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Abstract. In this paper, the Acoustic Event Detection (AED) system developed 
at the UPC is described, and its results in the CLEAR evaluations carried out in 
March 2007 are reported. The system uses a set of features composed of fre-
quency-filtered band energies and perceptual features, and it is based on SVM 
classifiers and multi-microphone decision fusion. Also, the current evaluation 
setup and, in particular, the two new metrics used in this evaluation are pre-
sented. 

1   Introduction 

The detection of the acoustic events (AE) that are naturally produced in a meeting 
room may help to describe the human and social activity that takes place in it. Addi-
tionally, the robustness of automatic speech recognition systems may be increased by 
a previous detection of the non-speech sounds lying in the captured signals.  

After the Acoustic Event Detection (AED) evaluation within the CLEAR evalua-
tion campaign 2006 [1] organized by the CHIL project [2], several modifications 
have been introduced into the task for the CLEAR evaluation campaign 2007. The 
old metric has been substituted by two new metrics: Accuracy and Error Rate, which 
are based, respectively, on precision/recall and on a temporal measure of detection 
error. Additionally, AED is performed only in seminar conditions, where the AEs are 
often overlapped with speech and/or other AEs. The definition of the classes of AEs 
is kept. 

In this paper, after presenting the current evaluation setup and, in particular, the 
two new metrics used in this evaluation, we describe the AED system developed at 
the UPC and submitted to the CLEAR evaluations carried out in March 2007 along 
with its results.  

The paper is organized as follows. In Section 2 the evaluation setup is presented. 
Specifically, the definition of the task is given in Subsection 2.1. Subsection 2.2 de-
scribes the databases assigned to development and testing. Metrics are given in Sub-
section 2.3, and Subsection 2.4 states the main evaluation conditions. The detailed 
description of the proposed system is given in Section 3. The results obtained by the 



detection system in the CLEAR evaluations are shown and discussed in Section 4. 
Conclusions are presented in Section 5. 

2   Evaluation setup 

2.1   Acoustic Event classes 

The AED evaluation will use the same 12 semantic classes, i.e. types of AEs, used in 
the past evaluations CLEAR 2006 [1]. The semantic classes with the corresponding 
annotation label are shown in black in the first column of Table 1. Apart from the 12 
evaluated classes, there are 3 other possible events shown in grey in Table 1 which 
are not evaluated. 

Table 1. Number of occurrences per acoustic event class for the development and test data 

Number of Occurrences 
Development Test Event Type  

UPC iso ITC iso Seminars Seminars 
Door knock [kn] 50 47 82 153 

Door open/slam [ds] 120 100 73 76 
Steps [st] 73 50 72 498 

Chair moving [cm] 76 47 238 226 
Spoon/cup jingle [cl] 64 48 28 28 

Paper work [pw] 84 48 130 88 
Key jingle [kj] 65 48 22 32 

Keyboard typing [kt] 66 48 72 105 
Phone ring [pr] 116 89 21 25 
Applause [ap] 60 12 8 13 

Cough [co] 65 48 54 36 
Laugh [la] 64 48 37 154 

Unknown [un] 126 - 301 559 
Speech [sp]  - 1224 1239 
Silence  Not annotated explicitly  

2.2   Databases 

The database used in the CLEAR evaluation campaign 2007 consists of 25 interactive 
seminars of approximately 30 min long each that have been recorded by AIT, ITC, 
IBM, UKA, and UPC in their smart-rooms.  

Five interactive seminars (one from each site) have been assigned for system de-
velopment. Along with the seminar recordings, the databases of isolated AEs re-
corded at UPC [3] and ITC [4] have been used for development.  



 The development database details in terms of the number of occurrences per AE 
class are shown in Table 1. In total, development data consists of 7495 seconds, 
where 16% of total time is AEs, 13% is silence, and 81% is “Speech” and “Un-
known” classes.  

The remaining 20 interactive seminars have been conditionally decomposed into 5 
types of acoustic scenes: “beginning”, “meeting”, “coffee break”, “ques-
tion/answers”, and “end”. After observing the “richness” of each acoustic scene type 
in terms of AEs, 20 5-minute segments have been extracted by ELDA maximizing the 
AE time and number of occurrences per AE class. The details of the testing database 
are given in Table 1. In total, the test data consist of 6001 seconds, where 36% are 
AE time, 11% are silence, and 78% are “Speech” and “Unknown” classes. Noticea-
bly, during about 64% of time, the AEs are overlapped with “Speech” and during 3% 
they are overlapped with other AEs. In terms of AE occurrences, more than 65% of 
the existing 1434 AEs are partially or completely overlapped with “Speech” and/or 
other AEs. 

2.3   Metrics 

Two metrics have been developed at the UPC, with the agreement of the other par-
ticipating partners which are involved in CHIL: an F-score measure of detection 
accuracy (which combines recall and precision), and an error rate measure that 
focuses more on the accuracy of the endpoints of each detected AE. They have been 
used separately in the evaluations, and will be called, respectively, AED-ACC and 
AED-ER. 

 
AED-ACC  
The aim of this metric is to score detection of all instances of what is considered as a 
relevant AE. With this metric it is not important to reach a good temporal coincidence 
of the reference and system output timestamps of the AEs but to detect their in-
stances. It is oriented to applications like real-time services for smart-rooms, audio-
based surveillance, etc. AED-ACC is defined as the F-score (the harmonic mean 
between Precision and Recall):  
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and β is a weighting factor that balances Precision and Recall. In this evaluation the 
factor β has been set to 1. A system output AE is considered correct or correctly pro-
duced either if there exist at least one reference AE whose temporal centre is situated 
between the timestamps of the system output AE and the labels of the system output 



AE and the reference AE are the same, or if the temporal centre of the system output 
AE lies between the timestamps of at least one reference AE and the labels of the 
system output AE and the reference AE are the same. A reference AE is considered 
correctly detected either if there exist at least one system output AE whose temporal 
centre is situated between the timestamps of the reference AE and the labels of the 
system output AE and the reference AE are the same, or if the temporal centre of the 
reference AE lies between the timestamps of at least one system output AE and the 
labels of the system output AE and the reference AE are the same. 
 
AED-ER 
For some applications it is necessary to have a good temporal resolution of the de-
tected AEs. The aim of this metric is to score AED as a task of general audio segmen-
tation. Possible applications can be content-based audio indexing/retrieval, meeting 
stage detection, etc.  

In order to define AED-ER, the NIST metric for Speaker Diarization [5] has been 
adapted to the task of AED. The audio data is divided into adjacent segments, whose 
borders coincide with the points whether either a reference AE or a system output AE 
starts or stops, so that, along a given segment, the number of reference AEs and the 
number of system output AEs do not change.  

The AED-ER score is computed as the fraction of time, including regions of over-
lapping, in which a system output AE is not attributed correctly to a reference AE, in 
the following way: 
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where, for each segment seg:  
dur(seg):  duration of seg 
NREF (seg): number of reference AEs in seg 
NSYS (seg): number of system output AEs in seg 
Ncorrect (seg): number of reference AEs in seg which correspond to system output 

AEs in seg 
Notice that an overlapping region may contribute with several errors. Also, “Si-

lence” is not explicitly transcribed, but is counted in the context of this metric as an 
AE.  

The numerator of the AED-ER expression includes the substitution time, that cor-
responds to the wrong AE detection, the deletion time (missed AEs), and the insertion 
time (AE false alarms).  

Only the 12 above-mentioned evaluated classes can cause errors. For example, if 
the reference label is “Speech” and the system output is “Unknown”, there is no error; 
however if the system output is one of the 12 classes, it will be counted as an error 
(insertion). Similarly, if the reference is one of the 12 classes and the system output is 
“Speech”, it will be also counted as an error (deletion). 



2.4   Evaluation Scenario 

In order to have systems comparable across sites, a set of evaluation conditions were 
defined [6]:  
- The evaluated system must be applied to the whole CLEAR 2007 test DB.  
- Only primary systems are submitted to compete.  
- The evaluated systems must use only audio signals, though they can use any num-
ber of microphones.  

3   Acoustic Event Detection System 

The general scheme of the proposed system for AED is shown in Figure 1. Firstly, on 
the data preprocessing step, the signals are normalized based on the histograms of the 
signal energy. Then, a set of frame-level features is extracted from each frame of 
30ms and a set of statistical parameters is computed over the frames in a 1-second 
window. The resulting vectors of statistical parameters are fed to the SVM classifier 
associated to the specific microphone. A single-microphone post-processing is ap-
plied to eliminate uncertain decisions. At the end, the results of 4 microphones are 
fused to obtain a final decision.  

Our system, written in C++ programming language, is part of the smartAudio++ 
software package developed at UPC which includes other audio technology compo-
nents (such as speech activity detection and speaker identification) for the purpose of 
real-time activity detection and observation in the smart-room environment. That 
AED system implemented in the smart-room has been used in the demos about tech-
nology services developed in CHIL. Also, a specific GUI-based demo has been built 
which shows the detected isolated events and their positions in the room. The posi-
tions are obtained from the acoustic source localization system developed also in our 
lab [11]. A video showing that demo is being currently recorded and will shortly be 
made publicly available in the CHIL webpage. 
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Figure 1. The block-scheme of the developed AED system 
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3.1   Histogram-based energy normalization  

As it was mentioned in Section 2.2 the evaluation database has been recorded in 5 
different rooms. Due to this fact, the energy level of audio signals varies from one 

audio file to another. In this work as a preprocessing step we decided to perform 
energy normalization of all audio files to a predefined level. Because the energy level 
of a given AE depends both on its type, the manner it is produced, and the position of 
the person who produces it, the energy normalization is based on the energy level of 
silence. For this the histogram of the audio signal log-energy calculated each 30ms 
with 10ms shift has been plotted. The results for one development seminar are shown 
in Figure 2. The lower-energy hump corresponds to the silence energy level. A 2-
Gaussians GMM has been trained on the energy values and the lowest mean has been 
taken as the estimation of the silence energy. In Figure 2, the estimated silence level 
corresponds to the point 10.41 whereas the true value of silence energy level, calcu-
lated on the annotated silence segments, is 10.43. The normalizing coefficient is then 
calculated as )exp(/)9exp( acoef = , where a is the estimated silence level and 9 is the 
predefined final silence energy level. The exponential is used to come from the log 
scale back to the initial signal amplitude scale. Then, the development seminar signal 
is multiplied by coef.  

3.2   Feature extraction 

The sound signal is down-sampled to 16 kHz, and framed (frame length/shift is 
30/10ms, a Hamming window is used). For each frame, a set of spectral parameters 
has been extracted. It consists of the concatenation of two types of parameters [7]: 1) 
16 Frequency-Filtered (FF) log filter-bank energies along with the first and the sec-
ond time derivatives, and 2) a set of the following parameters: zero-crossing rate, 
short time energy, 4 sub-band energies, spectral flux, calculated for each of the de-
fined sub-bands, spectral centroid, and spectral bandwidth. In total, a vector of 60 
components is built to represent each frame. The mean and the standard deviation 
parameters have been computed over all frames in a 1-second window with a 200ms 
shift, thus forming one vector of 120 elements.  
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Figure 2. Frame log-energy histograms calculated over the whole seminar signal 



3.3   One-microphone SVM system  

For AED, SVM classifiers [8] have been implemented. They have been trained using 
the isolated AEs from the two databases of isolated acoustic events mentioned in 
Section 2.2, along with segments from the development data seminars that include 
both isolated AEs and AEs overlapped with speech. The segments that contain the 
overlapping of two or more AEs with or without speech are not used. In both training 
and testing processes, a vector of 120 statistical parameters has been computed from 
each 1-second window. The 1 vs. 1 multiclass strategy has been chosen to classify 
among 14 classes that include “Speech”, “Unknown”, and the 12 evaluated classes of 
AEs. Besides, “Silence” vs. “Non-silence” SVM classifier has been trained where 
“Non-silence” class includes all 14 classes. In that case, in order to decrease the num-
ber of training vectors and make training feasible, the dataset reduction technique 
described in [9] has been applied.  

The testing stage is shown in Figure 3. An input vector of statistical components 
computed over the frames from a 1-second window is firstly fed to the “Silence” vs. 
“Non-silence” classifier and if the decision is “Non-silence”, the vector is further fed 
to a SVM multiclass (14 classes) classifier based on the DAG testing scheme [10]. 
The most frequent event (the “winner”) is taken from the final decision window of 4 
decisions that corresponds to the time interval of 1.6 seconds. If the number of votes 
of the “winner” does not exceed the threshold the event is marked as “Unknown”. 
The threshold has been set in order that the winner has to get at least 3 votes. The 
final decision window is shifted by 2 decisions, i.e. 400ms. Consequently, the tempo-
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ral resolution of the produced system output AEs is 400ms, and the corresponding AE 
label is assigned to the central 400ms of the 1.6-second window. 

For instance, for the first window of 4 decisions that corresponds to the time inter-
val from 0 to 1.6s, the starting and ending timestamps of the system output AE will be 
0.6 and 1s.  

3.4   Multi-microphone processing 

The database used in the evaluation has been recorded with a set of microphones. 
Depending on the site, the following audio equipment has been used: one or two 
Mark III (array of 64 microphones), 3-7 T-shape clusters (4 mics per cluster), and 
several tabletop and omni directional microphones. To construct a multi-microphone 
AED system it has been decided to choose one microphone from each wall of the 
room and train a SVM classifier for each wall microphone. Due to the different con-
figuration of the rooms where the development and testing data have been recorded 
and due to different numbering of the microphones, a mapping of the microphones 
across the sites has been performed. The Mark III microphone array has been chosen 
as the fixed point. For the remaining walls the T-shape cluster microphones have 
been chosen. An example of choice of the cluster microphones for the UPC smart-
room is shown in Figure 4. The following microphone numbers have been chosen 1-
5-9, 6-1-25, 1-5-9, 1-5-9 for the AIT/ITC/UKA/UPC smart-rooms, respectively. For 
instance, one SVM has been trained on audio signals from microphones 1, 6, 1, 1 
taken from AIT/ITC/UKA/UPC, respectively. For the Mark III array the 3rd micro-
phone has been chosen across all sites.  

For multi-microphone decision fusion, the voting scheme has been used. The AE 
label with the largest number of votes is sent to the system output. In case of draw the 
event is chosen randomly.  
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Figure 4. The choice of the microphones for the UPC smart-room 



4   Results and discussion 

The results obtained with the primary system submitted to the evaluation are shown 
in Table 2. Along with the main metrics, accuracy and error rate, the intermediate 
values are also given. They are precision and recall for accuracy, and DEL (dele-
tions), INS (insertions), and SUB (substitutions) for error rate. A contrast system has 
been also submitted, showing little worse results than the primary system: ACC=23, 
ER=141.57. The difference between the primary and contrast system is that for multi-
microphone fusion the former uses voting among the “winners” of the one-
microphone systems while the contrast system performs voting adding up the confi-
dences of the “winners” calculated as the number of times the “winner” is found in 
the 4-decision window. 

Table 2. Official results obtained by the submitted AED primary system 

Accuracy (%) 
(Precision / Recall ) 

Error Rate (%) 
(DEL/INS/SUB) 

23.0 
(19 / 29) 

136.69 
(50.3 / 57.1 / 29.3) 

 
Table 3 shows the results of each one-microphone SVM system before applying 

the voting decision. Actually, the final results of the multi-microphone system shown 
in Table 2 are worse that the results of the one-microphone SVM system obtained on 
the 3rd microphones of MarkIII array (Mic4). This fact may indicate that simple fu-
sion methods, i.e. voting, do not work properly when the scores of the various sys-
tems differ significantly.  

Table 3. The results obtained with each one-microphone SVM system before applying voting 

 Mic1 Mic2 Mic3 Mic4 
Accuracy (%) 

(Precision / Recall ) 
20.5 

(17/27) 
22.6 

(19/28) 
19.9 

(15/29) 
26.8 

(34/22) 
Error Rate (%) 

(DEL/INS/SUB) 
145 

(51/64/30) 
136 

(54/55/27) 
155 

(46/74/34) 
98 

(69/13/16) 
 
The individual class accuracies are shown in Table 4. Interestingly enough, we 

have observed that the low accuracy and high error rate are mostly attributable to the 
bad recognition of the class “steps”, which occurs more than 40% of all AE time.  

Besides, more than 76% of all error time occurs in the segments where AEs are 
overlapped with speech and/or other AEs. If the overlapped segments were not 
scored, the error rate of the primary submitted system would be 32.33%.  

Table 4. Accuracy scores for each class obtained with the primary system 

ap = 0.81 cl = 0.29 cm = 0.22 co = 0.19 
ds = 0.42 kj = 0.18 kn = 0.05 kt = 0.08 
la = 0.38 pr = 0.28 pw = 0.12 st = 0.16 



5   Conclusions 

The presented work focuses on the CLEAR evaluation task concerning the detection 
of acoustic events that may happen in a lecture/meeting room environment. The 
evaluation has been performed on the database of interactive seminars that have been 
recorded in different smart-rooms and contain a significant number of acoustic events 
of interest. Two different metrics have been proposed and implemented. One is based 
on the precision and recall of the detection of the AEs as semantic instances, and the 
other is based on a more time-based error. Although the proposed system, which was 
the only submission not using HMM, ranked among the best, there is still a big room 
for improvement. Future work will be devoted to search a better way to deal with 
overlapping sounds, and to improve the algorithms of multi-microphone fusion. Mul-
timodal AED is another approach from which a performance improvement can be 
expected. 
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