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1. Abstract

Optimization is becoming an important field of rasgh. The availability of more powerful computatibn
resources, the ever-seek better performance armbthpany needs regarding time-to-market reduckeated to
the necessity of better designs in less time.

Aeronautics field has not been an exemption; sloagienization is a largely studied problem. It candpplied to
many disciplines in this field, always intendedngprove existing performances, and reduce costsaaandying
characteristics like noise or consumption.

Traditionally, optimization procedures were basad aeterministic methodologies [6] so, it means that
optimization leads to an optimum value which iso@timal point. Engineers have realized that thignog@ point
is no longer their aim. They need to ensure thar@tbehaviour in the whole operating range; ifytli® not
consider what happens in the vicinity of this ppinproblem can arise. That is, in many caselseifstorking point
differs from the original, even a little distanedficiency is reduced considerably [9].

Non deterministic methodologies have been appliechany fields [7][8], but the time consuming caltidns
required on CFD avoid to be applied to shape opttion. The study of the variability of the resafiainst
variability of the input parameters is a betteresgntation of the real world; using these kindmethodologies
we can simulate from manufacturing tolerances nown measurement errors. The result is no longmimat,
but a range or a set of values which defines tha ahere, in average, optimal output values araimdd. The
optimal value could be worse than other optima,doutsidering its vicinity, it is clearly the best.

This communication presents the development of a-dederministic strategy coupled with optimization
techniques. The main aim is the definition of anirojzation procedure that ensure greater robustnéske
solution than usual procedures. In order to rednd aim, probabilistic data will be used to defimput
parameters, and applied to each one of the mendeéirsed by the optimizer. In our case, we will @sgenetic
algorithm as optimizer.

2. Keywords: Robust design, Non-deterministic optimization, éwautics.

3. Introduction

Many engineering applications require solving ojtation problems to define the optimal design. bmycases,
optimization problems include nonlinear objectiwmadtions, and/or nonlinear constraint functionst, Bwen if
these functions were linear, engineering optimigaproblems might be too complex to be solved yéliile in
the fluid dynamics case) because they cannot wedalnalytically or might present local solutiomsaditional
approaches usually converge to these local optsolaitions [1][2], because their search range istdicdhto a
neighbourhood of the starting point.

Uncertainty is also an important parameter to leranto consideration. Management of uncertaimgrdhe
simulation process will produce better results réiyag the robustness of the design. Robustnesssrikatresult
values are not greatly modified by little variatsoof the input variables.

Optimization methods like Genetic Algorithms, whietre considered as probabilistic ones due to their
probabilistic generation of generation membersy onhsider probabilistic information of the actirgiut values.
Uncertainty applied to boundary conditions areauotsidered, even cannot be controlled using thet ivglues of
the genetic algorithms.

In our case we try to avoid all problems derivaeahfrlocal solutions and uncertainty. The probalidlistochastic
method developed here, like the general stochastiicnization methods, has the ability to escapenfiocal
solutions, by analyzing the whole search space,apmdying an environmental uncertainty under thefiler



analyzed. Main input variables, id est. geometriiniteon parameters of the airfoil, are controlleg genetic
algorithms. Secondary input parameters, id estntdary conditions like angle of attack and air speeit be
defined using additional probabilistic data.

3.1. State of the art

Optimization methods using stochastic and non-detéstic procedures have not been largely applied t
aerodynamic shape optimization. It is because@falge amount of calculations needed.

Huyse and Lewis [9] focused on the developmennadffective strategy based on stochastic optimopafl hey
define a non-deterministic optimization procedurkich achieved the best performance and minimal, cost
managing the uncertainty, and obtain the best fpolitit solution. They use the Von Neumann — Morgems
decision theory to decide the best optimizatioteadn. The result is analyzed evaluating the ofthe solution.
Other works have studied the robust optimizationtho@ Nagarathinam et al [10] had clearly differatetd
between non-deterministic and robust optimizati@ihuads. The evolutionary algorithm is improved gdime so
called Hierarchical Genetic Algorithm, which usesiararchical topology of the members of the pofioia
These are distributed into three layers, one usethé refined calculations, one by the coarse taticuns and
exploration for new optimal points, and one intediaée layer which is used as “bridge layer” betwrsfimement
and exploration layers. Several other works studiet#rministic procedures such as the one by Obagasl
[12], and Mitra [19], where both defined determiitisoptimization methods using Evolutionary or Géme
Algorithms. Both of them are clear examples ofdtéculty of this kind of applications, due to teemplexity of
the fluid dynamics analysis. Simplification is ammonly used tool. Analyses are restricted to aevaiuMach
number, or Reynolds number for simplification pses.

3.2. Genetic Algorithms

The so called evolutionary algorithms, and gergtiorithms in particular, are methods based orcéheulation
of a population of solutions which evolves to tlstsolution. The basic steps of a solution arfelbswy:
Initialise a population of values.

Evaluate each member in the population.

Create new values, combining or mating the curvahtes.

Delete members of the population which are no longed.

Evaluate new values and insert them to the pojulati

Iterate from step 3 while the defined criteria ao¢ accomplished.

If criteria are reached, stop calculations andrrethe fittest values.

NouokwhpE

Those are the descriptive steps of an evolutionptynization method. Each one generates, mutateratd the
members using different procedures. Some of thethgenerate only new members from the information
obtained of the previous population. But some athigre so called stochastic programming techniqgexserate
an entire population from the information of thigefst members of the previous population.

Based on nature techniques of reproduction, Geadgmrithms use crossover, mutation and selecticrcreate
new members of the next generation. Also the teglaof elitism can be applied to increase the cayeveatio.

In this work we began to use a single-objectiveetieralgorithm from Prof. K. Deb, but finally we clded to
move to a more evoluted Genetic Algorithm code tped by Deb [14]. The code is based on the se@dall
Non-dominated Sorting Genetic Algorithm Il whiclduees the computational complexity and introdudiéisre.
Genetic algorithms are extensively used on the noptition of the aerodynamic shape of profiles
[10][11][19][12][20], even wing shapes [21]. Genkyapeaking, genetic algorithms are used in coctjon with
CFD solver and are described as probabilistic dpéititon method due to the definition of new genreret in each
step. The probabilistic behaviour of the methodr@selation with the statistical definition of thgout variables
or the statistical analysis of the output variap#e® then they cannot be considered non-detetisiniethods.

3.4. Non-deterministic optimization

Both, deterministic and non-deterministic optimiaat method are developed in many fields, but, du¢he
complexity and the required long calculation tim@mputer fluid dynamics (CFD) needs, non-determimist
optimization was not applied to this field so far.

The so-called deterministic optimization does re# any information about input variables but raage search
space. Mathematically, it means that all valuescaresidered as equally probable. But engineerioglpms do
not have such behaviour and, for instance, soniahlas could follow a normal density probabilitynfiion.
Taking this behaviour into consideration requiresrencalculation time due to the generation of mosmbers
and populations. Although it is applied in otheldis, CFD requires a long time calculation for eammber, so
the total computational cost is rapidly increasdus is the main reason why non-deterministic ojtittion was
not applied to CFD so far. Marco [11] had foundiknproblems with the time required by the CFDceigdtions,



and used the Euler equations to calculate the @&SDIts and Genetic Algorithms as the optimizaticthad.
Jeong et al [13] used a Kringing Model in ordergduce the amount of time required on the optiroranethod.
Kringing Model or response surface model are simildNeural Networks in that they use an approxiomatmodel

to avoid the real calculations. Plevris et al.d&fine a statistical method combining Monte Canfowation and
Latin Hypercube Sampling design. They compare ékalts from a deterministic formulation and a rdluesign
formulation, understanding robust as the less Sea$o uncertainties.

Non-deterministic or robust analysis is based onpdmg methods. These methods produce a numbemngbling
points that must follow a given statistical distiilon. The search space can be modelled using thatddarlo
technique, but also Latin Hypercube sampling cdadldised. Both sampling techniques can accuratetiehtbe
probabilistic behaviour of a value. It has beervahthat Latin Hypercube Sampling is able to modeltandom
behaviour with a fewer number of samples. Tablealulates comparative values between the Montecarlo
technique, used as reference, and Latin Hypercabwnhg (LHS) technique. We defined a test casedas the
calculation of CI/Cd ratio of an airfoil, so we Wilompare the mean and standard deviation valusnglal using
Montecarlo and LHS samplings. 250-Montecarlo-sasplealysis is used as reference, which is compaitad
LHS analysis using from 25 to 250 samples. 25 LA®ydes analysis has a deviation of 0.05% from 250
Montecarlo-shot analyses. The confidence intenedindd using the +/8range has differences lower than
0.15%. These values confirm the ability of LHS agaiMontecarlo technique in order to reduce the bemof
samples required for approximate the search sfaatehat can be translated to a reduction of gheutation time
required by the non-deterministic analysis.

Table 1: Comparison between Latin Hypercube SamglitS) and MonteCarlo Sampling (MC)

Mean  Standard Confidence Mean -3c value 3o value

Cl/Cd  deviation range Deviation Deviation Deviation
cl/cd -30 36 MCvsLHS MCvsLHS MCvsLHS
25 samples using LHS 23,52 0,073 23,30 23,74  -0/050 0,028% -0,127%
50 samples using LHS 23,51 0,079 23,28 23,74  -04065 -0,065% 0,065%
100 samples using LHS 23,53 0,078 23,30 23,76 0002 0,018% -0,015%
150 samples using LHS 23,53 0,077 23,30 23,76 0009 0,027% -0,010%
200 samples using LHS 23,53 0,078 23,30 23,77 0011 0,022% 0,001%
250 samples using LHS 23,53 0,079 23,29 23,77 9000 0,000% 0,000%

250 samples using MC 23,53 0,079 23,29 23,77

4. Procedure and methodology

The first step to define a non-deterministic optiation procedure is to perform a stochastic figtement
analysis of each design. In this work, two ava#adddes are integrated to work together; STAC [d8}ochastic
analysis management tool, and a CFD solver, whar lze TDYN[17], an incompressible flow solver, or
PUMI[22], a compressible flow solver.

STAC is a powerful tool which enables to defineesal types of probability density functions appliedinput
variables of the solver (TDYN or PUMI), and prodiceumber of shots in order to obtain a set of siagnpoints
with the given statistical distribution. STAC islalto use both Montecarlo sampling and Latin Hypbec
sampling.

STAC is a Windows-developed software which providestrol of any kind of solver from the commandelitf
the solver can be executed using the command3nAC has the ability to work using customized aggdions
which launch the information from STAC to the soldefining the necessary input configuration. Sami,
STAC can pick up the results from the solver ineortb analyse them. STAC can be seen as a pre and
post-processor for stochastic analysis.

TDYN code solves Navier-Stokes equations usingahilsted finite element method. It is a Windows ivat
application that has a user friendly environmermt aigraphical interface. PUMI is a high-efficiermympressible
flow solver developed in CIMNE, and mainly intendeddeal with large scale problems. Both TDYN ahiv®
can be launched using the command line, so STAE thég capability to modify the input file and lalning the
solver. In order to modify, as desired, the inplaisfof the solver some customized codes have beeessarily
developed.

Non-deterministic optimization has been mainly &gpto aerodynamics and other fields using litdeiability of
the input variables. Thanks that STAC providesdaeability to define statistical behaviour all earch space
wide, and the capability to manage the input angutinformation generated the procedure defindzhised on
the integration of both software. From STAC, thatistical information is assigned to each stochastput
variable, and then transferred to the solver dastomized code, as mentioned. Using stochastid vgriables,
plus additional ones, the solver is launched arebalt can be obtained. This output value is temsél to STAC



to be processed and statistically analyzed. Ang kinnput variables can be defined; from meshssizematerial
properties and geometric parameters. Generallykgpgaall the information inputted to the solvernche
controlled by STAC, but it is not necessary to defas stochastic variables all of them.

4.1. Output variability versus mesh size variapilit

The first test of the developed software package wiended to analyse the variability of thg @, ratio of an
airfoil versus the variability of the mesh size.nSwlering the environment conditions of the analyailow Mach
number, and a quite laminar flow, the results weralidation of the procedure defined. Three inpesh sizes
were applied to the geometry, on both leading edgktrailing edge points of the 2D-profile, on baghper and
lower profile lines, and finally on the control arsurface. Both points use the same value, scom&yarameter is
considered. A single parameter for the lower areufines of the profile was also used. Finally,agesidered a
single parameter to the general mesh size appli¢det control area. Figure 2 shows the mesh idemgfthe
defined mesh sizes.

In order to analyse the variability effect on tlesult, two different types of probability densitynttion were
applied to each one of the input parameters. Thebamation of the groups of one, two or three patensedefine
the main steps, but also each applied probabiéitysiy function adds new information.

As mentioned above two different probability depdiinctions (PDF) were applied to the mesh sizemnisl
PDF was defined to centre the analysis on the malre and the standard deviation was used to eeathe
effect of each input parameter on the output resufile a uniform PDF was used as a control catmna
Roughly, the uniform PDF was defined to spread oamglalues in the same range than the normal PDhiougy
defined.

yNPavowayh
Figure 1.- Mes

The main conclusion, as expected, points out thettesh size and its variability, applied on betding and
trailing edges points of the 2D-profiles has thestrimportant effect on the variability of the rasdlhe second
most important effect is produced by the meshadied to profile lines. The graph clearly shoarge standard
deviation range for those analysis where only Vlitst on points is analyzed. If we focus our atien to the three
analysis called Pt, Ln, and Gl, where single méghis analyzed each time, we can realize on ttierdnt effect
of each size and its variability on the variabilitythe output value, the (Cp, ratio.

4.3. Output variability versus environmental valégbvariability

The developed integration of Montecarlo analysisaggment tool and CFD solver is now used to deterifie
effects of the variability of environmental parasrst on the variability of the results. The envir@mtal
parameters chosen are the angle of attack, theityetdf the airflow (Mach number) and the turbulerof the flow
(the Reynolds number). In order to facilitate thput variables definition, the Mach number and Reynolds
number are split into air velocity, air density aidviscosity. The nomenclature used is ‘a’ adaofattack, ‘v’
as air velocity, ‘ds’ as air density, and ‘vs’ as\dscosity.

The study is conducted in a similar way as usinghmeariability. Normal and uniform probability détys
functions are defined for each parameter and skwenabinations of them enables the analysis ofwbight of
each one on the variability of the/Cp, ratio. Figure 4 shows the mean values accompdyi¢de +/-3 range, in
a min-max graph representation. The nomenclatued ts identify each analysis on the graph is aevd,;
“normal” means a normal PDF applied, “normxAA” meannormal PDF using standard deviation multipbgd
AA value, and finally, “x” identifies the stochastvariables defined.



A number of analyses are performed for subsonic lamdnar flows, with low Mach number and moderate
Reynolds number. The variability of the angle daek is the value which affects most the variapitf the
results, as expected. Considering that the analgmdt is the ratio of Cand G, the density and viscosity of the
air could be excluded from the analysis because lihe effect on the QCp, ratio. The conclusions of the case
study coincide with those expected which servea gsneral validation of the method.
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Figure 2.- Mean and +/-3 standard deviation raRNgeiability due to environmental variables

Similarly as done on the analysis of the mesh $tigyre 2 shows the large variability when varigypibn the
angle of attack is defined, but negligible effegédo air density and air viscosity variabilities.

This result can not be extrapolated to the caseafmpressible flow or with large turbulence, beseaviscosity
variability will affects to drag, and density tdt lin a completely different way as done in thelgped case.

4.4. Non-deterministic optimization

The previous work built the basis for a non-detaistic optimization procedure. The integration cftachastic
analysis management tool as STAC and a computier dlynamic solver, as TDYN or PUMI, shows that a
non-deterministic optimization method can be define

A new procedure for a non-deterministic optimizatie presented. It uses the capacity developeti@previous
stage of the research, and represents an improvémige sense that variability is part of the stud

As a first approximation to the method, a well-grovoptimization procedure is developed. Evolutignar
algorithms have demonstrated their potential ireotd reduce optimization steps, and to convergekfyuand
efficiently to the optimal value [18]. Their abjlito seek in all the search space and to avoid fotama is their
best qualities.

The main difference between deterministic proceslamed the one developed here is the fact thatlijective
function comes from the mean and standard deviatdures of a cloud of points generated using thatistmarlo
method. Considering the optimization of the geoynetf the airfoil as our target, regarding its l#hd drag
performance, each member of each population ofyérestic algorithm is evaluated under a cloud oficam
environmental variables (namely, angle of attadkyelocity, density and viscosity). From the cloofipoints
obtained, we take the mean and the standard dmviatiobtain the fitness of each member.

Environmental variables are defined using their mealues to point out the working point, but alsing their
standard deviation in order to capture their isidinbehaviour; that is, measurement errors, orrueiral
variability of the parameter.

Some promising results are presented showing ttempial of the optimization method. Due to the ety of the
Montecarlo analysis, it is however a time-consurmimeghod and it takes a long time for each optinorestep to



end. Few generations were calculated due to tla¢ aotount of time required (Figure 3). That facichrces a
trend that cannot be clearly defined, althouglait be considered as an increasing trend.
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Figure 3.- Mean and +/-3 standard deviation ra@d ratio evolution; mean and standard deviation

Several actions are considered for improving comtaral efficiency. The most significant one is gtjustment
of the number of Montecarlo shots, however thedatye number of shots, the more precise the Mantec
analysis, so this item implies a limitation on ifsé\s previously mentioned, using Montecarlo teiclue is

time-demanding, and its cost in computational tiimeunaffordable in order to reach a good optimaati
procedure. The case presented is a clear examitle obst of calculating few generations. Becaegtoblem is
mainly the time required to calculate the CFD asialythe solution leads to the need of modelingé¢sealts from

the CFD solver. A Neural Network provides us thépability, and it is easily introduced into the @&t

algorithm code as described in the next section.

4.5. Non-deterministic optimization using Neuraltierks

Neural Networks provide a powerful tool for redugitme calculation time. After a required trainitige network
will obtain a result much faster than performing talculation itself. Based on the work of Lopelz y¥& define an
embedded Neural Network into the genetic algoritbmde. We consider as Neural Network, a Multilayer
Perceptron Model [5][15].

The non-deterministic optimization procedure is rmalculated using the intelligence of a Neural Nekywhich

we educate to provide us with the solver outpue fitme required to obtain each optimization steprastically
reduced, so it becomes competitive against starmjatithization methods. Required time is reducetfi8h to
few minutes. The method guidelines are describefilyone 4.



Initial Population

Calculation of the fitness of each member — using neural networks
Genetic Algorithm main loop

Generate new Population

Selection, Cross-Over and Mutation — based on GA techniques

Calculation of the fithess of each member — using neural networks

End of iterations

Convergence achieved

Maximum number of generations reached
Figure 4.- Genetic Algorithm + Neural Networks sture

The main difference between the non-deterministac@dure previously defined and this one is the lamof
information we obtain from the FEM analysis thatiided using the neural network. The neural ngtvi®
trained to provide Cand G coefficients, which will be used by the objectfuaction evaluation in GA code, in
order to calculate the mean and the standard dmviditrequired. But from FEM analysis we can atdody the
lift, the drag, and G and G of individual shots, which in some cases coulghelunderstand the final result.
After several first test cases using single-obyectienetic algorithm, we decided to move to NSGAdde.
NSGA-II is a multi-objective[14]

5. Results and conclusions

Problem to be solved is basically the optimizatéa 2D profile. Coordinates of the knot points efhdefine the
upper and lower profiles are the input values efghnetic algorithm, in both single and multi-olijez problems.

In addition, we defined what we called the envireminconditions as secondary input parameters. These
parameters are angle of attack and Mach numbechvelie defined using a probabilistic definition. @fplied a
probabilistic distribution to each one so we obtaiset of samples to be applied to each genetmridign
population member. So we can ensure the robustrfi¢ise solution against the input variability.

PROFILE DEFINITION
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Figure 5.- Genetic Algorithm + Neural Networks sture

Knot points define the profile as seen in figurénborder to ensure the profile shape, some of taestonsidered
as fixed, and some of them are variable, so it méaey are the input variables of the GA. For Argjflattack and



Mach number values Normal Probabilistic distribn§avere defined, in order to capture their uncetyabut
seeking the objective values of their means. Taldhows the used values.

Table 2: Problem definition values

Name of the variable Knot Points Value ranges Type of
value distribution
X coordinate Y coordinate  Lower Limit  Upper limit
Knot coordinates x1s, y1s 0 0 - - -
Knot coordinates x2s, y2s 0 0,05 - - -
Knot coordinates x3s, y3s 0,25 Variable 0,05 0,085 Random
Knot coordinates x4s, y4s 0,5 Variable 0,03 0,06 ndean
Knot coordinates x5s, y5s 0,75 Variable 0,01 0,02 anddm
Knot coordinates x6s, y6s 1 0 - - -
Knot coordinates x2l, y2I 0 -0,05 - - -
Knot coordinates x3l, y3lI 0,25 Variable -0,06 -0,03 Random
Knot coordinates x4l, y4l 0,5 Variable -0,035 -0,02 Random
Knot coordinates x5I, y5lI 0,75 Variable -0,015 aR0 Random
Probabilistic data
Mean Standard Value ranges Type of
Deviation distribution
Lower Limit  Upper limit
Angle of attack 4 0,5 2,5 55 Normal
Mack number 0,7 0,08 0,46 0,94 Normal

Several tests were performed during the validgpimtess. First we used a single objective Gendtdorkhms
from Prof. K. Deb. Two other initial conditions thae test are the spread of the initial populatiod the number
of members in. Finally we decide to use a randofimitien of the initial values in other to avoiddtfollowing

effect.

The most significant effect is related to the dlsttion of the initial population. Reaching quiteetsame optimum
value, a clear convergence to the optimum occufrgipopulation is located in a certain area ofsérch space.
The first graph, Figure 5 shows the irregular trefithe optimum values during the analysis. Desipstéack of
tendency, all the values are quite similar andvatiein a range of 0,05% of the optimum value.
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If we check what happens with the means valuesl/@dCratio it shows a quite constant evolution,hasome
generations that lost some quality (decreasingéan value because of the intrinsic GA search nmesim).
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On the contrary, when the initial population isdted close to a certain area, the behaviour oattaysis is
completely different. The evolution of the maximwalues converges to the optimum in an increasing, wa
reaching quite the same optimum value as in theique case. Both analyses can be said to convergare
optimum value. Figure 7 shows the maximum valudwian of each calculated generation.
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Figure 8 shows the evolution of the CI/Cd meansaith generation. We understand that mean valuenase
representative of the generation.



GA single objective
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Of course, genetic algorithm demonstrates its whmever solving multi-objective problems. As mengdn
before, we decided to use NSGA-II from Prof. Debhich provided us multi-objective capability and
state-of-the-art algorithm.

We defined two objective functions to minimize; tfiest one is inverse of Cl (because we really want
maximization in this case), and the second one\We&.compared the obtained results from the simpiletje
algorithms coupled with neural network with nonetetinistic defined analyses shown in figures 10 ahd
Figure 9 shown the whole population obtained fraanegic algorithm coupled with neural network, whigas
previously trained using compressible flow data..
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Figure 10.- Pareto Front and whole results; Geragiorithm coupled with Neural Network

The first non-deterministic analysis used a Mont&Csampling technique in order to define stocladéita to be
applied to angle of attack and Mach number. Saedid0 for the multi-objective optimization outplgta. Input
variables to GA are the Y coordinates of the kran{s that define the upper and lower profiles.
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Several tests were performed in order to evallegterost appropriate Montecarlo sampling to be usethunt of
samples from 10 to 250 of probabilistic data wesedu Results obtained using only 10 samples hiad ttiscarded
because they did not accurately represent thelsspexce of the input data. Increasing the amousawiples to
50, an increased accuracy of the search spacehtais@d; which leads to a better result. The setenuimber of
samples was 250 in order to ensure the best priai@hiepresentation of the input data searchespaied because
it did not mean a major increment of computatiareit.

GA+NN+MC
0.016 w
<o 2>
< o
<

0.014 - <

0.012 -
o L
S 0.01 .

<

0.008 -

0.006

0.004 : : : : :

14 16 18 2 2.2 2.4 2.6
1/Cl
Figure 11.- Pareto Front and whole results; Gersdgiorithm coupled with Neural Network and Montdecar
sampling

The second non-deterministic analysis used a lttpercube sampling technique in order to defins¢htdata to
be applied to angle of attack and Mach number. figeee 11 for optimization results. Profile defioi, and
genetic algorithm definition in these three anadyaee the same as the previous ones.

Latin Hypercube sampling used 10 samples to mbeeinput value space. If we compare this amousaofples
with the required one when using Montecarlo sangpline can realize the computational cost savingcare
obtain with LHS. In addition, if we compare bothr&a fronts, we can realize that LHS provides aedbet
representation of the whole input value space, lWwiéads to shorter fronts and better solutions thsing
MonteCarlo sampling.
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GA+NN+LHS
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Figure 12.- Pareto Front and whole results; Gersdgiorithm coupled with Neural Network and Latingéycube
sampling

Comparing the three obtained Pareto fronts, inrédlR, those defined using probabilistic data shawgseater
convergence. Both of them have a short front lengthpared with the non-probabilistic front. It medhat those
methods including probabilistic information are ealdo select the best values, reducing the rangd, an
distinguishing between the most robust optima.

We can also compare Pareto front obtained usingt&@arlo and Latin Hypercube sampling. Latin Hypéersu
sampling produce shorter front because the sampéngnique is able to better represent the segrabes
MonteCarlo sampling produces a more scatteredaplbt long Pareto front. Even though sampling tiegetas are
working on and defining the same search space,@abf them are creating different values setaitjustify the
different values shown in the graph. Considering fhct, and the better representation of the espace using
Latin Hypercube, we can agree that Latin Hypercsémpling, used to define probabilistic data forejen
algorithm and neural networks, obtains better tesul

COMPARISON PLOT

0.008 ;
GAtNN <
GA+NN+MC
0.007 + GA+NN+LHS O
0.006 |- 1
3 0.005 % .
0.004 |- % % i
S
%QQ
0.003 o ooy 1
< o
<> <& o <> o -
0.002 L L L L L L L L
1.2 1.4 1.6 18 2 22 2.4 2.6 2.8 3

1/Cl
Figure 13.- Comparative plot of all three casesefeafronts
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Figure 14.- Comparative plot of all three casesplemesults

The same behaviour is reproduced if we plot the pesdiles; Latin Hypercube Sampling produces ao$dtest
profiles with less dispersion. The range of besfilas obtained using genetic algorithms (GA) ceaplvith
neural network (NN) is larger than coupling the péng data.
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Figure 15.- Best Solutions; Genetic algorithm cedplvith Neural Network
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GA+NN+MC Best Solutions
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Figure 16.- Best solutions; Genetic algorithm cedplvith Neural Network and MonteCarlo sampling

Comparing both sampling techniques, GA with NN aatn Hypercube sampling technique is able to cogwe
to the best lower profile, which is the same fdbalst upper profiles obtained. It does not depemnthe sample
values defined by LHS, because the same convergaigeis obtained when using different sample data

GA+NN+LHS Best Solutions
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Figure 17.- Best Solutions; Genetic algorithm cedplvith Neural Network and Latin Hypercube sampling

The implementation of probabilistic data into thengtic algorithm defines an improvement. In congmariwith
genetic algorithm probabilistic data from Latin Hypube sampling obtains a best set of solutions.Pdreto
front of this analysis is shorter, and presentstéeb set of solutions.

Further work should be done in other to analysesffect of several different probabilistic datathe results. The
probabilistic data can be applied in several ways, to different values; | mean, contour conditivakies, or
initial values as well.
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