Atlas, a platform for distributed graphics
applications

M. Fairén and A. Vinacua

Department of Software
Institute of Robotics and Industrial Informatics
U.P.C.
Diagonal 647, 82 planta
08028 Barcelona, Spain
{mfairen,alvar}@turing.upc.es

Abstract: ATrAs, a platform for developing distributed applications by
splitting them into several collaborating processes scattered in a local
area network is presented. Although of general use, it has features es-
pecially designed for supporting graphics applications. We present, its
architecture and some aspects of its implementation, and discuss design
criteria.

1 Introduction

AT1.AS 18 a platform for the development of advanced interactive graphics ap-
plications that distributes the application processes in a network. Tts purpose
is to make some techniques that would require a lot of specialized program-
ming available to every application built over it with the least possible hassle
for the programmer. These techniques include the distribution of the application
processes (problems involved in distribution were focused in [1] and [2]); a jour-
naling mechanism allowing the final user to do arbitrary replays of his session;
fault-tolerance (see [3], for instance) in case of communication failures of the
network or some of the processes; a powerful control language allowing the de-
veloper to describe his application and aspects of its user interface and allowing
the final user to introduce his own macros; and mechanisms for parametric and
constrained-based design. This platform can also be extended to support CSCW
in applications developed over 1t as we will explain in section 5.

ATT.AS is an evolutfion of a system described in [4]. Tt inherits some aspects
of the architecture of the previous one, and adds robust and fault-tolerant net-
work distribution transparently, a meta-journaling system, a much more flexible
control language and an orthogonal design which affords much more flexibility
to the applications built in it. In section 2 we can see an overview of the ATLAS
architecture that also explains its main components.

Each process involved in an ATT.As application is described by its interface
defined in a module written in ATL language (the ATLAS control language [5]),
and its implementation (Written n C—|——|—) which defines the external routines
described in the ATL module. These processes, then, are seen by ATILAS as
objects, but these objects don’t support several capabilities offered by Object-

Oriented architectures (like inheritance, for example). We will explain it in more
detail in section 3.

ATT.AS applications often dissociate the input processes from the others. This
dissociation is desirable in order to achieve the maximal reusability, but it is
not compulsory (some modules require very special interface elements that are
usually incorporated into the same process e.g. virtual reality applications). Tn
computer graphics applications the meaning of an input data is only known by
the process dealing with it and to make the system aware of this information is
a tedious and unnecessary work. Section 4 explains the mechanism that AT1.AS
uses to solve this aspect, arising from data that interactive graphics applications
usually manage. This problem may not be aparent at first glance but is extremely
important,.

2 Overview of Atlas architecture

Constraints
Solver

PR -\

lserver@host)

1\- -
ity

Octree
Machine

Fig. 1. A sample execution of an ATLAS application.

The AT1.AS architecture 1s represented by figure 1, where the ovals denote pro-
cesses and the arrows represent, communications between them. It is a centralized
architecture where the process distr acts as the master process and is the center
of each AT1.AS application. This architecture allows an intelligent distribution
to be managed, i.e. the distr process decides the processes distribution dynam-
ically depending on availability, load and aptitude of each host in the network
to run each application process.

Figure 1 shows a typical ATr.As application. The processes depicted with a
thick line represent the main components of ATL.AS. All the others are regarded
equally by the system, and they don’t need to know about each other.

Of these three main processes, the most crucial one is the master process
distr. This is the process that the user starts up to invoke the application. Tt
acts as a communications center for the duration of the execution, and provides
some essential services to all other modules. Tt is also responsible of the journaling
mechanism, the fault-tolerance of the system and the central mechanism to assign
an input datum, provided by an input system, to the corresponding request,
normally 1ssued by another process.

The process server is a daemon that runs on all hosts configured to run
ATT.AS applications in the network. A user can select a specific list of hosts
via variables in his environment, or else ATT.AS attempts to use all resources
configured by the administrator (depending on their load). Each time a new
process needs to be loaded and connected to the rest of the application, distr
connects to the server on the chosen target machine and requests that such
a process be started for him. server then forks a copy of itself, makes the
appropriate verifications, loads the adequate environment and execs the desired
process. Figure 1 only shows one such server for legibility, although one such
server will be running on every node available to ATT.AS.

The third of the ATLAS main processes is the command subsystem which
guides the application behavior by interpreting programs and instructions writ-
ten in a language (ATL) designed for ATr.As and described in [5]. When the
distr is started it starts the command subsystem and feeds it the initialization
file which determines which application is being started. This initialization file
includes instructions to load all the (initially) necessary modules (a module is
a file written in ATL language which describes the interface of a process see
section 3), and also defines commands adequate to that application.

Other two standard components offered by ATr.AS are the input subsystem
and the constraints solver. The first one is a generic input handling process.
Tt provides a window in which all the textual interactions occur (issuing com-
mands or entering numerical data), but can also be instructed to capture events
from other windows (owned by the rest of the processes in the application), and
it is also an interface between ATLAS and an extended Tcl/Tk [6] engine, so
scripts in Tcl can be sent to 1t to instantiate new interface components. The
constraints solver rely on the global identifiers assigned to external data by the
applications (see section 4) to convey information on the appropriate new values
that entities within the system should take to the true owners of those data. This
is the only mechanism where a “sort-of-pass-hy-reference” paradigm is used (the
global identifiers acting as a kind of reference to the concrete datum). ATTAS
uses elsewhere a “copy-in copy-out” parameter passing convention, as opposed
to applications supported on CORBA (see [7]), for example. Tn this way, ob-
jects are managed by the user applications directly, and data i1s shared only
between applications that agree on their type. We have found this scheme to
better support the applications we intend to develop, and to favor the portabil-

ity of modules from one application to another, as they are more loosely coupled.
Although type agreement is required, the modules become totally encapsulated
and independent. The generic input system can input data that will be used to
construct those objects without further knowledge of them, and in the applica-
tions considered, less network traffic is produced.

3 Processes as heavy objects

Each user process in an ATTAS application can in fact be seen as a “heavy”
object. The AT1.As module describes its interface, whereas the process itself pro-
vides an implementation. The parallel cannot be pushed all the way through.
These ohjects cannot be instantiated (in the present version), and more impor-
tantly, the main watermarks of object orientation are missing: there is no scheme
for inheritance, no scheme for delegation, and no polymorphism. However, they
do provide a very strong encapsulation, and each defines a very precise collection
of messages to which 1t shall respond.

They are also heavy, as seen on the example of section 2, because they rep-
resent not the basic building blocks of the application but rather complete com-
ponents with very sophisticated behavior, like a complete B-Rep modeler. The
proposed scheme would not be efficient at a finer granularity, but seems to fare
rather well in this setup.

Our experience so far is positive also in that transforming other user appli-
cations to this environment is usually quick. A prototype solid modeler with ca.
15.000 lines of code was attached to this platform in a couple of days’ work, for
example.

A benefit of this architecture is that intricate and large data structures man-
aged by an application remain strictly local to it, and others need not know the
details of them to deal with them. When this data must travel through the net,
ATT.AS provides an external version of them, deprived of methods and local in-
formation (as ATLAS’s language is not itself object oriented). The development,
platform provides code to automatically transfer the user’s data into ATT.AS’
variables, and backwards, through bridge types used to isolate the user from
the details of ATT.AS’s variables (which an advanced user can use directly if he
wishes to).

Figure 2 shows a portion of a module’s interface definition in ATT.. The USE
clause at the beginning of the file denotes a dependency. When the ATT, compiler
sees it 1t compiles a module called se.atl if it has not already done so. Towards
the end of the example the procedure se::0utput defined in that module
is invoked. The compilation of se.atl will have introduced the corresponding
entry in the system’s symbol table for it to know what to do at this point.

In the interface definition, types functions and procedures preceded by EXPORT
are visible to other modules, and the rest are local. Functions and procedures
listed in the PROT section with an EXTERN modifier denote user routines exported
by an ATT.AS process. If an .atl file includes EXTERN procedures or functions,

USE se;

EXPORT #deftype Solid

STRUCT
faces_number -> integer;
vertices_number -> integer;
faces —-> Listfaces;
vertices -> Listvertices;
material -> Material;
label -> type_identifier;

ENDSTRUCT

PROT
EXTERN FUNCTION SolidIntersection (Solid a, Solid b) RETURNS Solid;
EXTERN PROCEDURE DisplaySolid (Solid s);
EXTERN FUNCTION IsVertexOrEdge (BRep_Button_pressed_event ev,
Solid &s) RETURNS boolean;

ENDPROT

FUNCTION GetSolid (BRep_Button_pressed_event ev) RETURNS Solid IS
integer i; i = 0;
Solid solid;
BRep_Button_pressed_event eaux;
WHILE ((i<MaxAttempts) && (!IsVertexOrEdge(ev,so0lid))) DO
eaux = GETDATA ("Click on a vertex or edge!');
i=1+1;
ENDWHILE
RETURN solid;
ENDFUNCTION

EXPORT PROCEDURE Intersec2Solids () IS
DisplaySolid (SolidIntersection(
GetSolid(GETDATA("Press button on a vertex or an
edge of the first solid")),
GetSolid(GETDATA("Press button on a vertex or an
edge of the second so0lid"))));
se::0utput ("Intersection completed",'"m");
ENDPROCEDURE

Fig. 2. Portion of the interface definition in AT1.AS for the BRep modeler process.

then it is regarded as the interface definition of a process by the same name,
and the command system requests from distr that the corresponding process
be started. Functions and procedures like those in this example, written in AT,
itself, are usually used to define the dialogues with the user or other aspects
of the interface. In that area the lower efficiency of ATT.AS’s interpreted code is
largely outweighed by the ease of development and testing, plus the flexibility.

When building an application, the programmer will hand out these interface
definition files to ATT.AS for it to construct appropriate drivers for each of the
user’s processes. Figure 3 shows how this is done. Files in the leftmost column

developer files _ generated files _ ATLAS process
\ \

\
ol atl_process.hh)
[}
.g process.at| (prototypes) /
£ atl_process.H N
B (bridge types) \
— /
process.h includo !
W <—lCudes ™ . !
5 (C++ classes) D atl_process.C —
| \, (driver main) | pr oc
I process.C ” p—
/ /
5 / \ . .
el \ \
IS extern _ private \ \
- routines’ part ,’ ,’
L ’ ’

Fig. 8. Building an ATILAS process.

are written by the programmer, and ATLAS generates automatically those in
the middle column. Figures 4 through 6 show portions of the automatically
generated code stubs to link with the user code, generated from the interface
code in figure 2.

The file at1 BRep.H (in Figure 4) includes the definitions connected with the
bridge type corresponding to Solid. Notice how methods to convert to and from
objects of type Variable are built, and the use of atl_Solid in figure 6 to isolate
the user’s class (Solid) from its ATT.AS external representation.

4 Global identification of data

In text-oriented applications the input data that the user introduces have directly
the correct meaning for the application, but in interactive graphics applications
this 1s not so. The user frequently uses points to input data that must be changed
to other geometric entities by the application, e.g. selecting a vertex, an edge or
a face of a previously defined object. Moreover that poini refers normally to an
extremely unreliable reference. Tt is referred usually to the device coordinates of
the selected pirel and therefore it depends on the current visualization and the
size of the window where the pixel has been selected.

This is important because this input data must be recorded in the journal to
be reused if it is needed. And simple configuration changes (resizing of windows,
for example) may cause the absolute pixel address to mean something different,
to the same process in a different execution.

ATT.AS solves this problem with a very simple mechanism. Input data are
attached a unique tag used to identify that datum globally, and both tag and
datum are recorded in the journal together. (A similar mechanism but with
a different meaning and motivation is proposed in [8]. Tags are used there to
define topologic relationships in order to be able to compute the results in a
model where its parameters have been changed).

namespace brep {

struct atl_Solid {int faces_number; int vertices_number; Listfaces faces;
Listvertices vertices; Material material;
type_identifier label;

at1_Solid() {}

atl_Solid(Variable &v) {

if (v.Tree()==NULL) atl_exit(-1); // Invalid variable

faces_number = ((nodeint *) (*(v.Tree())).accede(0))->Getvalue();

vertices_number = ((nodeint *) (*(v.Tree())).accede(1))->Getvalue();

faces = ((nodelist *) (*(v.Tree())).accede(2))->Getvalue();

vertices = ((nodelist *) (*(v.Tree())).accede(3))->Getvalue();

material = ((nodeint *) (*(v.Tree())).accede(4))->Getvalue();

label = ((nodeint *) (*(v.Tree())).accede(5))->Getvalue();

¥

operator Variable() {

Type t("brep::S0lid","S(faces_number integer,vertices_number integer,
faces Listfaces,vertices Listvertices,
material Material,label type_identifier)");

Variable v(t,"");

v.build_tree();

(((v.Tree())) .accede(0)) = faces_number;

(((v.Tree())) .accede(1)) = vertices_number;

(((v.Tree())) .accede(2)) = faces;

(((v.Tree())) .accede(3)) = vertices;

(((v.Tree())) .accede(4)) = material;

(((v.Tree())) .accede(5)) = label;

return (v);

¥

}s

Fig. 4. Portion of the generated atl_BRep.H file.

#ifndef __ATL_brephh__

#tdefine __ATL_brephh__

#ifndef NOHEADER

#include "brep.h"

#tendif

#include "atl_brep.H"

Solid SolidIntersection(Solid,Solid);

void DisplaySolid(Solid);

bool IsVertexDrEdge(BRep_Button_pressed_event,Solid %) ;

#tendif

Fig. 5. The generated atl_BRep.hh file.

void aux_IsVertexOrEdge(String codi,DLList<Variable *> ¶meters) {

Pix p=parameters.first();
at1l_BRep_Button_pressed_event ptp0(x(parameters(p)));
BRep_Button_pressed_event par0(ptp0);
parameters.next (p);
atl_Solid ptpl(*(parameters(p)));
Solid parl(ptpl);
parameters.next (p);

-=> bool res=IsVertexOrEdge(par0O,parl);
Variable #vr=new Variable(restp);
ReturnValue *rv=new ReturnValue(codi,vr);
distrib.send(rv) ;
ptpl=parl.conversion_to_bridge_type();
Variable *rpl=new Variable(ptpl);
ReturnParam *retparl=new ReturnParam(codi,rpl);
distrib.send(retparl);

}
void main(int argc,char **argv) {

ini_process();
driv.Dispatch();

close (CANAL_COMUNIC_DISTR) ;
exit (0);

}

Fig. 6. Portion of the generated atl_BRep.C file. The arrow has been added pointing
to the point where user code is actually invoked.

The AT1.AS APIT offers some routines which help the developer to use this
mechanism in the easiest way. For example, an application process can ask for
some of these tags (new tags) to be attached to its own data, or the process
receiving this input datum can request that an annotation be madein the journal
that his interpretation of that datum corresponds to some other (previously
obtained) datum. This new tag will be used in replays of the journal instead of
the datum, speeding up replays and making them more robust. The effort the
process must do to tell the system (distr) this association of tags is minimum,
and also minimum is the information that goes through the network.

This simple global identification mechanism (described in more detail in [9])
achieves a total robustness in the reexecution of the journal, and is also use-
ful internally to control the consistency of this journal after being edited and
modified. Other important utility of this mechanism for ATr.as applications is
the ability to share data identity among several processes in the application (for
example with a constraints solver).

Following an example, the simplicity of using this mechanism and also the
achieved level of transparency for the developer can be seen clearly:

Figure 7 shows the wrapper classes interface for ATLAS input data which
manage the association of a datum and its tag.

class io_base {
protected:

template <class T>
class io : public io_base {

long ticket; T datum;
char id_type[MAXNAME]; public:
public: io ()
long TK () { ticket = 0;
{ return ticket; } id_type = atl_type_name(T); }
e io (T 4)
}; { ticket = atl_ask_for_ticket();

id_type = atl_type_name(T);
datum = d4; }

};

Fig. 7. Wrapper classes interface for ATLAS data

We want to implement a routine to select an edge from a 3D point (if this
point is near the edge). Tf we design the classes “Point3D” and “Fdge” as in
figure 8 and considering we have an array of edges as:

io<Edge> Table[MAXEDGES];,

we can implement the routine “do_anything” (figure 9) taking a “Point3D” as
a parameter and searching for the corresponding edge in the array. If the corre-
sponding edge is found, the routine asks the system to make an annotation in
the journal to replace the “Point3D7 tag for the selected “Fdge” tag for future
reexecutions.

class Point3D {
float x,y,z;
public:
Point3D (float xx, float yy, float zz)
{x=xx;y=yy; 2z =2z; }

}s
class Edge {
io<Point3D> &fvert, &svert;
public:
Edge (io<Point3D> &fv, io<Point3D> &sv)
{ fvert = fv; svert = sv; }

Fig. 8. Interfaces of classes “Pont3D)” and “Fdge”

In order to reexecute the journal successfully the routine “do_anything” must
also accept an “Fdge” tag as a parameter. This can be done in two ways:

using overloading with this routine and passing as a parameter an “lo_base”

reference which contains the ticket for the “Fdge”

void do_anything (io_base &id1)

void do_anything (io<Point3D> &input)

{
int i=0;
while ((i<N) && (!'near_edge (input, Table[i])))
{ i++; }
if (i<WN)
{ atl_substitute_ticket (input.TK(), Table[i]l.TKQ));
Compute_with_edge (Table[il);
else error ("there aren’t edges near that point');
¥

Fig. 9. Routine searching the edge to compute with it

{ Compute_with_edge (search_for_edge(idl)); }

using a routine with a generic parameter and calling always this one. This
possibility is even more flexible because we can use it also passing an edge
if the application allowed the user to input edges. (figure 10)

void generic (io_base *arg)

{
if (strcmp (arg->Type(), "Point3D") == 0)
do_anything ((io<Point3D>) *arg);
else if (strcmp (arg->Type(), "") == 0)
Compute_with_edge (search_for_edge (*arg));
else if (strcmp (arg->Type(), "Edge'") == 0)
Compute_with_edge ((io<Edge>) *arg);
else error ("type error'");
}

Fig. 10. Routine with a generic parameter

5 Extension for CSCW

The architecture of AT1.AS lends itself easily to a simple approach to transpar-
ently implementing primitive means of computer supported collaborative work
with ATT.AS applications. Tts attractive lies especially in the transparency. Once
an application has been built upon ATLAS, it can be turned into a CSCW-
supporting application by running a copy of 1t for each user, but with additional
connections established between the distr of one process (the master session)
with those of the rest (the slaves) see figure 11. By forwarding the relevant
messages between these processes, they can be made to share the same data and
state, although slave processes are granted access only to limited commands, by
decision of the owner of the master session.

In this scheme, the user processes attached to each of the running ATT.ASes
ignores if it belongs to a master or to a slave session. All it sees are messages

master session , slave session

- -

/7 td N
/ I’ B-R \\
ro -Rep) =
[| . ’ S
[N iy /“Constraintss
i Secegs’ v Solver
/ T ‘%\ (bis) ’z'
,’ "-—~ 4 Seee-”
| /distr "\
":’"' \\(slave) !
L d
1 A7 S
\ A S Input N
\ LTINS 1 Subsystem |
v f/Commandy N iy
\ 1 Subsystem) Seaaoe”
\ \\~(b|s)—/l
\ -
\ .
\ Multiuser
\

Fig. 11. ATr.AS scheme for multiuser architecture

from its copy of distr which it heeds, be they generated by user interactions or
by synthetic messages imported from a master session. Therefore the developer
of an ATT.As application need not be concerned with the collaborative side. All
he needs to do is decide whether this behavior of distr will be allowed or not

for his application.

Different users may change local aspects of the session, like the layout of the
windows, or even the point of view from which the scene is rendered. The global
identification of data covered in section 4 will ensure that messages across the
collaboration links are understood uniformly by all parties.

Upon this primary structure, we purport to build a simple collaborative envi-
ronment. It remains to design mechanisms for displaying on each party’s screen
the activity of the other parties, plus mechanisms for controlling ownership of an
execution (who is the master), validation of newcomers (how to ensure that they
are who they say they are hefore granting the connection) and to delegate (i.e.
turn one of the slaves into the new master). Other tools for such an environment,
will probably need to be developed as ATr.As modules, for example a whiteboard
tool, and even some sort of teleconferencing support. This is a direction in which
we will extend the features of ATT.AS once 1t 1s consolidated as an application

development, tool.

6 Conclusions

The work presented here 1s part of an ongoing effort. The components presented
here are already in a test phase, and several applications are presently being

built upon it at our labs. Other components not described here (like the meta
journal) are still in a development stage. The presentation omits also some rel-
evant aspects like the architecture of the virtual machine executing the AT1.AS
code, which have an impact on the system’s features but are not within the focus
of this conference.

The architecture of ATr.as where users add components as independent
processes with an external interface visible essentially as a remote procedure
call isproving effective in the construction of applications and in the reusability
of those components between similar applications.

7 Acknowledgements

AT1.AS development has been greatly facilitated by the use of the ACE-Wrappers
(see [10]) library to build the communications drivers, and also by the PCCTS
(see [11]) compiler construction tool.

This research has been supported partially by grants TTC-92-0605 and TTC-
95-0630-C05-01 of the CICYT

References

1. Gregory R. Andrews. Paradigms for Process Interaction in Distributed Pro-
grams. ACM Computing Surveys, 23(1), March 1991.

2. Roger S. Chin and Samuel T. Chanson. Distributed Object-Based Pro-
gramming Systems. ACM Computing Surveys, 23(1), March 1991.

3. Shrivastava, Mancini, and Randell. The Duality of Fault-Tolerant System
Structures. Software Practice and Experience, 23(7), July 1993.

4. Antoni Soto, Sebastia Vila, and Alvar Vinacua. A Toolkit, for constructing
command driven graphics programs. Computer & Graphics, 16(4):375 382,
1992.

5. Marta Fairén and Alvar Vinacua. ATLAS. Sistema de Comandes: Manual
tecnic (in Catalan). Report LST-95-11-T, 1995. http://www.lsi.upc.es/”
mfairen.

6. Brent B. Welch. Practical Programming in Tel and Tk. Prentice Hall PTR.
Upper Saddle River, New Jersey 07458, 1995.

7. Jon Siegel. CORBA Fundamentals and Programming. Jon Siegel. OMG,
1996.

8. Jirt Kripac. A Mechanism for Persistently Naming Topological Entities
in History-Based Parametric Solid Models. Tn Chris Hoffmann and Jarek
Rossignac, editors, Third Symposium on Solid Modeling and Applications,
pages 21 30, Salt Lake City, Utah, May 1995.

9. Marta Fairén and Alvar Vinacua. Interaccién Grafica en ATLAS (in Span-
ish). Tn Proceedings of CEIG’97, 1997.

10. Douglas C. Schmidt. The ADAPTIVE communication environ-

ment: Object-oriented network programming components for developing
client/server applications. Tn 12th Sun Users Group Conference, 1994.

. Terrence J. Parr. Language Translation Using PCCTS and C++ (A Refer-

ence Guide), June 1995. Address: http://www.parr-research.com/ parrt.

