G E M : Requirement-driven Generation of ETL and
Multidimensional Conceptual Designs

Oscar Romero Alkis Simitsis Alberto Abelld
Universitat Politécnica de HP Labs, Palo Alto, CA, USA Universitat Politécnica de
Catalunya, BarcelonaTech alkis@hp.com Catalunya, BarcelonaTech

Barcelona, Spain
oromero@lsi.upc.edu

ABSTRACT

At the early stages of a data warehouse design project, the
main objective is to collect the business requirements and
needs, and translate them into an appropriate conceptual,
multidimensional design. Typically, this task is performed
manually, through a series of interviews involving two dif-
ferent parties: the business analysts and technical design-
ers. Producing an appropriate conceptual design is an error-
prone task that undergoes several rounds of reconciliation
and redesigning, until the business needs are satisfied. It is
of great importance for the business of an enterprise to facil-
itate and automate such a process. The goal of our research
is to provide designers with a semi-automatic means for pro-
ducing conceptual multidimensional designs and also, con-
ceptual representation of the extract-transform-load (ETL)
processes that orchestrate the data flow from the operational
sources to the data warehouse constructs. In particular, we
describe a method that combines information about the data
sources along with the business requirements, for validating
and completing —if necessary— these requirements, produc-
ing a multidimensional design, and identifying the ETL op-
erations needed. We present our method in terms of the
TPC-DS benchmark and show its applicability and useful-
ness.

Keywords: DW, ETL, Multidimensional Design, Concep-
tual Design.

1. INTRODUCTION

“A gemstone or gem is a piece of attractive min-
eral, which —when cut and polished— is used to
make jewelry or other adornments. Most gems
are hard, but some soft minerals are used in jew-
elry because of their lustre or other physical prop-
erties that have aesthetic value.” (Wikipedia)

As most of the raw materials and resources, gems are out
there in large varieties and quantities, but we need to dig
and work hard in order to get them and make profit out of
them.

Barcelona, Spain
aabello@essi.upc.edu

Data are the gems of the enterprise. They are available
at large quantities, but we need to “dig” for recognizing the
relevant and useful ones, and to adjust and polish them for
making our valued assets, our “jewelry”. The jewelry for an
enterprise is any tool or means that facilitates strategic de-
cision making and helps in satisfying business needs. Such
a tool is a data warehouse (DW) that organizes the raw,
source data in a way that enables decision support. Build-
ing a DW requires two essential constructs: the multidimen-
sional (MD) design of the target data stores and the extract-
transform-load (ETL) process that populates the target data
stores from the source ones.

Nowadays, the construction of conceptual MD and ETL
designs is an error-prone, manual process that undergoes
several rounds of reconciliation and redesigning, until the
business needs are satisfied. It is essential for the business
of an enterprise to facilitate, speed up, and automate these
designs process.

This paper presents a system called GEM (Generating
Etl and Multidimensional designs). GEM starts with a set
of source data stores and business requirements —e.g., busi-
ness queries, service level agreements (SLAs)— and based on
these, it produces a MD design for the target data stores,
along with a set of ETL operations required for the popula-
tion of the target DW.

The semantics, characteristics, and constraints of data
sources are represented by means of an OWL ontology. The
business requirements are expressed in a structured form.
We consider functional requirements that drive the gener-
ation of the MD design constructs and also, soft or non-
functional requirements —e.g., freshness, recoverability, availa-
bility— that can be used for giving “lustre” and adding value
to our designs. For example, based on a freshness require-
ment we may decide which data source to use and according
to a recoverability requirement we may choose to enrich the
ETL process with recovering techniques.

For each business requirement, we identify the relevant
part of the data sources (e.g., concepts, attributes, proper-
ties). If we identify conflicts, we either suggest corrections
or ask for user feedback. The output of these tasks is an
annotated subset of the source ontology that corresponds to
a business requirement. Next, we classify the relevant con-
cepts as dimensional or factual and validate the result. We
also explore schema information for identifying the respec-
tive ETL operations. Finally, we consolidate the individual
designs, one for each business requirement, and get the con-
ceptual MD and ETL designs.

Contributions. In particular, our main contributions
are as follows.

e We present GEM, a system that facilitates the produc-
tion of ETL and MD designs, starting from a set of
business requirements and source data stores. To the
best of our knowledge, GEM is the first approach to-
wards the semi-automatic generation of both the ETL
and MD conceptual designs.

e We propose algorithms for computing closure, finding
and validating an ontology subset as a MD schema,
and identifying ETL operators.

e We evaluate our method using the schema and con-
structs of the TPC-DS benchmark and show the qual-
ity of the GEM designs.

Outline. The rest of the paper is structured as follows.
Section 2 formulates the problem at hand and presents the
GEM architecture. Sections 3 and 4 discuss the valida-
tion and completion of business requirements, respectively.
Then, Section 5 describes the validation of the MD design
and Section 6 the identification of ETL operations. Section 7
presents the conciliation of designs corresponding to individ-
ual business requirement. Section 8 evaluates GEM using
the TPC-DS benchmark and Section 9 presents the related
work.

2. ¢em IN ANUTSHELL

This section gives an overview of our system, GEM. Given
two inputs, namely information about the operational sources
and a set of user requirements, our system produces two de-
signs: one that represents the MD design of the target DW
constructs and one that represents the conceptual ETL flow
that interconnects the target constructs to the operational
sources.

2.1 Inputs

Source data stores. We capture the semantics of the
data sources in terms of an OWL ontology. In previous work,
we have shown that a variety of structured and unstructured
data stores can be elegantly represented as graphs, and we
have described how we can construct an appropriate ontol-
ogy for such data stores by integrating a domain vocabulary
with the data sources’ vocabulary [18]. Here, due to space
consideration, we assume that we do have an OWL ontology
annotated with the semantics of the operational data stores
for each concept and property. For further details on how
we get this ontology from the sources, we refer the interested
reader to our past work [18]. Figure 3 (page 8) depicts an
example ontology based on the TPC-DS schema [20].

Business requirements. In typical DW and ETL en-
gagements, the design starts from a set of functional and
non-functional requirements (respectively f-req and nf-req,
from here on) expressing business needs. Example require-
ments could be “examine stocks provided by suppliers” or “a
report on total revenue per branch should be updated every
10 minutes”. Such requirements often come as service level
agreements (SLAs) or business queries and are expressed in
various forms, either structured or unstructured. Much work
has been done in capturing and representing business needs.
For example, SLAs expressed as free-form text, require nat-
ural language processing (NLP) techniques for being inter-
preted in a machine processable way. How to capture such

requirements are out of the scope of this work. Here, with-
out loss of generality, we consider requirements expressed in
a structured way (e.g., by means of i* profiles [22]). Such
requirements can be represented in an XML file of a specific
structure.

This XML file contains two main parts. The first part in-
volves functional or information requirements that are cap-
tured by identifying the measures and dimensions of interest.
For example, stocks would be the measure and suppliers the
dimensional concept.

< measures >< concept id = “stocks’’/>< /measures>
< dimensions >< concept id = “suppliers’’/>< /dimensions>
The second part, involves the non-functional requirements
of interest for each concept indicated by the functional re-
quirements. For example, the measures used by the revenue
report (i.e., the respective view) should conform to a non-
functional requirement for freshness that requires that the
corresponding data should be updated at least every 10 min-
utes.
< concept id = "v_revenue® >< nf.req>

< freshness format = “HH24:MI1:SS” > &It;00:10:00 < /freshness >
< /nforeq>< /concept>

Although a detailed description of the XML structure for
representing such requirements is prohibited due to space
consideration, its content is as follows.

e Levels of detail, which represent data granularity. The
user may provide a discretization process for continu-
ous (or with high cardinality) data types.

e Descriptors, which carry out selections over them (i.e.,
slicers). Type of comparison carried out; e.g., “year =
YYYY”.

e Measures, which should be analyzed. Aggregation func-
tion and a partial order between them; the latter is
needed when we perform different aggregations (one
order per dimension). In doing so, we would be able
to distinguish between, for example, ‘average of sums’
and ‘sum of averages’.

We may also have non-functional requirements for each
one of the above three or even for the whole design. All in
all, the expressivity we may capture is equivalent to that of
the dimensional expressions introduced in [5], although our
XML structure is conceived to capture multidimensional re-
quirements over a domain (i.e., non-multidimensional) on-
tology.

As a remark, different requirements affect different design
levels. For example, a freshness requirement indicates how
often an ETL flow should run in order to meet the required
latency in updating the DW. However, such decision affects
the execution level and should be taken under consideration
at the physical model. Nevertheless, we may need to use this
requirement during the conceptual design as well. For ex-
ample, assume two source data stores containing the same
data but placed in different locations for business reasons
(e.g., two snapshots placed in two different branches of the
organization). Assume also that the first data store is up-
dated every hour and the second every 5 minutes or that the
congestion of the network coming from the first data store
is significantly greater than the one coming from the sec-
ond source. If we have such information, then based on the
freshness requirement we need to honor for our target data
stores, we should decide to pull data from the second data

000.000

ff
Data Warehouse i

Conceptual Schema ETL Process

l Conceptual ETL

Operations

AOS and iy
contexecees P
Ontology 7 -y
Subset < - Operator
(A0S) ' s Identification
Annotated S
Ontology Multidimensional I
== - = Tagging
. Requirements : Dﬁsrator
Completion H ibrary
'

Annotated

Ontology, =
mappings & =
Data source =

Data Sources features

Q susiness [(@> Requirements
Requirements | —— Validation
Designer

A
4

legend:

]

]

'

: alternative, >> input/ -
s scenarios output

]

]

process

13 ! suggestions == o PO

Figure 1: System architecture

store. Clearly, such decision is to be taken at the conceptual
level.

However, we are interested in capturing all requirements.
Those that cannot be used at the conceptual level (which is
the focus of this paper) should be transferred to the subse-
quent, more detailed design levels, along with the outcome
of this process; i.e., the conceptual ETL and MD designs.
Hence, the designer of the logical and physical models does
not need to revisit and reinterpret the original set of business
requirements.

2.2 System Architecture

The process of producing the ETL and MD designs is
a semi-automatic process comprising five main stages (see
Figure 1).

Stage 1: Requirement validation. First, the system
checks if there is a mismatch among the business require-
ments (either functional or non-functional) and the data
sources. In case of mismatch, it identifies the possible prob-
lems or it may suggest relaxation of the requirements.

Stage 2: Requirement completion. After considering
the business requirements, the system complements them
with additional requirements based on the information gath-
ered from the sources. This stage identifies intermediate
concepts that are not explicitly stated in the business re-
quirements, but are needed in order to answer the f-regs.
Hence, the system may suggest new analysis dimensions or
facts of interest to the user. User feedback is welcomed for
ensuring correctness and compliance to the end-user needs.

Stage 3: Multidimensional tagging. Next, we tag the
concepts identified by the previous stages, as either factual
or dimensional and validate the correctness of the f-req tag-
ging according to MD design principles. Hence, we check
two issues: i) first, whether the factual data is arranged in a
MD space (i.e., if each instance of factual data is identified
by a point in each of its analysis dimensions) and second,
ii) whether the data summarization is correct by examining
whether the following conditions hold [9]: (1) disjointness
(the sets of objects to be aggregated must be disjoint); (2)
completeness (the union of subsets must constitute the en-
tire set); and (3) compatibility of the dimension, the type of
measure being aggregated and the aggregation function.

Stage 4: Operator identification. The ETL opera-
tions are identified in three phases. First, we use the annota-
tions generated by the previous steps for extracting schema
modification operations. Then, we complement the design

with additional information that might be found in the sources
and with typical ETL operations regarding surrogate key
and slowly changing dimensions.

Stage 5: Conciliation. The previous stages run once
for each f-req. Eventually, the individual results obtained
per f-req are conciliated in a single conceptual MD schema
and a single ETL flow.

2.3 Output

At the end, we produce a conceptual, MD schema com-
posed by facts and dimensions. In addition, we identify the
ETL operations needed in order to interconnect the source
data stores to the MD constructs.

3. REQUIREMENT VALIDATION

Starting from the inputs discussed in Section 2.1, we val-
idate the business requirements w.r.t. the available data
sources, as follows: (a) we tag the ontology concepts cor-
responding to the f-req at hand and identify any mapping
conflicts, and (b) we include and then validate assertions
regarding nf-reqs and the data sources features.

Validating f-req. The input XML file contains three
kinds of concepts: measures, levels, and descriptors (see
Section 2.1). So, first, we tag the concepts in the input on-
tology with corresponding labels. Then, we check whether
the tagged concepts can be mapped to the sources (either
directly or by means of ETL operators). When an error oc-
curs, we ask for user feedback. Due to space consideration
we omit the formal description of the algorithm. A sketch
of the algorithm is as follows:

(1) If a tagged concept is mapped to the sources (i.e., it
has an annotated mapping) then no further action is needed.

(2) Else, if the tagged concept is involved in a concept
taxonomy: (2.1) if any of its subclasses have a mapping, we
annotate the tagged concept with ‘renaming’ and ‘union’.
(2.2) Otherwise, if any superclass has a mapping, we use the
general concept mapped and tag the required concept with
‘renaming’ and ‘selection’ (if a discriminant function has not
been specified in the input XML file then, user feedback is
required). If the tagged node has several superclasses, then
‘minus’ or ‘intersection’ are also considered. We detail these
in Section 6.

(3) Else, if exists a (transitive) one-to-one association to
a mapped concept then, GEM suggests it as a potential syn-
onym. If the suggestion is accepted, the f-req is updated
with the synonym concept.

(4) In any other case, the concept is not available in the
data sources.

Validating nf-req. Nf-req are used either for helping
with making design choices during the conceptual design or
for annotating respective design constructs (e.g., operators,
concepts, even flows), so that they can be used in later, more
detailed designs (i.e., the logical and physical models). As
discussed earlier, an nf-req is attached to a specific concept
or property (if it concerns a subflow or the whole ETL flow,
then it involves a part of the annotated ontology and it will
be used in later designs). Thus, we treat them in a similar
way as the functional requirements.

Recall the example from Section 2.1: “freshness <10min
for the revenue report”. Assume that this report maps to
a source concept sales (based on the view definition that
populates this report) and also that sales has a property
update_freq with value “every 30min”. Then as we map the

nf-req to the source, we check whether freshness is satis-
fied with the update_freq (it does not in this case) and we
proceed accordingly.

For doing such mappings, we need to know how the nf-req
relate to source properties or features. For example, here, we
should know the relationship < freshness, update_freq>.

Similarly, we may have < freshness, f(network_congestion)>

(that is a function over network_congestion), < freshness,-
estimated_extraction_ time>, and so on. For handling such
issues, we assume a vocabulary that relates nf-req to quan-
titative metrics. For a more detailed discussion on mapping
qualitative to quantitative metrics, we refer the interested
reader to [3].

If we find a problem (like in this example), we inform the
designer. By reasoning, we are also able to identify alter-
native scenarios involving relevant sources. For example,
a mirror source concept about sales residing on a different
location.

4. REQUIREMENT COMPLETION

This stage takes as input the annotated ontology produced
in the previous stage and it completes the requirements re-
garding the sources. First, it identifies intermediate concepts
that are not explicitly stated in the f-req, but needed to re-
trieve the required information. If an f-req cannot be met,
it suggests alternative solutions. Finally, it produces the on-
tology subset needed to answer the business query at hand
and additional annotations regarding ETL operations.

This stage starts with a pruning process. We identify
how tagged concepts are related in the sources and then, (a)
we disregard concepts/relationships not mapped nor tagged
(if a concept taxonomy is affected, we replace the concept
pruned with the first superclass mapped/tagged); and next,
(b) we prune all the mapped many-to-many (i.e., *-*) asso-
ciations. Note that such associations violate the three sum-
marization necessary conditions [9] and thus, they cannot be
exploited for MD design. The outcome of this pruning is a
subset of the input annotated ontology, which we call AOS.
Since an arbitrary ontology can be represented as a graph,
we will talk about paths between concepts and thus, we will
also refer to concepts as nodes and to associations as edges.

Looking for Paths Between Tagged Concepts. For
identifying how tagged concepts are related in the sources,
we use the following algorithm that computes paths among
tagged concepts.

1. foreach edge e in O do

(a) if right_left_concepts(e) are tagged then
paths_between_tagged_concepts += e;

(b) else if right_concept(e) is tagged then max_length_paths U=p;
//Seed edges

2. while size(max_length_paths) != 0 do

(a) paths := @;
(b) foreach path p in max length paths do
i. extended_paths := explore_new_edges(p, O); //only edges not
inp
ii. foreach path pI in extended_paths do
A. if left_concept(pl) is tagged then
paths_between_tagged concepts += pl;
B. else paths U= pl;

(c) max_length_paths := paths;

3. return paths_between_tagged_concepts;

We start by identifying edges directly relating tagged con-
cepts (step la) and edges reaching tagged concepts (from
now on, seed edges; step 1b). For the sake of understand-
ability, although the AOS has no directed edges, we say that
the tagged node is in the edge right-end, and its counter-
part to be in the the left-end. The rest of the algorithm is

an application of the transitive property but starting from
tagged concepts. At the first iteration, we explore new edges
such that their right-end matches the left-end of a seed edge,
and similarly for the forthcoming iterations (step 2(b)i). In-
tuitively, we explore paths starting from tagged concepts
by exploring a new edge per iteration. This guided explo-
ration has two main restrictions: we cannot explore any
edge already explored in a given path (step 2(b)i) and if
we reach another tagged concept we finish exploring that
path (i.e., we have found a path between tagged concepts;
step 2(b)iiA). Note that in a given iteration i, we only ex-
plore the longest paths computed in the previous iteration
(steps 1b and 2c¢). Eventually, we explore all the paths and
the algorithm finishes (step 2).

Observe that step 1 can be computed by means of generic
reasoning. The transitive closure, in general, cannot be com-
puted by using generic reasoning, but the specific closure
for certain (tagged) concepts can be simulated using generic
reasoning (similar to the idea introduced in [16]).

This algorithm is sound since it computes direct relation-
ships and propagates them according to the transitivity rule
and complete, because it converges (note that each edge is
explored only once). This algorithm has a theoretical expo-
nential upper bound regarding the size of the longest path
between tagged concepts. However, this theoretical upper
bound is hardly achievable in real-world ontologies as they
have neither all classes with maximum connectivity nor all
paths are of maximum length. Moreover, note that *-* re-
lationships were previously pruned (see our evaluation in
Section 8 t00).

Producing the Output Subset. Based on the paths
between tagged concepts that the previous algorithm found,
next algorithm determines the ontology subset needed to
answer the f-req.

(1) If between two tagged concepts there are more than
one path, we ask the user for disambiguation: i.e., which is
the path fulfilling the semantics needed for the f-req at hand
(note that the user may not select any).

(2) For each pair of related tagged concepts not involving
a descriptor, edges forming that path are annotated as ag-
gregation edges, because these relationships determine the
data granularity of the output.

(3) The annotated ontology subset is compound by the
paths selected in (1). Note that these paths include the
intermediate concepts (i.e., those not tagged but involved in
the paths). At this point, taxonomies are also disregarded.

Annotating the Ontology Subset. Having an AOS
containing the concepts needed for the f-req, we check whether
the relationships captured make MD sense regarding the
tags.

We check the semantics of each edge (according to the tag
-if any- of the concepts it relates and its multiplicity) and
according to these semantics, we label each edge with those
MD relationships it could represent (i.e., the MD concepts
it could relate). From here on, we consider factual nodes
(those tagged as measures) and dimensional nodes (those
either tagged as levels or descriptors). In order to guaran-
tee the MD design principles (see Section 2.2) factual and
dimensional nodes must be related properly. For example,
factual data cannot be related to dimensional data by means
of a one-to-many (i.e., 1-*) association, as by definition, each
instance of factual data is identified by a point in each of its
analysis dimensions. In short, dimensional data can only

Legend:
4.b.ii) |F:Factual node

L: Dimensional node
FM: Factual node

with measure

bit: bottom / top

*: Many data instances
1: 1 data instance

@ : MD compliant

@ : Non-MD

z abpa jxajuon

Figure 2: Graphical representation of the multidi-
mensional validation steps

appear in the *-end of an edge when the other end is also
tagged as dimensional data. Furthermore, non-complete as-
sociations (i.e., accepting zeros) in the dimensional end are
not allowed either, as they do not preserve completeness. A
detailed discussion on edge semantics can be found in [15].

Thus, we analyze the graph looking for edges not making
MD sense and try to fix them. For example, if the node in
the *-end of a *-1 association is tagged as dimensional then,
its counterpart must also be dimensional. If by doing so we
have been able to infer an unequivocal label, this knowledge
is propagated in cascade to the rest of the AOS. However, if
we identify a meaningless conceptual relationship (i.e., both
ends are tagged in a forbidden way), the algorithm stops
and alternative analysis scenarios are proposed according to
[14].

S. MULTIDIMENSIONAL VALIDATION

This stage validates the AOS and checks whether its con-
cepts and associations collectively produce a data cube. If
the validation fails (according to the constraints discussed in
Section 2.2), we propose alternative analysis solutions. Oth-
erwise, the resulting MD schema is directly derived from the
AOS.

The previous stage might have propagated some tags when
labeling the AOS associations (i.e., inferring unequivocal
knowledge), but it does not guarantee that all the concepts
have an MD tag at this point. Thus, we start this stage with
a pre-process aimed at deriving new MD knowledge from un-
labeled concepts, and each unlabeled concept is considered
to play a dimensional role or a factual role. Furthermore, it
would be possible to relabel a dimensional node as dimen-
sional/factual node. Next, we validate if any of these labels,
eventually, make MD sense. Thus, this step determines ev-
ery potential MD labeling making sense for the input f-req
and we determine how these alternatives would affect the
output schema, deriving (in some cases) interesting analyt-
ical options that may have been overlooked by the user.

For each possible combination of new labels, an alternative
annotation is created if the labels do not contradict the edge
semantics already depicted in the AOS. Subsequently, each
of these AOS will be validated and only those that make
MD sense will be finally considered. Therefore, an f-req
could produce several valid MD labelings for the same AOS
and thus, multiple MD schemas.

The validation process introduced in this stage guarantees
the multidimensional normal forms presented in [7, 8] for
validating the output MD schema, and the summarizability
constraints discussed in [11]. This algorithm is called once
for each alternative labeling generated.

1. If ! factualdata(AOS) then

return notifyFail("The requirement does not include any fact.”);
If lconnected(AOS) then

return notifyFail(”Cartesian product is not allowed.”);

For each subgraphO fLevels C AOS do

RIS

(a

If cycles(subgraphO fLevels) and
contradictoryMultiplicities(subgraphO f Levels) then

i. return notifyFail(”Cycles cannot be used to select data”);
(b) If

existsTwoLevelsRelatedSameFactualData(subgraphO fLevels)

then
i. return notifyFail(”Non-orthogonal Analysis Levels”);
(c) For each (cq,cq) € getToManyEdges(subgraphO fLevels) do
i. If relatedToNodesWithMeasures(AOS, cg) then
A. return notifyFail(”Aggregation Problems”);

6. For each cycle C AOS do

(a) If contradictoryMultiplicities(cycle) then
i. return notifyFail("Cycles cannot be used to select data”);
(b) else

i. askUserForSemanticValidation();
ii.

add(AOS, newContext Edge(bottom (cycle), top(cycle), cycle));

7. For each (cq,cq) € getToManyEdges(AOS) do

(a) If relatedToNodesWithMeasures(AOS, cy) then

i. return notifyFail(”Aggregation problems between
Measures”);

Step 1 ensures that the AOS contains factual data. Note
that in our pre-process we could have labeled nodes as fac-
tual data that do not contain measures (from here on, we
distinguish between factual nodes and factual nodes with
measures). So this function returns false if all the nodes
are labeled as dimensional data. Step 3 ensures that the
AOS is connected to avoid “Cartesian Product”.

The intuition behind steps 5 to 7 is shown in Figure 2.
Step 5 validates levels subgraphs (i.e., subgraphs only con-
taining level concepts) with regard to where factual nodes
are placed. Firstly, every subgraph must represent a valid
dimension hierarchy (we must be able to identify two nodes
in the level subgraph which represent the top and bottom
levels of the hierarchy (Step 5a)). Two different levels in a
subgraph cannot be related to the same factual node (Step
5b). Moreover, level - level edges raising aggregation prob-
lems in factual nodes with measures must be forbidden (Step
5c, where by convention we assumed that in every *-1 edge
(c1,¢2), c1 corresponds to the *-end of the association).
Thus, this step validates the correspondences between di-
mensional nodes, whereas Step 6 validates the path of fac-
tual nodes (MD data retrieved) as a whole (i.e., validates
cycles in the path of factual nodes to ensure that they are
not used to select data, similarly to the validation of levels
cycles in 5a). Once the cycle has been validated, the edges
involved are clustered in a context edge (from bottom to top
of the cycle, since cycles are checked to correspond a correct
multi-path aggregation hierarchy, i.e., a one-to-many lat-
tice) labeled with the cycle multiplicity, as shown in Figure
2. Finally, step 7 looks for potential aggregation problems
induced by factual nodes with measures at the l-end of a
1-* edge (either context edge or not).

This stage will eventually have validated each graph as a
data cube.

6. OPERATION IDENTIFICATION

Operation identification is a semi-automatic process that
comprises three phases.

Phase I. This phase identifies operations that are needed
for mapping the source to target data stores, using the target
schema produced in the previous stage. For example, for
aggregating over states, we need a location dimension at the

target site and to map it with source information about zip
code, street address, and so on.

During this phase, we identify mainly schema modification
operations as follows. Selection is generated from concepts
having attached a selection condition: from slicers recorded
in AOS; or when a required concept does not have any
mapped source (neither it nor its subclasses), while some of
its superclasses do have such mapping. Union appears when
a required concept is not directly mapped to the sources, but
some of its subclasses are. Similarly, Intersection and Minus
are generated when a concept is not mapped but some of its
superclasses are. Join is generated for every association in
the ontology; if one or both of the association ends is not
mandatory, we state it as outer. Aggregation is generated
when a *-1 association is found so that there is a measure at
its *-end. Renaming is generated for each attribute in the
data sources and gives to it the name of the corresponding
ontological concept. Projection is generated for each con-
cept and association in the ontology. Function expresses
operations stated in the requirements, like a discrimination
process for an attribute to be used in a dimension or a trans-
formation for an attribute to facilitate its interpretation as
a measure.

Starting from the AOS, we iteratively synthesize several
of its nodes into one single operation, as follows.

1. For each ¢ € AOS do
(a) add(ETL,newExztraction(c));
2. For each (cj,cg) € edges(AOS) do

(a) If multiplicity((ci,ca)) ="1 — 1" or not
aggregationEdge((cy, cp)) then
i. 01 := findOper(ETL, c1);o0g i= findOper(ETL, ca);
ii. If o1 <> oy then
add(ETL, newJoin (o1, 09, getGroupingAttrs(o1)));

3. For each o € ETL and successors(ETL,o0) = (and
| outputEdges(AOS, o) |> 1 do

(a) setGroupingAttrs(o,0); e := outputEdges(AOS, 0);
(b) For each (c1,cy) € (e) do
i. o9 := findOper(ETL, cg);
ii. o := newdJoin(o, og, getGroupingAttrs(o) U
getGroupingAttrs(og));
iii. add(ETL, o);
(¢) add(ETL,newAggr(o, getGroupingAttrs(o));
4. While not connected(ETL) do
(a) (e1,cg) =
first(Uo=contains Measure(ETL) 0utPutEdges(0));
(b) o1 := findOper(ETL, c1); 09 := findOper(ETL, cg);
(c) o3 := newdJoin(oy, 09, (getGroupingAttrs(oy) \ getAttr(cy)) U
getGroupingAttrs(os));
(@
add(ETL, 03); add(ETL, newAggr(ogz, getGroupingAttrs(oz)));

The ETL variable is a directed acyclic graph that tracks
the ETL flow generated, whereas the findOper(ETL g, con-
cept ¢) function looks for a node in g, with no successors,
such that it contains c. Step 1 considers extraction opera-
tions like a single table access, a union, an intersection or
a minus operation, along with the corresponding selection,
projection, renaming mechanisms, and functions. Step 2
fuses all data that do not involve any aggregation. Hence, for
those AOS nodes related by means of 1-1 associations (i.e.,
identity), we join their corresponding operations in the ETL.
We also join nodes connected with edges that do not involve
aggregation (i.e., stemming from slicing requirements and
identified in Section 4).

Step 3 creates the basic cubes. First, we check the al-
ready generated operations that have no successors, and
whose AOS nodes have more than one edge with the 1-end
related to a concept in another ETL node without succes-
sors (observe that after step 2 only *-1 associations remain).
Next, we successively join these operations. The grouping

attributes of the final operation is the union of the grouping
attributes of each joined operation. Note that a grouping
operation is generated to guarantee that data is at the ap-
propriate granularity.

Finally, step 4 connects all cubes produced, starting from
those with measures, by following the order specified by the
requirements. Since each AOS edge not used yet corresponds
to an aggregation, we join the output of the operations (fol-
lowing the AOS aggregation edges), substitute the grouping
attributes of ¢; by those of the new aggregation level ¢z, and
generate the grouping operation taking into account the new
attributes. The choice of the aggregation function depends
on the requirements (there, it should be associated to a cor-
responding measure and c2) or a default one is used; e.g.,
SUM.

Phase II. During this phase, the designer might want
to refine the design produced by checking for additional
information at the sources that might be useful. (Part of
this phase can be done before Phase I too.) For example,
the domain ontology might relate state with zip code and
street address. If there is a source containing information
about “location” and contains both the street address and
zip code in the same field, then such information is definitely
useful, but the domain ontology cannot help. We can cor-
rect this by enriching the result with such a mapping and
producing the appropriate function(s).

Nf regs can be exploited in a similar way. For example,
a strict requirement regarding recoverability may suggest to
consider adding recovery points at points of the flow that
are generally known for being expensive (e.g., after the ex-
traction phase or after an expensive blocking operator [17]).
Of course the final decision on which are the good places to
add recovery points is to be taken by an optimizer at the
logical level [17].

The same holds when we work with f-reqs that involve the
data itself. For example, a requirement like “make sure that
each customer is considered once” can add a “de-duplicate
customer info” operation to the design.

Phase III. The last phase complements the design with
operations needed to satisfy standard business and design
needs. This task is mainly automatic and involves typical
DW operations that can be identified and added to the de-
sign after the consolidation phase.

For example, common practices suggest replacing produc-
tion keys with surrogate keys. For that, the system identifies
the respective production keys and enriches the design with
appropriate ‘surrogate key assignment’ operations. Simi-
larly, the system adds operations that take care of slowly
changing dimensions (SCDs). There are standard dimen-
sions that are not updated very often (e.g., dimensions that
keep structural information about the organization such as
geographical location, customer information or product in-
formation). Hence, the design can be enriched with opera-
tions that handle the update of such dimensions. Possible
update operations for SCDs can be: do nothing (do not
propagate changes), keep no history (overwrite old values
with new data), keep history by creating multiple records
in the dimensional tables with separate keys, keep history
using separate columns, keep history by storing new data to
an active table and keep (all or some of the) old values to
’history tables’; or use a hybrid approach. Of course, here
we list just a few frequently used operations. The list can
go long and our method is extensible to adapt such a list.

7. CONCILIATION

Results obtained for each input f-req are conciliated to
produce (a) a minimal constellation schema subsuming each
of the conceptual schemas obtained, and (b) an ETL flow
subsuming all the ETL processes. Next, we sketch the re-
spective algorithms; their formal descriptions are omitted
due to space constraints.

Conciliation for MD. Graphs produced for each f-req
(i.e., conceptual schemas obtained) are processed as follows.
First, GEM looks for all the factual nodes identified in the
input graphs, and creates a new factual class for each one
(every class will eventually produce a MD schema at the
end of the conciliation process). Measures are added as at-
tributes to the corresponding class.

Next, we conciliate the dimension hierarchies identified for
each f-req. We first conciliate compatible hierarchies (two
hierarchies are compatible if they share their atomic level).
For these, we check the hierarchies graphs that contain the
nodes forming the dimensions as follows: (a) Let h and A’
be two hierarchy graphs. If h is equivalent to h’ (except
for their descriptors), we merge both hierarchies. (b) If A
subsumes h’ and h’ does not subsume h, the descriptors of
h’ are mapped to h, and h’ is removed from the set. (c)
If h does not subsume h’ and h’ does not subsume h, they
are conciliated as follows: we conciliate the overlapping part
they share (by keeping the common structure and aligning
their descriptors) and we consider two alternative branches
in the resulting hierarchy, one branch for each disjoint part
of the subgraphs.

The conciliated dimension hierarchies and those that are
not compatible with any other are depicted in the MD schema.
At the end, we obtain a star-schema for each factual class
identified. Note that conciliated dimensions enrich the con-
ceptual schema; they provide other factual classes with new
analytical perspectives considered in other f-regs. Clearly,
this process does not introduce any summarizability prob-
lem, because we only merge compatible labels.

Conciliation for ETL. We work similarly for merging
ETL flows. Each ETL flow is a DAG and we want to create
a large graph (possibly disconnected) containing all the indi-
vidual ETL flows. Starting from a target table, we build the
flow that connects it with the sources. We iterate to resolve
the flows for all targets. However, the flows might contain
overlapping parts. Identifying these is an optimization chal-
lenge, which can be seen as a graph matching problem [2].

8. EVALUATION
We evaluated GEM using the TPC-DS benchmark [20].

TPC-DS provides a set of DW tables —both facts and dimensions—

along with a set of data sources. ETL operations (called
data maintenance functions) are also provided, for main-
taining fact tables and dimensions. Finally, a set of busi-
ness queries (i.e., business requirements) exists. Having all
these constructs allows us to evaluate our method as fol-
lows. Starting only from the business queries and the data
source, we use GEM for producing the DW schema and ETL
operations. Then, we compare our solutions to the design
constructs provided by the benchmark. Here, due to limited
space, we show results concerning the store_sales cube (the
results generalize throughout the whole benchmark though).

We worked as follows. We constructed an ontology con-
taining all source tables, specializations, and we added a few

additional concepts that do not map to the data sources.
Thus, we intentionally make the ontology more complex by
adding more classes to stress GEM; note, that adding more
associations does not affect our system, since these will be
pruned during the creation of AOS.

First, we examine the search space produced for the AOS
creation. Figure 4 presents the number of algorithm itera-
tions needed to converge, the total number of paths com-
puted, the number of paths between tagged concepts (i.e.,
the output) and the maximum length of the output, per
business query. It shows that the search space is not ex-
ponential regarding the length of the longest path. Indeed,
although the average length of the longest path is 8, our
algorithm computes no more than 178 paths (24 between
tagged concepts) in the worst case. These findings verify
the feasibility and efficiency of our approach in real-world
cases. In fact, the worst total time did not exceed 900ms.
Constructing AOS is the most expensive part of our method;
the rest tasks are processed fairly fast, in much less time.

Next, we evaluated the quality of our solutions (see Figure
5). Every business query reveals a part of the final design
(tables and attributes). Frequently, business queries reveal
overlapping information. However, after a few iterations
over these queries (in fact, after the fifth query) we identi-
fied correctly all target tables. Since numerous attributes
are involved overall, identifying them requires digging into
more requirements. After processing 11 business queries,
we identified almost 40% of the total attributes. However,
attributes are added throughout the whole process. For ex-
ample, surrogate keys are identified after Phase III of the
ETL operation identification task.

Two observations can be made at this point. One may
find tempting the fact that the target tables are identified
really fast. Thus, after a certain point of her choice, the de-
signer might want to stop this automatic process and start
refining the design by herself. As an aside issue, many busi-
ness queries involve the same target design constructs. This
means that these constructs (e.g., tables) should be quite
popular and this information can help us in the physical
design; e.g., for choosing indices or partitioning schemes.

Similar are the findings for the identification of ETL op-
erations (see Figure 6). GEM returned almost 60% of ETL
operations after the completion of Phase I. The remaining
operations (not shown in the figure) are mostly surrogate
key assignments and a few SCDs, which are identified af-
ter Phase I1I. Therefore, GEM identifies the complete set of
ETL operations for the TPC-DS case.

9. RELATED WORK

Various efforts have been proposed for the conceptual ETL
modeling. These include approaches based on ad hoc for-
malisms [21], on standard languages like UML (e.g., [10]),
MDA (e.g., [12, 13]), BPMN [1], and on semantic Web tech-
nology and graph transformations [18]. None of these efforts
considers synchronous creation of MD design.

Many works have dealt with designing DW models; e.g.,
[4, 6, 12, 14, 19], to mention a few, but the list is long.
However, in most works, it seems that the more the process
gets automated, the more the integration of requirements
is overlooked on the way. Recently, the use of ontologies
was considered for facilitating this task [14]. However, that
work aims at identifying the MD knowledge contained in
the sources and overlooks business requirements. Another

0.1 [Ziptogmt | [Callcenter | [Market |

.
Purchase ! ! C

! o1 (B
- T Hast_login_date
1-*first_shipto_slate

Promotion -last_review _date

-first_purchase_date

E kill

:H1 [omer | ! !
1 ship . [1
Catalog_order

Channel

-start_clate

-end_date

-open_cate

q_

0.1

’—| Web_order
o
Webpage _4 Catalon

-create_date
-access_date

-start_date
end_date

Catalog_order_lineitem

Purchase_lineitem Returns

-date
Aime:

1
. >

Catalog_resturns_| 1 ‘
Catalo, age
:‘ e
am

Figure 3: Ontology for TPC-DS data sources

o Hitar spaths coverage coverage
1000 s #pct " (%) %)
- a ——
W= length max outpu 100 _ 100
P
.
100 - 75 It 75
’
! L ———— "
) 50 ¢ 50
-+ - >
10 -—.I&Ai' ~ -MM_.’ s~ /
w] 25 25
=== total tables / totallETL
—4=—tota oper.
total attributes P
1 T T T T T T T T T T 0 T T T 1 0 T T T
1 2 3 4 5 6 7 8 9 1011 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
cueries queries queries

Figure 4: Space Figure 5:

approach to MD design considers business requirements too
[15], but the f-req are considered in the form of SQL queries,
so a major design task is done manually. GEM automates
this part and automatically creates such queries from f-req.
In addition, GEM is different from all previous approaches
in that it identifies the ETL operation at the same time.

10. CONCLUSIONS

We have presented GEM. A system that facilitates the
(semi-)automatic generation of ETL and MD conceptual de-
signs, starting from a set of business requirements and data
sources. In particular, we have described how the require-
ments can be validated and enriched, in order to produce an
annotated ontology containing correct information for both
the sources and the requirements. Then, we have shown
how to use this ontology for producing the MD and ETL
conceptual designs. Finally, we have reported on our exper-
imental findings working on the TPC-DS benchmark. Our
future plans involve extending our techniques to the logical
and physical levels.

1[}]' Z. BFAEIE(%% . Z1ményi. Defining ETL worfklows

using BPMN and BPEL. In DOLAP, pages 41-48, 2009.
[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, 2001.
[3] U. Dayal, M. Castellanos, A. Simitsis, and K. Wilkinson.
Data Integration Flows for Business Intelligence. In EDBT,
pages 1-11, 2009.
M. Golfarelli, D. Maio, and S. Rizzi. The Dimensional Fact
Model: A Conceptual Model for Data Warehouses. IJCIS,
pages 215-247, 1998.
M. Golfarelli and S. Rizzi. Data Warehouse Design.
Modern Principles and Methodologies. McGraw-Hill, 2009.
B. Hiisemann, J. Lechtenboérger, and G. Vossen. Conceptual
Data Warehouse Modeling. In DMDW, pages 1-11, 2000.
J. Lechtenborger and G. Vossen. Multidimensional Normal
Forms for Data Warehouse Design. Information Systems,
pages 415-434, 2003.

(4]

(5]
(6]

(7]

MD coverage Figure 6: ETL coverage

(8] W. Lehner, J. Albrecht, and H. Wedekind. Normal Forms
for Multidimensional Databases. In SSDBM, pages 6372,
1998.

H. Lenz and A. Shoshani. Summarizability in OLAP and
Statistical Data Bases. In SSDBM, pages 132-143, 1997.
S. Lujan-Mora, P. Vassiliadis, and J. Trujillo. Data
Mapping Diagrams for Data Warehouse Design with UML.
In ER, pages 191-204, 2004.

J. Mazén, J. Lechtenboérger, and J. Trujillo. A Survey on
Summarizability Issues in Multidimensional Modeling.
DKE, pages 1452-1469, 2009.

J.-N. Mazén and J. Trujillo. An MDA Approach for the
Development of Data Warehouses. DSS, pages 41-58, 2008.
L. Mufioz, J.-N. Mazén, and J. Trujillo. Automatic
Generation of ETL Processes from Conceptual Models. In
DOLAP, pages 33-40, 2009.

O. Romero and A. Abell6. Automating Multidimensional
Design from Ontologies. In DOLAP, pages 1-8, 2007.

O. Romero and A. Abellé. Automatic Validation of
Requirements to Support Multidimensional Design. DKE,
2010.

O. Romero, D. Calvanese, A. Abell, and

M. Rodriguez-Muro. Discovering Functional Dependencies
for Multidimensional Design. In DOLAP, pages 1-8, 2009.
A. Simitsis, K. Wilkinson, U. Dayal, and M. Castellanos.
Optimizing ETL Workflows for Fault-Tolerance. In ICDE,
pages 385-396, 2010.

D. Skoutas and A. Simitsis. Ontology-Based Conceptual
Design of ETL Processes for Both Structured and
Semi-Structured Data. IJSWIS, pages 1-24, 2007.

I. Song, R. Khare, and B. Dai. SAMSTAR: A
Semi-Automated Lexical Method for Generating STAR
Schemas from an ER Diagram. In DOLAP, pages 9-16,
2007.

TPC. TPC-DS specification. Available at:
www.tpc.org/tpeds/, 2010.

P. Vassiliadis, A. Simitsis, and S. Skiadopoulos. Conceptual
modeling for ETL processes. In DOLAP, pages 14-21, 2002.
E. S. K. Yu and J. Mylopoulos. From E-R to "A-R” -
Modelling Strategic Actor Relationships for Business
Process Reengineering. In ER, pages 548-565, 1994.

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

(22]

