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Two sliding mode control approaches for the stator voltage amplitude

regulation of a stand-alone WRSM

A. Dòria-Cerezo, V.I. Utkin, R.S. Muñoz-Aguilar and E. Fossas

Abstract—In this paper two sliding mode control alternatives
to regulate the stator voltage amplitude for a stand alone wound
rotor synchronous generator are presented. Both controllers use
the stator voltage d-component error in the sliding surface. In
a first case an outer PI loop controller is added to provide the
proper d-voltage component reference. The second approach
consists in extending the dynamic system to include the integral
term as state variable and to modify the former sliding surface
by adding this new state. Finally, simulations results are done
in order to validate the proposed algorithms.

I. INTRODUCTION

The wound rotor synchronous machine (WRSM) is a

doubly-fed electrical machine which can be used for both:

generation [1][2] and driving applications [3][4]. Usually,

wound rotor synchronous machines, used in generation pur-

poses, are studied when they are directly connected to the

power grid [1]. In this case, the stator voltage and frequency

are established by the power grid, while the rotor voltage

helps to improve the power factor and to compensate the

reactive power at the connection point. In this paper we

study the isolated load case which is significantly different:

neither amplitude nor frequency of stator voltage are fixed.

For the stand-alone configuration, although the mechanical

speed determines the frequency, the rotor voltage is used to

set the stator amplitude.

The WRSM is controlled by several techniques, in industry

the most common are based linear techniques [5][6], how-

ever, decoupling methods [7], widely employed for asyn-

chronous machines, are also extended to the synchronous

case. Modern non-linear techniques such as passivity-based

control [3], are also used for regulating this kind of machine.

Several controllers for synchronous machines have also

been obtained using sliding modes [8]. For example, the

classical approach of the Sliding Mode Control (SMC) was

used in [9] for a position servo system. More recently, sliding

observers combined with control linearization and singular

perturbations, are applied in [1] for a synchronous generator

connected to a power grid. In [10] higher order sliding modes

have been also proposed in order to avoid chattering problem

for power control of a wind energy generator module.
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The main goal of this work is to design a sliding mode

control algorithm for a wound rotor synchronous generator

feeding an isolated resistive unknown load.

In this case, SMC is not directly applied to the system

natural output (stator voltage amplitude). Instead, the sliding

surface takes into account the d component of the stator

voltage. Actually, the sliding surface is the error between

that d component and a reference, presumed that all the

coefficients are known. An integral term makes the system

robust in front of the parameter variation.

The paper is organized as follows. First, the system and

its dynamics are introduced in Section II. In Section III

the sliding mode controller with an external PI loop is

designed. The use of a dynamic extension allows to design

a different control law, where the integral term is directly

considered in the sliding surface. This is presented in Section

IV. Simulation results are shown in Section V and, finally,

conclusions are stated in Section VI.

II. SYSTEM DESCRIPTION

Figure 1 shows the proposed scenario: a primary mover

(for example an Internal Combustion Engine, ICE) drags a

WRSM, which acts as a generator to fed an isolated load. ωm

is the mechanical speed, vs, is are the vectors corresponding

to the stator voltages and currents, and vF , iF are the field

voltage and current.

WRSM
LoadICE

+-

is
ωm

vs

iF

vF

Fig. 1. Scheme of a stand-alone wound rotor synchronous generator.

As explained before, this system is different from the

typical grid connection where the frequency and the voltage

amplitudes are fixed by the grid. For an isolated connec-

tion, the frequency is determined by the mechanical speed

(provided by the ICE), while the voltage amplitude must be

assured by the rotor field voltage.

978-1-4244-5831-8/10/$26.00 ©2010 IEEE

2010 11th International Workshop on Variable Structure Systems

Mexico City, Mexico, June 26 - 28, 2010



441

A. Dynamic model

From the well-known dynamical equations (in the dq

coordinates) of the WRSM, and the interconnection rules

with a pure resistor load, the whole dynamical system is

presented.

Assuming that the mechanical speed is externally reg-

ulated by the ICE, the electrical part of the wound rotor

synchronous machine can be described as

L
dx

dt
=





−Rs ωLs 0
−ωLs −Rs −ωLm

0 0 −RF



 x +





vd

vq

vF



 (1)

where

L =





Ls 0 Lm

0 Ls 0
Lm 0 LF





is the inductance matrix, xT = (id, iq, iF ) ∈ R
3 are the dq-

stator and field currents, Rs and RF are the stator and field

resistances, Ls, Lm and LF are the stator, mutual and field

inductances, ω is the electrical speed (ω = npωm, where np

is the number of pole pairs), vd, vq and vF are the dq-stator

voltages and the field voltage which will be used as a control

input.

WRSM

+-

Load

is
ωm

vs

iF

vF

iL

vL

Fig. 2. Detail of the interconnection between a wound rotor synchronous
machine and a load.

In order to design the control law, let us obtain the

complete model of a WRSM connected to a resistive load

RL. The interconnection scheme is depicted in Figure 2.

vT
L = (vLd, vLq) ∈ R

2 and iTL = (iLd, iLq) ∈ R
2 are the dq

load voltages and currents, which are related by
(

vLd

vLq

)

= RL

(

iLd

iLq

)

, (2)

where RL is the resistance value. According to Figure 2, the

interconnection rules are

vs = vL

iL = −is.

Now, putting together (1) and (2), the system can be written

in an affine form as

L
dx

dt
= Ax + BvF , (3)

where L is the inductance matrix defined before,

A =





−(Rs + RL) ωLs 0
−ωLs −(Rs + RL) −ωLm

0 0 −RF



 ,

and

B =





0
0
1



 .

B. Equilibrium points

The equilibrium points can be parametrized by the control

input vF , this resulting in

x∗ = −A−1BvF ,

which are on a straight line defined by

x∗T (vF ) =

[

−ω2LsLm

RF |Zs|2
,−ωLm(Rs + RL)

RF |Zs|2
,

1

RF

]

vF (4)

where |Zs|2 = ω2L2

s + (Rs + RL)2.

C. Control objective

As mentioned before, this machine must ensure stator volt-

age amplitude and frequency. For a synchronous machine,

the stator frequency is directly given by the mechanical

speed, which, in this paper is assumed to be constant and

externally regulated. Then, the system output is the stator

voltage amplitude Vs, which can be easily obtained, in a

dq-framework as

Vs =
√

v2

d + v2
q . (5)

Last equation can be expressed in current terms using (2),

which yields

Vs = RL

√

i2d + i2q, (6)

and the control input is the field voltage vF .

Note that, a fix value of Vs in (6), namely Vs = Vref ,

V 2

ref = R2

L(i2d + i2q), (7)

implies that the control goal defines a cylinder in the state

space, see Figure 3.

Then, the desired equilibrium points are the intersection

of the straight line (4) of the WRSM and the cylinder (7).

Using polar coordinates

id = Is cos δ

iq = Is sin δ

where, Is = Vs

RL
, it is easy to obtain

i∗d =
Vref

RL

cos δ∗ (8)

i∗q =
Vref

RL

sin δ∗ (9)

i∗F = −Vref

RL

Ls

Lm cos δ∗
(10)

where

δ∗ = arctan

(

Rs + RL

ωLs

)

.
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In fact, there exist two solutions, given by the two values of

the arctan function, which are depicted in Figure 3.

Furthermore, the value of the field voltage in equilibria is

v∗F = ± RF Ls

RLLm cos δ∗
Vref .

0

0

0

i
d
 [A]

i
q
 [A]

i F
 [

A
]

(7)

(4)x∗

Fig. 3. Intersection of the control goals and the equilibrium points
distribution of the system.

III. SLIDING MODE CONTROL WITH AN OUTER-PI LOOP

Figure 4 shows the proposed control algorithm based on

two loops; an inner-loop based on SMC and a PI outer

loop which provides the d-component of the stator voltage

reference, v
ref
d , to reach Vref . Roughly speaking, when the

switching system is faced with a perturbation, the PI loop

places the sliding surface in the appropriate regulation point.

This case differs from the one will be presented in Section

IV, where the integral term is considered as a new state.

WRSM

+

−

PI
+

−

vF

vd

sv
ref
d

Vs

VsVref

Fig. 4. Control scheme for a wound rotor synchronous generator.

The whole stability proof is based on the assumption of a

fast inner-loop, with respect to the PI dynamics.

A. Inner-loop: a sliding mode controller

The Sliding Mode Controller enforces the system trajecto-

ries to reach and keep on the sliding surface,s(x) = 0, with
the switching function

s(x) = vd(x) − v
ref
d ,

where v
ref
d is defined by the outer-loop PI controller. From

(2),

s(x) = RLid − v
ref
d .

Note that s(x) = 0 defines the plane in id =
v

ref

d

RL
. This case

differs from [2], where the sliding surface was the cylinder

(7). The equivalent control, ueq is the solution of

∂s

∂x
L−1(Ax + Bueq) = 0. (11)

It results in

ueq =
1

Lm

(−LF (Rs+RL)id+ωLsLF iq+LmRF iF ). (12)

There is sliding motion on s(x) = 0 provided that the

reachability condition s · ds
dt

< 0 holds. From (3)

s · ds
dt

= s
∂s

∂x
L−1(Ax + BvF ) < 0

that, using (3) and (11), can be written as

−s
RLLm

µ
(vF − ueq) < 0,

finally, as RL, Lm, µ > 0, the reachability condition yields

s(ueq − vF ) < 0.

Using a bang-bang rotor voltage (vF = ±VDC ), the follow-

ing switching policy

vF =

{

VDC if s > 0
−VDC if s < 0

fulfils the reachability condition presumed that −VDC <

ueq < VDC .

The remaining dynamics (ISD) results in the following

linear system

diq

dt
= −Rs + RL

Ls

iq −
ωLm

Ls

iF − ω

RL

v
ref
d (13)

diF

dt
=

ωLs

Lm

iq −
Rs + RL

LmRL

v
ref
d , (14)

which is stable because the plant parameters are positive.

B. Outer-loop: a PI controller

The outer-loop consists in a simple PI controller. Consid-

ering a fast inner-loop, the closed-loop system, (3) and (12),

reduces to (13) and (14), where the new input is v
ref
d and

the output still is Vs. Though the output remains nonlinear,

presuming the ideal sliding dynamics achieves the steady-

state, (5) can be rewritten as

Vs =

√

(

v
ref
d

)2

+ R2

Li2q. (15)

Linearizing around (vref
d , i∗q) such that

Vref =
√

(vref∗
d )2 + R2

Li∗2q , (16)

equation (15) results in

Vs ≃ Vref +
v

ref∗
d

Vref

(vref
d − v

ref∗
d ) +

R2

Li∗q

Vref

(iq − i∗q) (17)

where

v
ref∗
d = Vref cos δ∗. (18)
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Using (9), (16) and (18), equation (17) can be rewritten as

Vs ≃ v
ref
d cos δ∗ + RLiq sin δ∗. (19)

Note that (19), which results from linearising (15) is a

function of (vref
d , iq) but it is independent of the voltage

component of the point around which function Vs was

linearised.

Using (13) and (14) in (19) the transfer function Vs

v
ref

d

is

obtained. Namely1,

G(s) =
cos2 δ∗s2 + ω2

cos δ∗s2 + ω sin δ∗s + ω2 cos δ∗
.

The closed loop system transfer function is given by

W (s) =
c3s

3 + c2s
2 + c1s + c0

b3s3 + b2s2 + b1s + b0

where c3 = kp cos2 δ∗, c2 = ki cos2 δ∗, c1 = kpω
2, c0 =

kiω
2 and

b3 = cos δ∗(kp cos δ∗ + 1)

b2 = (ω sin δ∗ + ki cos2 δ∗)

b1 = ω2(kp + cos δ∗)

b0 = kiω
2.

Application of the Routh-Hurwitz criterion yields to the next

stability conditions

kp > − 1

cos δ∗

ki > 0

ki <
ω(kp sin δ∗ + cos δ∗)

cos δ∗ sin δ∗
.

IV. DIRECT SLIDING MODE CONTROLLER

In this section, a direct Sliding Mode Controller is pre-

sented. The sliding surface is still based on the error of the

d-component of the stator voltage, and an integral action is

added in order to robustify the controller. Figure 5 shows the

proposed control scheme.

WRSM
+

−+

−

++
vF

vd

z

sz

v
ref
dV 2

s

V 2

s

V 2

ref
∫

k

Fig. 5. Direct sliding mode control scheme for a wound rotor synchronous
generator.

1This transfer function takes the form G(s) = 1+Q(s). Hence, a jump in

v
ref
d

results in a jump in a Vs. But this only occurs presuming ideal sliding
dynamics. In a real application, VDC limitations and the own dynamics of
the inner loop will filter the output signal Vs.

A. Control design

The integral term entails the extension of the system with

a new variable z defined by

dz

dt
= V 2

s − V 2

ref .

The new sliding surface, sz(x) = 0, is given by

sz = vd − v
ref
d + kz

where v
ref
d is the vd nominal value given Vref . v

ref
d is

obtained from equations (8) and (2) using the nominal plant

parameters2

v
ref
d = Vref cos δ̃∗.

The equivalent control is obtained. It results in

uzeq = ueq +
µ

LmRL

kż,

note that it equals to the former equivalent control plus the

derivative of the new integral term.

Now, the control law is designed in the extended system

Lz

dze

dt
= Az(ze) + BzvF (20)

where zT
e = [id, iq, iF , z],

Lz =









Ls 0 Lm 0
0 Ls 0 0

Lm 0 LF 0
0 0 0 1









,

Az(ze) =

(

Ax

R2

L(i2d + i2q) − V 2

ref

)

and BT
z = (0, 0, 1, 0). Tacking into account that

RL, Lm, µ > 0 and proceeding as usual, reachability con-

dition yields

sz(uzeq − vF ) < 0,

and, consequently, the switching control policy

vF =

{

VDC if sz > 0
−VDC if sz < 0

(21)

guaranties sliding motion on sz = 0 presumed that −VDC <

uzeq < VDC .

B. Ideal Sliding Dynamics

The controller defined in (21) ensures sliding modes on

the switching surface. Using sz = 0, replacing vF = uzeq

in (20) and defining a new variable ξ = v
ref
d − kz, the ideal

sliding dynamics can be written as

diq

dt
= −Rs + RL

Ls

iq −
ωLm

Ls

iF − ω

RL

ξ

diF

dt
=

kLsRL

µLm

i2q +
ωLs

Lm

iq +
kLs

µLmRL

ξ2 − Rs + RL

LmRL

ξ

− kLs

µLmRLRL

V 2

ref

dξ

dt
= −kR2

L

µ
i2q −

k

µ
ξ2 +

k

µ
V 2

ref .

2The tilde in δ̃∗ denotes that this value depends on RL, Rs and Ls

estimations.
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As for the local stability, the small signal model around

the equilibrium point given by (9), (10) and

ξ∗ = Vref cos δ∗

is used. This yields a sufficient condition for k. Namely3,

k > 0.

V. SIMULATIONS

In this Section the simulation results using the designed

controller are presented. The used WRSM is a 4 poles,

2.4kW machine with the following parameters: Rs = 3.06Ω,

Ls = 0.48H, Lm = 0.31H, RF = 2.48Ω, LF = 0.24H.
Mechanical speed is set to ωm = 1500rpm and VDC = 35V.
Initial conditions are Vref = 200

√
2V with a resistive

load RL = 120Ω. Simulation results show the closed loop

response when the load varies from the nominal value to

RL = 64Ω at t = 0.05s. The controller gains are: kp =
1000, ki = 100 (for the PI controller) and k = 0.2 (for the

direct scheme). Simulations have been performed using a

variable step integration and a zero order holder of sampling

frequency ωs = 10kHz.
Figure 6 shows the three phase stator voltages. In both

cases, regulation of the stator voltage amplitude is achieved.

The fast response of the first controller algorithm is a

consequence of the proportional action of the PI loop.

0 0.05 0.1 0.15

−300

−200

−100

0

100

200

300

V
a

b
c
[V

]

Three−phase stator voltages. SMC+PI controller

0 0.05 0.1 0.15

−300

−200

−100

0

100

200

300

V
a

b
c
[V

]

time[s]

Three−phase stator voltages. Direct SMC

Fig. 6. Simulation results: Three phase stator voltages.

Figure 7 shows the switching functions. Note that in the

second case, sliding is lost twice for a short time after

the load change. The first time is due to the sudden load

variation, while the second time is caused by the equivalent

control (11) which is out of range (|uzeq| > VDC ). See also

3As pointed out at the end of Section II, two equilibria are possible.

To reach the value corresponding to δ∗ = arctan
“

Rs+RL
ωLs

”

+ π, local

stability condition also holds with k < 0.

Figure 8, where the field voltage vF is shown. Remark the

long time the control variable remains saturated compared

with the SMC+PI control law.

0 0.05 0.1 0.15
−20

−15

−10

−5

0

5
x 10

4

s

time[s]

Switching function. SMC+PI Controller

0 0.05 0.1 0.15
−150

−100

−50

0

50

100

150

s

time[s]

Switching function. Direct SMC

Fig. 7. Simulation results: Switching functions.

0 0.05 0.1 0.15
−40

−20

0

20

40

v
F
[V

]

time[s]

Field voltage. SMC+PI Controller

0 0.05 0.1 0.15
−40

−20

0

20

40

v
F
[V

]

time[s]

Field voltage. Direct SMC

Fig. 8. Simulation results: Field voltages.

Velocity response can be observed in Figures 9 and 10,

where stator voltage amplitude and stator and field currents

are displayed. The faster response of the SMC+PI controller,

in front of the direct scheme, is clear.

VI. CONCLUSIONS

In this paper two approaches for controlling the stator

voltage amplitude of an isolated wound rotor synchronous
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time[s]

Stator voltage amplitude

 

 

SMC+PI

Direct SMC

Fig. 9. Simulation results: Stator voltage amplitudes.
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SMC+PI

Direct SMC
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SMC+PI

Direct SMC

0 0.05 0.1 0.15
−10

−8

−6

−4

i F
[A

]

time[s]

 

 

SMC+PI

Direct SMC

Fig. 10. Simulation results: Stator and field currents.

generator feeding a resistive load are presented. Both con-

trollers are designed using sliding modes, and taking the

error of the d-voltage component as switching function.

First controller is composed by an inner sliding mode based

loop, and a simple outer-loop PI controller, while the second

approach suggest the use of a dynamic extension in the

switching function.

Stability of both alternatives are studied. The inner sliding

mode control loop is globally stable, while the design of the

outer PI loop is based on the linearization of the ideal sliding

dynamics. The stability of the second control algorithm is

locally proved.

The control algorithms do not require the WRSM param-

eter knowledge; they only need the stator voltage measures

and the rotor position. This allows to avoid current sensors

and consequently, it reduces the implementation costs.

Simulation results shows that the two possibilities achieve

the control goal. However, since the direct scheme does not

contain any proportional gain in Vs − Vref , step changes in

Vref only appear in the switching function trough the integral

term. On the contrary, the proportional part in the SMC+PI

allows reflecting reference step changes in s directly. The

inclusion of the proportional part in the direct SMC implies

the transversality condition fails at id = 0, see [2].

Along this paper we assumed that the mechanical speed is

externally regulated. In some cases where the ICE power is

close to the load power, some variations of the mechanical

speed can occur during the load transients, however this

would not affect to the amplitude stator regulation since this

speed remains positive. Stability is still guaranteed in both

cases, and only the gains of the PI loop of the SMC+PI

algorithm should be redesigned.
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