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Abstract
Understanding gas transport processes is one of the key issues in the assessment of radioactive waste repository performance and is the focus of this research. To this aim, this research programme was started with the 
following specific objectives. 1) To develop and calibrate an experimental set-up to perform controlled flow-rate gas injection experiments using a high-pressure triaxial cell to apply isotropic/anisotropic stress states. 2) To 
carry out a series of tests on Opalinus clay OPA samples to study the conditions under which gas breakthrough processes occur,  to analyse the influence of the gas injection rate, the stress state, the orientation of rock 
discontinuities and other relevant hydro-mechanical variables (porosity, degree of saturation, …), as well as the observation of the induced desaturation (pore water displacement by gas), ingoing and outgoing gas fluxes, 
aperture and preferential paths created, and so on.

Density around 2.34 Mg/m3

Density of solids
Dry density

2.70 Mg/m3

around 2.20 Mg/m3

Average void ratio 0.21
Average porosity 0.17
Water content 6.6% to 6.9%
Degree of saturation
Total suction
Vert. water 
permeability
Estimated air entry 
value (dominant pore 
MIP)

around 90%
15 to 57 MPa
4.2x10-13 m/s

22 MPa
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Another air injection ramp using 2.44x10-2 mL/min was performed to increase bottom air pressure from 3.5 
MPa to 4.5 MPa. Injection pressure was not able to increase over 4.5 MPa, probably due to incipient 
desaturation effects. The final degree of saturation will be estimated after dismantling. The next test will be 
carried out using a recovery system partially filled with a known mass of water (air / water interface and 
electronic balance intended to detect sample pore water displacement by gas).

Undisturbed OPA cores (dry coring and cast in resin) were recovered from ‘MI niche’ in the shaly facies and 
oriented normal to the bedding (Mont Terri Underground Rock Laboratory in Northern Switzerland). Samples 
were pre-cut under dry conditions with a band saw and then prepared with a lathe to match a circular cross-
section with 50 mm in diameter and a maximum height of 25 mm.
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Each cap of the instrumented high-pressure triaxial cell has inlet and outlet lines, prepared for gas and liquid 
connections. The equipment uses four automatic pressure / volume controllers, two for gas (injection and 
extraction at downstream point), and two for water, which can be used in combination (for example, air 
injection and water pressure at downstream). The gas injection pressure / volume controller has a maximum 
range of 20 MPa (volume 500 mL), and is able to control volume rates between 10-4 mL/min and 100 mL/min 
(volume resolution < 5 mm3). The figure shows a picture of the developed triaxial cell jointly with the test set-
up.
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Saturation of the sample was ensured using controlled water gradient between bottom and top ends of the 
sample at constant isotropic confining stress (3 MPa). Increasing steps and ramps of backpressure (bottom) 
were applied up to a maximum of 1.0 MPa (see figure on the left). Top cap was maintained at 0.2 MPa. This 
last condition was maintained for more than one month to ensure approx. equivalent inflow and outflow liquid 
volumes (stationary flow conditions, as shown on the right hand figure). The water permeability of the material 
measured with inflow and outflow data was around 4.2x10-13 m/s, as indicated in the next figure (other 
references report 1 to 5x10-13 m/s).
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After saturation, the confining pressure was increased in a ramp to 5 MPa. More than one week was let to 
dissipate any excess pore water pressure to atmospheric conditions. Then, top and bottom water lines were 
drained. Starting from an initial gas pressure of 2 MPa, the bottom pressure of the air injection system was 
increased by using controlled volume rate: 1.22x10-2 mL/min. At around three weeks the pressure was at 3.5 
MPa (as shown in the bottom figure). The top cap was maintained at 0.02 MPa. A power cut occurred after 
this initial period. Afterwards, confining pressure was restored by a pressure regulator, which malfunctioned 
(confining pressure decreased) and originated an injection pressure decay due to air passage between the 
neoprene membrane and the sample (air passage occurred at a difference between confining pressure and 
air pressure of 0.66 MPa) 

Fitting the constant mass system for 
different periods allowed estimating the 
initial injection volume of air (piston and 
air lines), as shown in the figure on the 
left.

On the other hand, deviations from the 
perfect gas law for a constant mass 
system in the injection point, allowed 
estimating the injected mass of air into 
the sample. The bottom figure plots the 
cumulative injected and outflow air 
masses.  
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