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Abstract— The performance of several closed-loop systems
whose controllers concurrently execute in a multitasking real-
time system may be deteriorated due to timing uncertainties in
taskséxecutions, problem known as scheduling jitters. Recently,
the one-shot task model, that combines irregular sampling, a
predictor observer, and strictly periodic actuation, was present-
ed in order to remove the negative effects of jitters. However,
its successful application required noise-free samples.

In this paper we extend the one-shot task model to the case
of noisy measurements. In particular, we embed a Kalman
filter into the model taking into account that the available
measurements are not periodic. This poses the problem of
adapting the standard discrete-time Kalman filter to the case
under study, and decide when to apply the prediction and
the correction phase. Two different strategies are presented,
and their control performance and computation demand are
analyzed through real experiments.

I. INTRODUCTION

Computer-controlled control systems are often implement-

ed in small microprocessors enabled with real-time technol-

ogy. In this scenario, the standard approach for real-time

control systems considers the implementation of each control

algorithm as hard real-time periodic task [1], where sampling

and actuation occurs at the beginning and end of each job

execution. If only one task is executed, the strict sampling

and actuation periodicity mandated by discrete-time control

theory [2] is accomplished.

However the implementation of multiple control tasks in

a single microprocessor generates job executions prone to

violate the periodic control demands due to the introduced

timing uncertainties in jobs execution times, phenomena

known as scheduling jitters. It has been shown that schedul-

ing jitters deteriorate control performance [1].

To overcome this limitation several solutions can be found

in the literature. In particular, a novel control task model,

named “one-shot” task model, was presented with the ob-

jective of removing the degrading effects that jitters have in

control performance [3]. It is built upon control theoretical

results that indicate that standard linear discrete time control

laws can be implemented considering only periodic actua-

tion. Hence samples are not required to be periodic, and

control signals are computed by applying a state feedback

control law to the predicted state at the actuation time.
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From the scheduling point of view, the new task model can

be seamlessly integrated into existing real-time scheduling

theory and practice. However, its operation relies on predic-

tions computed from each sample. If samples are corrupted

by noise, its operation quickly deteriorates.

In this paper we extend the one-shot task model to the

case of noisy measurements. It is well known that systems

are noise corrupted and that sensors in a control loop do

not provide exact readings of desired quantities [4]. In these

cases, filtering is desirable since it removes the noise from

signals while retaining the valuable information. The Kalman

filter [5] has been proved to be a useful tool for inferring the

missing information from indirect and noisy measurements.

The contribution of this paper is to embed a Kalman filter

into the one-shot task model. The standard approach for

the implementation of a discrete-time Kalman filter assumes

strict periodic sampling and actuation. However, in the one-

shot task model, the available measurements are not periodic.

This poses the problem of adapting the standard Kalman

filter to the case of irregular sampling, and decide when to

apply the prediction and the correction phase. For this case,

an asynchronous Kalman filter is required. Two different

strategies are presented, and their control performance and

computation demand are analyzed through real experiments.

The application of Kalman techniques for systems with

diverse type of non-periodic sampling can be found in the

literature, such as for multirate control systems, e.g. [6], [7],

or event-based control systems, e.g. [8], [9]. However, non

of them applies to the problem tackled in this paper.

The rest of this paper is structured as follows. Section II

introduces the theoretical aspects of the one-shot task model

and the Kalman filter. Section III presents the novel strategies

for implementing the Kalman filter in the one-shot task

model. Sections IV and V describe the experimental setup

and results, respectively. Section VI concludes the paper.

II. PRELIMINARIES

II-A. Standard control task model

Consider the state-space model of a linear time-invariant

discrete-time system with sampling period h [2]

xk+1 = Φ(h)xk + Γ(h)uk

yk = Cxk,
(1)

where xk is the plant state, uk and yk are the inputs and

outputs of the plant, matrix C ∈ R
p×n is the output matrix,

and matrices Φ(t) and Γ(t) are obtained using

Φ(t) = eAt, Γ(t) =
∫ t

0
eAsBds, (2)
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Fig. 1. Control task models

with t = h, where A ∈ R
n×n, B ∈ R

n×m are the system

and input matrices of the continuous-time form

dx(t)
dt = Ax(t) + Bu(t)
y(t) = Cx(t).

(3)

For standard closed-loop operation of (1), the control

signal uk is given by

uk = Lxk with L ∈ R
1×n, (4)

where L is the state feedback gain obtained using standard

control design methods from matrices Φ(h) and Γ(h).
Model (1) can be augmented to cope with a time delay

modelling an input/output latency that appears due to the

computation of the control algorithm. The standard model

that incorporates a time delay τ , with τ ≤ h, is [2]

xs,k+1 = Φ(h)xs,k + Φ(h − τ)Γ(τ)uk−1 + Γ(h − τ)uk.

(5)

Model (5) has been often taken as the underlying standard

control task model for design and analysis of real-time con-

trol systems. This model assumes a time reference given by

the sampling instants with a fixed time delay from sampling

to actuation (see Fig. 1-a). It mandates to periodically sample

and actuate.

II-B. One-shot task model for real-time control systems

In a multitasking real-time control system, the timing

demanded by the control model (5) is often violated due to

the irregular sampling and actuation that scheduling jitters

introduce. A solution to this problem, from the task model

perspective, can consist on providing synchronization at

actuation instants rather than at the sampling instants, as

facilitated by the one-shot task model.

In the one-shot task model the time elapsed between con-

secutive actuation instants, named tk−1 and tk, is periodic,

and h = tk − tk−1 is defined as the actuation period.

Within this time interval, the system state is sampled, named

xs,k ∈ (tk−1, tk), and the sampling time recorded, ts,k. The

difference between this time and the next actuation time

τk = tk − ts,k (6)

is used to estimate the state at the actuation instant as

x̂k = Φ(τk)xs,k + Γ(τk)uk−1. (7)

Then, using the estimated state, the control signal is

uk = Lx̂k with L ∈ R
1×n (8)

where L is the original controller gain as in (4). The control

signal uk is held constant within actuation instants.

A control strategy using (6)-(8) relies on the time reference

given by the actuation instants, if uk is applied to the plant

by hardware interrupts. In addition, samples are not required

to be periodic because τk in (6) can vary at each closed-loop

operation, as illustrated in Fig. 1-b. The interested reader is

referred to [3] for further reading on this task model.

II-C. Kalman filter for noisy signals

The discrete-time Kalman filter addresses the general

problem of trying to estimate the system state of a discrete-

time controlled plant. Therefore, for the filter implementation

we can enhance the model (1) by adding process and

measurement noise (wk and vk respectively) as in

xk+1 = Φxk + Γuk + wk

yk = Cxk + vk.
(9)

The algorithm for implementing the Kalman filter is divid-

ed in two phases: time update (predictor) and measurement

update (corrector). The predictor phase uses the previous

estimation to produce the a priori estimation of the system

state (equations (10) and (11)). In the corrector phase,

measurement information from the system output is used to

refine the prediction and obtain the a posteriori estimation

(equations (12), (13) and (14)). The a posteriori estimation

is used in the next predictor phase.

In the predictor phase, if we consider that we want to

estimate the next system state as in (9), then in the predictor

phase, the a priori estimation of the system state is

x̂−

(k+1) = Φx̂(k) + Γu(k) (10)

where Φ and Γ represent the system dynamics from (9), x̂(k)

defines the current a posteriori estimate of the process state,

and u(k) represents the current input. The a priori estimation

of the covariance error is

P−

(k+1) = ΦP(k)Φ
T + Q (11)

where P(k) is the current a posteriori estimate of the co-

variance error, and Q is the constant covariance value of the

process noise.

In the corrector phase, the next Kalman gain value

K(k+1) =
CP−

(k+1)

CP−

(k+1)C
T + R

(12)
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is obtained prior to the calculation of the a posteriori

estimation, where K(k+1) is the Kalman gain, C defines the

constant measurement gain as in (9), and R is the covariance

value of the measurement noise. Then, the a posteriori

estimation of the next state is

x̂(k+1) = x̂−

(k+1) + K(k+1)(y(k) − Cx̂−

(k+1)) (13)

where y(k) is the measured output of the system as in (9).

The a posteriori estimation of the covariance error is

P(k+1) = (I − CK(k+1))P
−

(k+1) (14)

where I is the identity matrix.

III. DESIGN STRATEGY

The implementation of a discrete-time Kalman filter is

straightforward if strictly periodic sampling is ensured. How-

ever, integrating a Kalman filter with the one-shot task model

raises some problems that require a detailed analysis.

The Kalman filter algorithm has two phases which are

prediction and correction. The correction must take place at

the sampling instant, since we require a process measurement

in order to execute the correction. However the one-shot task

model makes the synchronization at the actuation instants

and sampling is accepted to be non-periodic. Furthermore the

one-shot task model uses a time difference (6) to estimate the

state at the actuation instant (7), in addition to the estimations

and predictions required by the Kalman filter algorithm.

By considering these aspects, two different approaches to

embed a Kalman filter with the one-shot task model were

identified.

The first approach implements the Kalman correction just

from sampling to actuation instants, and the second approach

considers the complete sampling interval to implement the

Kalman algorithm. For the rest of this paper, we identify the

first approach as the half Kalman filter and the second one

as the complete Kalman filter.

III-A. Half Kalman filter

In this approach the Kalman filter is split into two parts. In

the first one, from sampling (ts,k) to actuation (tk), only the

predictor phase is used. In the second one, from actuation

(tk) to next sampling (ts,k+1), the predictor and the corrector

phases are executed, as illustrated in Fig. 2-a. It is important

to highlight that, during the first part, the corrector phase

cannot be used since process measurements values, used for

corrections, are only available at sampling instants and not

at actuation instants.

Hence, if only predictor applies from sampling (ts,k) to

actuation (tk), equations (10) and (11) transform to

x̂−

k = Φ(τk)x̂s,k + Γ(τk)uk−1 (15)

P−

k = Φ(τk)Ps,kΦ(τk)T + Q. (16)

In the second part, from actuation (tk) to next sampling

(ts,k+1), the Kalman predictor and corrector apply. First, the

predictor from (10) and (11) is redefined as

x̂−

s,k+1 = Φ(h − τk+1)x̂
−

k + Γ(h − τk+1)uk (17)
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Fig. 2. Kalman filter design approaches

P−

s,k+1 = Φ(h − τk+1)P
−

k Φ(h − τk+1)
T + Q, (18)

and then from (12), (13) and (14), the corrector phase is

formulated in this strategy as

Ks,k+1 =
CP−

s,k+1

(CP−

s,k+1C
T + R)

(19)

x̂s,k+1 = x̂−

s,k+1 + Ks,k+1(ys,k+1 − Cx̂−

s,k+1) (20)

Ps,k+1 = (I − CKs,k+1)P
−

s,k+1, (21)

Then, the one-shot task model (7) and (8) can be imple-

mented. Notice that the estimation of the state at the actuation

instant has been already obtained in (15). Hence the control

signal is calculated by

uk = Lx̂−

k . (22)

III-B. Complete Kalman filter

This approach uses a Kalman filter to predict and correct

from current sampling (ts,k) to next sampling (ts,k+1). In

addition, the one-shot task model requires an estimation from

sampling (ts,k) to actuation (tk), as illustrated in Fig. 2-b.

If the complete sampling interval is considered, the

Kalman a priori estimation can be obtained by substitut-

ing (15),(16) into (17),(18) respectively, then the following

predictor phase equations are obtained

x̂−

s,k+1 = Φ(h − τk+1 + τk)x̂s,k

+Φ(h − τk+1)Γ(τk)uk−1

+Γ(h − τk+1)uk (23)

P−

s,k+1 = Φ(h − τk+1 + τk)Ps,kΦ(h − τk+1 + τk)T

+Φ(h − τk+1)QΦ(h − τk+1)
T + Q. (24)
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Notice that u is not constant over the sampling inverval.

Hence, eq. (23) considers uk−1 and uk. Also, the sampling

interval is not constant, and it varies according to h−τk+1+
τk at each closed-loop operation.

From (12), (13) and (14), the corrector phase is formulated

in this strategy as

Ks,k+1 =
CP−

s,k+1

(CP−

s,k+1C
T + R)

(25)

x̂s,k+1 = x̂−

s,k+1 + Ks,k+1(ys,k+1 − Cx̂−

s,k+1) (26)

Ps,k+1 = (I − CKs,k+1)P
−

s,k+1. (27)

According to the one-shot task model, the control signal

is calculated from the estimation of the state at the actuation

instant, which is taken from the a posteriori state estimation

at sampling instance. Therefore, equations (7) and (8) of the

task model are redefined as

x̂k = Φ(τk)x̂s,k + Γ(τk)uk−1 (28)

uk = Lx̂k. (29)

III-C. Discussion

At first sight both approaches are similar and it is expected

that both will produce similar results. However, in a deeper

analysis, there are some differences that may affect the

computational demand of their implementation.

The implementation of the complete Kalman filter requires

to calculate Φ(·) as a function of three different time values,

i.e., Φ(τk), Φ(h − τk+1), Φ(h − τk+1 + τk). Meanwhile, in

the half approach only two Φ(·) values are required, i.e.,

Φ(τk), Φ(h − τk+1). This may increase the computational

demand for the complete approach. On the other hand, the

half Kalman filter requires to obtain x̂−

k previous to x̂−

s,k+1,

which may imply an additional operation. However x̂−

k is

required anyway by the one-shot model.

IV. EXPERIMENTAL SET-UP

An unstable plant in the form of a double integrator

electronic circuit is controlled by a control task executing

on the Erika real-time kernel [10]. The executing platform

is the full Flex board [10] equipped with a dsPIC micro-

processor (Fig. 3-bottom).

IV-A. Controlled plant

The electronic double integrator is illustrated in Fig. 3-

top. In this circuit, according to a specific set-point, the

PWM, acting as actuator, adjusts the duty cycle to provide the

proper output voltage (V1), which is read through the analog-

to-digital converter. The controller objective is to have the

circuit output voltage V1 tracking random set point changes.

Considering the component values R1/2 = 1kΩ, R1 =
R2 = 100kΩ, and C1 = C2 = 420nF, the following model

for the plant can be obtained,
[

v̇1

v̇2

]

=

[

0 −23,8
0 0

] [

v1

v2

]

+

[

0
−23,8

]

u

y =
[

1 0
]

[

v1

v2

]

.

(30)

Fig. 3. Double integrator circuit scheme and implementation set-up

IV-B. Controller design

The controller gain L corresponds to the discrete Linear

Quadratic Regulator for (30), which minimizes a discrete

cost function equivalent to the continuous cost function

J =

∫

∞

0

(xT Q1cx + uT Q2cu)dt (31)

where the weighting matrices Q1c and Q2c are the identity.

Considering a sampling period of h = 50ms, the optimal

controller gain is L =
[

0,3951 −0,9728
]

.

The Kalman filter was designed taking into account the

noise covariances Qn = E(w · wT ) = 2 · 10−7 and

Rn = E(v · vT ) = 8 · 10−5 extracted from the electronic

circuit of the experimental setup, where w and v are the

plant noise and the measurement noise, respectively. Off-line

sample measurements data, using the dsPIC and considering

sampling periods of h = 50ms, were taken in order to

determine the measurement noise covariance. Plant noise

covariance was calculated from data obtained from direct

plant measurements with calibrated instruments. In both

cases, the data obtained corroborate the presence of white

noise.

IV-C. Kalman algorithm implementation

The implementation of the half Kalman algorithm and

the complete Kalman algorithm into the dsPIC processor,

requires to calculate Φ(·) and Γ(·) as function of different

time values. These calculations represent the most time

consuming operations for the processor. Two strategies were

implemented.

The first one, called “generic function”, allows computing

Φ and any Γ for any time value. The second one, called

“specific function”, uses a look-up table to obtain the Φ and

Γ for specific time values. The generic function spends more

processor time, but with the advantage of accepting any time

value. The specific function is faster, but it requires memory

for storing the table.
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Fig. 4. Removing noise with the Kalman filter

V. EXPERIMENTAL RESULTS

The experimental results are divided in three groups. The

first two experiments show that the Kalman filter and the one-

shot task model preserve their benefits when both are inte-

grated in a control loop. In the third group of experiments, the

two different implementations of the Kalman filter (half and

complete) with the one-shot task model are compared each

other and with other Kalman filter implementations in terms

of control performance. Finally, the resource demand of the

half and complete Kalman implementation is also analyzed.

V-A. Kalman filter results

The objective of this experiment is to validate that the

Kalman filter implementation integrated with the one-shot

task model is able to effectively estimate the system states

from a noisy signal. The half Kalman one-shot controller was

used in this evaluation. Similar results are found with the

complete Kalman. Fig. 4 compares the noisy captured data

from the plant (top) with the estimated states obtained with

the half Kalman filter (bottom). As expected, the Kalman

filter effectively removes the noise from the signal. Note that

reference changes use small values (−0,2volts to 0,2volts)

to appreciate the noisy signal.

V-B. One-shot controller results

For this experiment, the controller task has the presence

of random timing variations in the form of scheduling

jitters. Jitters produce irregular sampling periods ranging
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Fig. 5. Controllers response with jitters
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from 0 to 20ms. The system response of the half Kalman

one-shot controller is compared with a standard controller

(Fig. 5) in order to assess whether embedding the Kalman

filter jeopardizes the benefits of the one-shot task model

in removing the jitters effects. As it can be seen in the

figure, the control performance of the standard controller is

considerably degraded while the one-shot controller achieves

the same performance than the case without jitters.

V-C. Kalman gain evolution

The Kalman gain values during the previous experiment

(with jitters) were obtained in order to certificate the correct

implementation of the Kalman filter. Fig. (6) shows the

evolution of the first element of the Kalman gain for the half

and complete approaches compared with the Kalman filter’s

gain using a standard controller with no jitters. It can be
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TABLE I

EXPERIMENTAL CONTROL PERFORMANCE

Implementation Approach Control Performance

(A) Kalman with standard controller (no jitters) 4.4517
(B) Half Kalman with one-shot controller 4.4523
(C) Complete Kalman with one-shot controller 4.4538
(D) Kalman with standard controller 5.0645
(E) No Kalman with standard controller 7.5359

noticed that the values are similar despite of small variations

for the half and complete approaches.

V-D. Control performance evaluation

A total of five different implementation approaches, in-

cluding the half and the complete Kalman filter, were eval-

uated in terms of control performance. For each approach,

performance was measured with a discrete-time control cost

equivalent to the continuous cost defined in (31).

A set of ten different experimental scenarios were elaborat-

ed in order to cover a wide variety of system conditions. Each

scenario considers different jitters values, and different set-

points (reference) amplitudes and frequencies. The same set

of scenarios was applied to each approach, with the exception

of the first approach (A) where no jitters were applied, since

this implementation approach serves as a reference (ideal

case) for the experimental evaluation. Average values of the

ten scenarios (smaller values means better performance) are

presented on Table I.

The results shows that the half Kalman (B) and the com-

plete Kalman (C) implementations using the one-shot con-

troller has no meaningful differences in their performance.

And both approaches have practically the same performance

as the ideal case (A), even when (B) and (C) includes jitters.

The Kalman filter implementation in the standard controller

(D) has a worse performance compared with (B) and (C) as

expected because jitters affects its performance. Finally, it

is interesting to notice that if a standard controller is used

without Kalman (E), the jitters degrading effect is greater

than the one obtained with the use of Kalman (D).

V-E. Resource demand evaluation

Fig. 7 shows the accumulated execution time during a

period of 4 seconds for the half and complete Kalman

implementations using the generic or the specific function.

In both cases the half Kalman algorithm consume less

execution time due less operations are required, as discussed

in subsection III-C. Now, when the specific function is used

the difference is reduced considerably but at the expenses of

increasing the memory demand. In this example, considering

a range of timing variations from 0 to 50ms, and a time

granularity of 1ms, the memory required for storing the loop-

up table is less than 1Kb.

VI. CONCLUSIONS

This paper has presented the integration of Kalman fil-

ter techniques with the one-shot task model. Experimental

results over a noisy plant have demonstrated that their
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Fig. 7. Accumulated execution time

integration preserves their own benefits: noise removal and

jitters effects elimination. Two different Kalman implemen-

tation approaches have been presented with similar control

performance results but slightly different resource demands.

Future work will focus on extending this integration in the

context of networked control systems.
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