
Atlas, a platform for distributed graphicsapplicationsM. Fair�en and �A. VinacuaDepartment of SoftwareInstitute of Robotics and Industrial InformaticsU.P.C.Diagonal 647, 8ena plantaE08028 Barcelona, Spainfmfairen,alvarg@turing.upc.esAbstract: Atlas, a platform for developing distributed applications bysplitting them into several collaborating processes scattered in a localarea network is presented. Although of general use, it has features es-pecially designed for supporting graphics applications. We present itsarchitecture and some aspects of its implementation, and discuss designcriteria.1 IntroductionAtlas is a platform for the development of advanced interactive graphics ap-plications that distributes the application processes in a network. Its purposeis to make some techniques that would require a lot of specialized program-ming available to every application built over it with the least possible hasslefor the programmer. These techniques include the distribution of the applicationprocesses (problems involved in distribution were focused in [1] and [2]); a jour-naling mechanism allowing the �nal user to do arbitrary replays of his session;fault-tolerance (see [3], for instance) in case of communication failures of thenetwork or some of the processes; a powerful control language allowing the de-veloper to describe his application and aspects of its user interface and allowingthe �nal user to introduce his own macros; and mechanisms for parametric andconstrained-based design. This platform can also be extended to support CSCWin applications developed over it as we will explain in section 5.Atlas is an evolution of a system described in [4]. It inherits some aspectsof the architecture of the previous one, and adds robust and fault-tolerant net-work distribution transparently, a meta-journaling system, a much more
exiblecontrol language and an orthogonal design which a�ords much more
exibilityto the applications built in it. In section 2 we can see an overview of the Atlasarchitecture that also explains its main components.Each process involved in an Atlas application is described by its interfacede�ned in a module written in ATL language (the Atlas control language [5]),and its implementation (written in C++) which de�nes the external routinesdescribed in the ATL module. These processes, then, are seen by Atlas asobjects, but these objects don't support several capabilities o�ered by Object-

Oriented architectures (like inheritance, for example). We will explain it in moredetail in section 3.Atlas applications often dissociate the input processes from the others. Thisdissociation is desirable in order to achieve the maximal reusability, but it isnot compulsory (some modules require very special interface elements that areusually incorporated into the same process { e.g. virtual reality applications). Incomputer graphics applications the meaning of an input data is only known bythe process dealing with it and to make the system aware of this information isa tedious and unnecessary work. Section 4 explains the mechanism that Atlasuses to solve this aspect, arising from data that interactive graphics applicationsusually manage. This problemmay not be aparent at �rst glance but is extremelyimportant.2 Overview of Atlas architecture
B-Rep

Volume

Command
Subsystem

Input
Subsystem

Solver
Constraints

distr

server@host

Octree
MachineFig. 1. A sample execution of an Atlas application.The Atlas architecture is represented by �gure 1, where the ovals denote pro-cesses and the arrows represent communications between them. It is a centralizedarchitecture where the process distr acts as the master process and is the centerof each Atlas application. This architecture allows an intelligent distributionto be managed, i.e. the distr process decides the processes distribution dynam-ically depending on availability, load and aptitude of each host in the networkto run each application process.

Figure 1 shows a typical Atlas application. The processes depicted with athick line represent the main components of Atlas. All the others are regardedequally by the system, and they don't need to know about each other.Of these three main processes, the most crucial one is the master processdistr. This is the process that the user starts up to invoke the application. Itacts as a communications center for the duration of the execution, and providessome essential services to all other modules. It is also responsible of the journalingmechanism, the fault-tolerance of the system and the central mechanism to assignan input datum, provided by an input system, to the corresponding request,normally issued by another process.The process server is a daemon that runs on all hosts con�gured to runAtlas applications in the network. A user can select a speci�c list of hostsvia variables in his environment, or else Atlas attempts to use all resourcescon�gured by the administrator (depending on their load). Each time a newprocess needs to be loaded and connected to the rest of the application, distrconnects to the server on the chosen target machine and requests that sucha process be started for him. server then forks a copy of itself, makes theappropriate veri�cations, loads the adequate environment and execs the desiredprocess. Figure 1 only shows one such server for legibility, although one suchserver will be running on every node available to Atlas.The third of the Atlas main processes is the command subsystem whichguides the application behavior by interpreting programs and instructions writ-ten in a language (ATL) designed for Atlas and described in [5]. When thedistr is started it starts the command subsystem and feeds it the initialization�le which determines which application is being started. This initialization �leincludes instructions to load all the (initially) necessary modules (a module isa �le written in ATL language which describes the interface of a process {seesection 3), and also de�nes commands adequate to that application.Other two standard components o�ered by Atlas are the input subsystemand the constraints solver. The �rst one is a generic input handling process.It provides a window in which all the textual interactions occur (issuing com-mands or entering numerical data), but can also be instructed to capture eventsfrom other windows (owned by the rest of the processes in the application), andit is also an interface between Atlas and an extended Tcl/Tk [6] engine, soscripts in Tcl can be sent to it to instantiate new interface components. Theconstraints solver rely on the global identi�ers assigned to external data by theapplications (see section 4) to convey information on the appropriate new valuesthat entities within the system should take to the true owners of those data. Thisis the only mechanism where a \sort-of-pass-by-reference" paradigm is used (theglobal identi�ers acting as a kind of reference to the concrete datum). Atlasuses elsewhere a \copy-in copy-out" parameter passing convention, as opposedto applications supported on CORBA (see [7]), for example. In this way, ob-jects are managed by the user applications directly, and data is shared onlybetween applications that agree on their type. We have found this scheme tobetter support the applications we intend to develop, and to favor the portabil-

ity of modules from one application to another, as they are more loosely coupled.Although type agreement is required, the modules become totally encapsulatedand independent. The generic input system can input data that will be used toconstruct those objects without further knowledge of them, and in the applica-tions considered, less network tra�c is produced.3 Processes as heavy objectsEach user process in an Atlas application can in fact be seen as a \heavy"object. The Atlas module describes its interface, whereas the process itself pro-vides an implementation. The parallel cannot be pushed all the way through.These objects cannot be instantiated (in the present version), and more impor-tantly, the main watermarks of object orientation are missing: there is no schemefor inheritance, no scheme for delegation, and no polymorphism. However, theydo provide a very strong encapsulation, and each de�nes a very precise collectionof messages to which it shall respond.They are also heavy, as seen on the example of section 2, because they rep-resent not the basic building blocks of the application but rather complete com-ponents with very sophisticated behavior, like a complete B-Rep modeler. Theproposed scheme would not be e�cient at a �ner granularity, but seems to farerather well in this setup.Our experience so far is positive also in that transforming other user appli-cations to this environment is usually quick. A prototype solid modeler with ca.15.000 lines of code was attached to this platform in a couple of days' work, forexample.A bene�t of this architecture is that intricate and large data structures man-aged by an application remain strictly local to it, and others need not know thedetails of them to deal with them. When this data must travel through the net,Atlas provides an external version of them, deprived of methods and local in-formation (as Atlas's language is not itself object oriented). The developmentplatform provides code to automatically transfer the user's data into Atlas'variables, and backwards, through bridge types used to isolate the user fromthe details of Atlas's variables (which an advanced user can use directly if hewishes to).Figure 2 shows a portion of a module's interface de�nition in ATL. The USEclause at the beginning of the �le denotes a dependency. When the ATL compilersees it, it compiles a module called se.atl if it has not already done so. Towardsthe end of the example the procedure se::Output |de�ned in that module|is invoked. The compilation of se.atl will have introduced the correspondingentry in the system's symbol table for it to know what to do at this point.In the interface de�nition, types functions and procedures preceded by EXPORTare visible to other modules, and the rest are local. Functions and procedureslisted in the PROT section with an EXTERNmodi�er denote user routines exportedby an Atlas process. If an .atl �le includes EXTERN procedures or functions,

USE se; ...EXPORT #deftype SolidSTRUCTfaces_number -> integer;vertices_number -> integer;faces -> Listfaces;vertices -> Listvertices;material -> Material;label -> type_identifier;ENDSTRUCT...PROTEXTERN FUNCTION SolidIntersection (Solid a, Solid b) RETURNS Solid;EXTERN PROCEDURE DisplaySolid (Solid s);EXTERN FUNCTION IsVertexOrEdge (BRep_Button_pressed_event ev,Solid &s) RETURNS boolean;...ENDPROT ...FUNCTION GetSolid (BRep_Button_pressed_event ev) RETURNS Solid ISinteger i; i = 0;Solid solid;BRep_Button_pressed_event eaux;WHILE ((i<MaxAttempts) && (!IsVertexOrEdge(ev,solid))) DOeaux = GETDATA ("Click on a vertex or edge!");i = i + 1;ENDWHILERETURN solid;ENDFUNCTIONEXPORT PROCEDURE Intersec2Solids () ISDisplaySolid (SolidIntersection(GetSolid(GETDATA("Press button on a vertex or anedge of the first solid")),GetSolid(GETDATA("Press button on a vertex or anedge of the second solid"))));se::Output ("Intersection completed","m");ENDPROCEDUREFig. 2. Portion of the interface de�nition in Atlas for the BRep modeler process.then it is regarded as the interface de�nition of a process by the same name,and the command system requests from distr that the corresponding processbe started. Functions and procedures like those in this example, written in ATLitself, are usually used to de�ne the dialogues with the user or other aspectsof the interface. In that area the lower e�ciency of Atlas's interpreted code islargely outweighed by the ease of development and testing, plus the
exibility.When building an application, the programmer will hand out these interfacede�nition �les to Atlas for it to construct appropriate drivers for each of theuser's processes. Figure 3 shows how this is done. Files in the leftmost column

(prototypes)

ATLAS processgenerated filesdeveloper files

atl_process.hh

atl_process.H

atl_process.C

(bridge types)

(driver main)

process.atl

in
te

rf
ac

e
process.h
(C++ classes)

includes

includes

process.C

private
part

+
routines
externim

pl
em

en
ta

tio
n

processFig. 3. Building an Atlas process.are written by the programmer, and Atlas generates automatically those inthe middle column. Figures 4 through 6 show portions of the automaticallygenerated code stubs to link with the user code, generated from the interfacecode in �gure 2.The �le atl BRep.H (in Figure 4) includes the de�nitions connected with thebridge type corresponding to Solid. Notice how methods to convert to and fromobjects of type Variable are built, and the use of atl Solid in �gure 6 to isolatethe user's class (Solid) from its Atlas external representation.4 Global identi�cation of dataIn text-oriented applications the input data that the user introduces have directlythe correct meaning for the application, but in interactive graphics applicationsthis is not so. The user frequently uses points to input data that must be changedto other geometric entities by the application, e.g. selecting a vertex, an edge ora face of a previously de�ned object. Moreover that point refers normally to anextremely unreliable reference. It is referred usually to the device coordinates ofthe selected pixel and therefore it depends on the current visualization and thesize of the window where the pixel has been selected.This is important because this input data must be recorded in the journal tobe reused if it is needed. And simple con�guration changes (resizing of windows,for example) may cause the absolute pixel address to mean something di�erentto the same process in a di�erent execution.Atlas solves this problem with a very simple mechanism. Input data areattached a unique tag used to identify that datum globally, and both tag anddatum are recorded in the journal together. (A similar mechanism but witha di�erent meaning and motivation is proposed in [8]. Tags are used there tode�ne topologic relationships in order to be able to compute the results in amodel where its parameters have been changed).

...namespace brep {struct atl_Solid {int faces_number; int vertices_number; Listfaces faces;Listvertices vertices; Material material;type_identifier label;atl_Solid() {}atl_Solid(Variable &v) {if (v.Tree()==NULL) atl_exit(-1); // Invalid variablefaces_number = ((nodeint *) (*(v.Tree())).accede(0))->Getvalue();vertices_number = ((nodeint *) (*(v.Tree())).accede(1))->Getvalue();faces = ((nodelist *) (*(v.Tree())).accede(2))->Getvalue();vertices = ((nodelist *) (*(v.Tree())).accede(3))->Getvalue();material = ((nodeint *) (*(v.Tree())).accede(4))->Getvalue();label = ((nodeint *) (*(v.Tree())).accede(5))->Getvalue();}operator Variable() {Type t("brep::Solid","S(faces_number integer,vertices_number integer,faces Listfaces,vertices Listvertices,material Material,label type_identifier)");Variable v(t,"");v.build_tree();*((*(v.Tree())).accede(0)) = faces_number;*((*(v.Tree())).accede(1)) = vertices_number;*((*(v.Tree())).accede(2)) = faces;*((*(v.Tree())).accede(3)) = vertices;*((*(v.Tree())).accede(4)) = material;*((*(v.Tree())).accede(5)) = label;return (v);}};} ... Fig. 4. Portion of the generated atl BRep.H �le.#ifndef __ATL_brephh__#define __ATL_brephh__#ifndef NOHEADER#include "brep.h"#endif#include "atl_brep.H"Solid SolidIntersection(Solid,Solid);void DisplaySolid(Solid);bool IsVertexOrEdge(BRep_Button_pressed_event,Solid &);#endif Fig. 5. The generated atl BRep.hh �le.

...void aux_IsVertexOrEdge(String codi,DLList<Variable *> ¶meters) {Pix p=parameters.first();atl_BRep_Button_pressed_event ptp0(*(parameters(p)));BRep_Button_pressed_event par0(ptp0);parameters.next(p);atl_Solid ptp1(*(parameters(p)));Solid par1(ptp1);parameters.next(p);--> bool res=IsVertexOrEdge(par0,par1);Variable *vr=new Variable(restp);ReturnValue *rv=new ReturnValue(codi,vr);distrib.send(rv);ptp1=par1.conversion_to_bridge_type();Variable *rp1=new Variable(ptp1);ReturnParam *retpar1=new ReturnParam(codi,rp1);distrib.send(retpar1);} ...void main(int argc,char **argv) {...ini_process();driv.Dispatch();close(CANAL_COMUNIC_DISTR);exit(0);}Fig. 6. Portion of the generated atl BRep.C �le. The arrow has been added pointingto the point where user code is actually invoked.The Atlas API o�ers some routines which help the developer to use thismechanism in the easiest way. For example, an application process can ask forsome of these tags (new tags) to be attached to its own data, or the processreceiving this input datum can request that an annotation be made in the journalthat his interpretation of that datum corresponds to some other (previouslyobtained) datum. This new tag will be used in replays of the journal instead ofthe datum, speeding up replays and making them more robust. The e�ort theprocess must do to tell the system (distr) this association of tags is minimum,and also minimum is the information that goes through the network.This simple global identi�cation mechanism (described in more detail in [9])achieves a total robustness in the reexecution of the journal, and is also use-ful internally to control the consistency of this journal after being edited andmodi�ed. Other important utility of this mechanism for Atlas applications isthe ability to share data identity among several processes in the application (forexample with a constraints solver).Following an example, the simplicity of using this mechanism and also theachieved level of transparency for the developer can be seen clearly:Figure 7 shows the wrapper classes interface for Atlas input data whichmanage the association of a datum and its tag.

class io_base { template <class T>protected: class io : public io_base {long ticket; T datum;char id_type[MAXNAME]; public:public: io ()long TK () { ticket = 0;{ return ticket; } id_type = atl_type_name(T); }... io (T d)}; { ticket = atl_ask_for_ticket();id_type = atl_type_name(T);datum = d; }...};Fig. 7. Wrapper classes interface for Atlas dataWe want to implement a routine to select an edge from a 3D point (if thispoint is near the edge). If we design the classes \Point3D" and \Edge" as in�gure 8 and considering we have an array of edges as:io<Edge> Table[MAXEDGES];,we can implement the routine \do anything" (�gure 9) taking a \Point3D" asa parameter and searching for the corresponding edge in the array. If the corre-sponding edge is found, the routine asks the system to make an annotation inthe journal to replace the \Point3D" tag for the selected \Edge" tag for futurereexecutions.class Point3D {float x,y,z;public:Point3D (float xx, float yy, float zz){ x = xx; y = yy; z = zz; }...};class Edge {io<Point3D> &fvert, &svert;public:Edge (io<Point3D> &fv, io<Point3D> &sv){ fvert = fv; svert = sv; }...}; Fig. 8. Interfaces of classes \Point3D" and \Edge"In order to reexecute the journal successfully the routine \do anything" mustalso accept an \Edge" tag as a parameter. This can be done in two ways:{ using overloading with this routine and passing as a parameter an \io base"reference which contains the ticket for the \Edge"void do_anything (io_base &id1)

void do_anything (io<Point3D> &input){ int i=0;while ((i<N) && (!near_edge (input, Table[i]))){ i++; }if (i<N){ atl_substitute_ticket (input.TK(), Table[i].TK());Compute_with_edge (Table[i]);else error ("there aren't edges near that point");} Fig. 9. Routine searching the edge to compute with it{ Compute_with_edge (search_for_edge(id1)); }{ using a routine with a generic parameter and calling always this one. Thispossibility is even more
exible because we can use it also passing an edgeif the application allowed the user to input edges. (�gure 10)void generic (io_base *arg){ if (strcmp (arg->Type(), "Point3D") == 0)do_anything ((io<Point3D>) *arg);else if (strcmp (arg->Type(), "") == 0)Compute_with_edge (search_for_edge(*arg));else if (strcmp (arg->Type(), "Edge") == 0)Compute_with_edge ((io<Edge>) *arg);else error("type error");} Fig. 10. Routine with a generic parameter5 Extension for CSCWThe architecture of Atlas lends itself easily to a simple approach to transpar-ently implementing primitive means of computer supported collaborative workwith Atlas applications. Its attractive lies especially in the transparency. Oncean application has been built upon Atlas, it can be turned into a CSCW-supporting application by running a copy of it for each user, but with additionalconnections established between the distr of one process (the master session)with those of the rest (the slaves)|see �gure 11. By forwarding the relevantmessages between these processes, they can be made to share the same data andstate, although slave processes are granted access only to limited commands, bydecision of the owner of the master session.In this scheme, the user processes attached to each of the running Atlasesignores if it belongs to a master or to a slave session. All it sees are messages

B-Rep

Constraints
Solver

distr

Input
Subsystem

Command
Subsystem

(bis)
Solver

Constraints

Input

(bis)
Subsystem
Command

Subsystem
(bis)

B-Rep
(bis)

master session slave session

Multiuser

distr
(slave)Fig. 11. Atlas scheme for multiuser architecturefrom its copy of distr which it heeds, be they generated by user interactions orby synthetic messages imported from a master session. Therefore the developerof an Atlas application need not be concerned with the collaborative side. Allhe needs to do is decide whether this behavior of distr will be allowed or notfor his application.Di�erent users may change local aspects of the session, like the layout of thewindows, or even the point of view from which the scene is rendered. The globalidenti�cation of data covered in section 4 will ensure that messages across thecollaboration links are understood uniformly by all parties.Upon this primary structure, we purport to build a simple collaborative envi-ronment. It remains to design mechanisms for displaying on each party's screenthe activity of the other parties, plus mechanisms for controlling ownership of anexecution (who is the master), validation of newcomers (how to ensure that theyare who they say they are before granting the connection) and to delegate (i.e.turn one of the slaves into the new master). Other tools for such an environmentwill probably need to be developed as Atlas modules, for example a whiteboardtool, and even some sort of teleconferencing support. This is a direction in whichwe will extend the features of Atlas once it is consolidated as an applicationdevelopment tool.6 ConclusionsThe work presented here is part of an ongoing e�ort. The components presentedhere are already in a test phase, and several applications are presently being

built upon it at our labs. Other components not described here (like the metajournal) are still in a development stage. The presentation omits also some rel-evant aspects like the architecture of the virtual machine executing the Atlascode, which have an impact on the system's features but are not within the focusof this conference.The architecture of Atlas |where users add components as independentprocesses with an external interface visible essentially as a remote procedurecall| is proving e�ective in the construction of applications and in the reusabilityof those components between similar applications.7 AcknowledgementsAtlas development has been greatly facilitated by the use of the ACE-Wrappers(see [10]) library to build the communications drivers, and also by the PCCTS(see [11]) compiler construction tool.This research has been supported partially by grants TIC-92-0605 and TIC-95-0630-C05-01 of the CICYTReferences1. Gregory R. Andrews. Paradigms for Process Interaction in Distributed Pro-grams. ACM Computing Surveys, 23(1), March 1991.2. Roger S. Chin and Samuel T. Chanson. Distributed Object-Based Pro-gramming Systems. ACM Computing Surveys, 23(1), March 1991.3. Shrivastava, Mancini, and Randell. The Duality of Fault-Tolerant SystemStructures. Software Practice and Experience, 23(7), July 1993.4. Antoni Soto, Sebasti�a Vila, and �Alvar Vinacua. A Toolkit for constructingcommand driven graphics programs. Computer & Graphics, 16(4):375{382,1992.5. Marta Fair�en and �Alvar Vinacua. ATLAS. Sistema de Comandes: Manualt�ecnic (in Catalan). Report LSI-95-11-T, 1995. http://www.lsi.upc.es/~mfairen.6. Brent B. Welch. Practical Programming in Tcl and Tk. Prentice Hall PTR.Upper Saddle River, New Jersey 07458, 1995.7. Jon Siegel. CORBA Fundamentals and Programming. Jon Siegel. OMG,1996.8. Jiri Kripac. A Mechanism for Persistently Naming Topological Entitiesin History-Based Parametric Solid Models. In Chris Ho�mann and JarekRossignac, editors, Third Symposium on Solid Modeling and Applications,pages 21{30, Salt Lake City, Utah, May 1995.9. Marta Fair�en and �Alvar Vinacua. Interacci�on Gr�a�ca en ATLAS (in Span-ish). In Proceedings of CEIG'97, 1997.

10. Douglas C. Schmidt. The ADAPTIVE communication environ-ment: Object-oriented network programming components for developingclient/server applications. In 12th Sun Users Group Conference, 1994.11. Terrence J. Parr. Language Translation Using PCCTS and C++ (A Refer-ence Guide), June 1995. Address: http://www.parr-research.com/ parrt.

