15°, 30°, 45°, 60°, 75°, and 90°).
These spectra have been obtained from the spatial
covariance predicted by Eq. (19), in which the tem-
poral dependence has been introduced according to
the Taylor hypothesis for a 5 m/s wind speed. All
three figures show increasing values for decreasing
elevation angles. For the higher elevation angles, the
plots tend to accumulate. The quickest variations are
present for smaller transmitter size, leading to wider
spectra; for wider apertures, the spectra are narrower
but, as the contribution to variance is smaller, ac-

Log-amplitude variance (Neperz)

10° 10" 10
Aperture diameter {m)

Fig. 4. Beam-wander contribution to scintillation variance at the

spaceborne receiver, as a function of the transmitter aperture size,

for different path elevation angles.
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Fig. 5. Angular fluctuation spectrum for a 1 cm diameter trans-
mitter aperture, 5 m/s wind speed, and for different path elevation
angles.

cordingly to Eq. (2), the spectral values do not grow
significantly.

More surprising effects can be appreciated in the
plots showing the spectra of the log-amplitude fluc-
tuations at the receiver aperture. Figure 8 shows the
spectra for a 1 cm diameter transmitting aperture;
accordingly with the angular fluctuation presented in
Fig. 5 and the beam spread presented in Fig. 3, the
values increase with the descending elevation angle.
Meanwhile, Fig. 9 show how for a 1 m transmitter the
fluctuation is stronger (although the variation is
smaller than in Fig. 8) for higher elevation angles.
This effect is consistent with the inversion that was
presented in Fig. 4: for big apertures, the beam
spread does not reduce, so that the effect of beam
wander is compensated. Figure 9 shows an interme-
diate situation located barely in the center of the
different pesima: the fluctuation is worse for the
higher angles, but all the plots are very close.
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Fig. 6. Angular fluctuation spectrum for a 10 cm diameter trans-
mitter aperture, 5 m/s wind speed, and for different path elevation
angles.
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Fig. 7. Angular fluctuation spectrum for a 1 m diameter trans-

mitter aperture, 5 m/s wind speed, and for different path elevation

angles.

Generally speaking, the intermediate aperture val-
ues appear to show the worst scintillation behavior.
From the point of view of the beam-wander contribu-
tion, increasing the aperture size is the way to max-
imize the transmitter gain (although it saturates, as
shown in Fig. 3) and to minimize the scintillation.

4. Conclusions

We have presented an analytical formalism that
models the beam-wander effect in free-space optical
communications when the turbulence concentrates
near the transmitter, as happens in communications
between the Earth’s surface and a satellite. The
model considers the beam movement as the dual of
the fluctuations of the angle-of-arrival in a receiver
with the turbulence concentrated on its side, as it had
been proposed by Sasiela.? From this starting point,
we present how nontemporal and temporal statistics

-10

=30+

40

_100 { L L 1 J
10° 10° 10 10
Frequency (Hz)

Log-amplitude fluctuation spectrum (dB-szle)
&
o

Fig. 8. Spectrum beam-wander contribution to scintillation for a
1 cm diameter transmitter aperture, 5 m/s wind speed, and for
different path elevation angles.
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Fig. 9. Spectrum beam-wander contribution to scintillation for a
1 m diameter transmitter aperture, 5 m/s wind speed, and for
different path elevation angles.

can be obtained. Finally we have presented a numer-
ical example in which the effect of the accumulation
of turbulence is observed for different transmitter
aperture values.

Appendix A: Derivation of Expression (30)

Let us consider the evaluation of the integral in ex-
pression (29). First, we will call

(34)

§= 0a4 - 0122(9)-

And then, we concentrate on the inner integral in Eq.

(29):
) 0-(120L22 Ci2
J’ 0L236Xp<— 28 )Io(salaz)daz,

(35)

o
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Frequency (Hz)

Log-amplitude fluctuation spectrum (dB-N plez)

Fig.10. Spectrum beam-wander contribution to scintillation for a
10 cm diameter transmitter aperture, 5 m/s wind speed, and for
different path elevation angles.
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where the dependence of s and c;, on p is not explicitly
shown. By substituting in integral (35),

Qg =X,
1 -1/2

And using the relationship between the standard
and the modified Bessel functions,?! we can write

1(” o2 c
2f X exp(—28>J0<i ?12 a1x1/2)dx.
0

This integral can be solved using the equivalence2!

(37)

f x’”é” exp(—ax)J (2B x)dx =
0
B’ B
| RV _ —n—v-1y v[
n.Bexp( a)a L"(a , (38)
where L,"(z) is a Laguerre polynomial.

Comparing our integral with the model, we find the
following correspondences:

Ua
n = 1, o= 278’
C1oQ
=i o, v=0, (39)
For these values, the Laguerre polynomial is2!
L2 =1-z. (40)

So the integral in expression (37) can be calculated as

2 12\? 0112 C12)? 0¢12
2 & b et i Tt
s o exp[(o_u) 9 1+(0a) 9 | (41)
Then we can calculate the complete expression (29) as
“ 2
51
jo OL13 eXp<_20_a2>d0L1

1 /ep\2 [ a,’
+28(012)J 0¢15exp<—2012)d0¢1:|. (42)
0 a

Now we introduce new variable changes,

R, (p) =

4
Oy

2K%s [

1
0L12 =X, do&l - §x71/2dx, (43)



obtaining
K| [ x 1 /cq9\2
Ro)= 3| | * eXP<—202>dx + 23(0)
a 0 a «
X fw 2 . dx (44)
0 x* exp| —

Once again we can use a tabulated integral from Ref.
21:

J x" exp(—px)dx =n! ph (45)

0

And finally, substituting the different equivalences,
we obtain

1
R, (p) = [0 +ci’(p)] (46)
A*0
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