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ABSTRACT: This article performs an analysis of current limitations regarding the extrac-

tion of parallel behavioral models to reproduce the power amplifier (PA) nonlinear behavior

and its dynamics. To overcome these limitations, a general preprocessing block that clearly

improves the identification capabilities shown by classical parallel structures is proposed. It

follows the principle of separating both static and dynamic nonlinear behavior of the PA to

obtain a better identification performance. A comparison with common parallel configura-

tions using linear estimation is performed, to highlight the benefits of using the preprocess-

ing structure. Furthermore, a new nonlinear parallel structure using sub-band filtering tech-

niques is also proposed. For the models extraction and comparison, four types of noise-free

simulated data presenting different levels of nonlinearities and memory, as well as a meas-

ured signal obtained from a laboratory amplifier have been considered. VVC 2009 Wiley Periodi-

cals, Inc. Int J RF and Microwave CAE 19: 615–626, 2009.
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I. INTRODUCTION

Behavioral models do not need an a priori knowledge

of the power amplifier (PA) internal composition. For

that reason, they are also known as black-box models.

Their extraction relies on a set of input–output obser-

vations. Therefore, their accuracy is highly sensitive

to the adopted model structure and the parameter

extraction procedure. Behavioral modeling finds

applications in the field of system simulation and PA

linearization, where it is essential to trade-off accu-

racy and computational efficiency.

A common strategy to obtain more accurate be-

havioral models consists of adding several structures

in parallel. Parallel models have been successfully

used in nonlinear system identification in different

areas using time or frequency-domain data, as in [1–

3]. The advantage of parallel models regards the pos-

sibility of integrating several structures in different

branches, providing flexibility in the design. The con-

vergence is guaranteed because the next branch is

conformed to the residue left by the previous one.

The disadvantage is that parallel models are very sen-

sitive to noise if too many paths are added. Conse-

quently, a proper selection of the paths and the order
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of the nonlinearity should be made to assure low

noise and good convergence [4].

An example of a parallel model that uses time-do-

main data for its extraction is reported in [1, 3] and

shown in Figure 1, where input/output signals are func-

tions of the integer k, denoting sampled time-domain

signals. The estimation procedure for this case can be

summarized as follows: In a first approach, a filter

(linear time invariant block) is estimated between input

signal u(k) and output signal y(k); then an intermediate

signal x(k) is obtained as the result of filtering the input

signal with the previously obtained filter; and finally, a

polynomial is estimated by means of this intermediate

signal and the output signal. The error generated by

this two-step linear least-squares (LS) estimation is

then captured by the next branch of the parallel struc-

ture, and so on until no significant improvement in the

entire model performance can be observed.

Another example is the modified parallel Hammer-

stein (PH) [5, 6], which uses one filter for each nonlin-

ear order. Its structure allows the determination of the

equivalent main diagonals of the Volterra kernels in

one step, being an accurate and interesting alternative.

A further accuracy improvement in parallel model-

ing is possible by considering the use of a different
structure (than the one used for the first branch) on the

second branch, capable of estimating the remains of dy-
namics that could not be captured by the first branch.

An example of this structure can be found for frequency

domain in [2], and it is shown in Figure 2. In these
models, a path is designed for the linear part of the sig-

nal (filter HL1(f)) and another path for the nonlinear
one, namely amplitude/amplitude and amplitude/phase

(AM/AM and AM/PM) nonlinearity and filter HL2(f).
Treating the residue with another structure, better
results were achieved in comparison with a model that

presents branches with the same structure. However, an
advanced strategy for the initial path estimation and the

correct selection of the paths to be added to the parallel
model are crucial to obtain even better modeling results,

as it will be shown in the following sections.

II. PREPROCESSOR FOR PA
LINEAR ESTIMATION

The linear LS estimation combines very interesting

characteristics among them. A one shot solution can

be computed analytically, a recursive formulation is

possible, and it can be used in real time [7]. All these

characteristics make LS a widely used estimator.

Nevertheless, it treats linear and nonlinear compo-
nents of the data in the same way, and to correct this
problem applying weighted LS for every particular
input signal is a cumbersome task. Focusing in the
particular case of PA modeling, the linear compo-
nents present much more power than the nonlinear
ones. Normally, the distortion is at least 30 dB under
the carrier. If models are estimated directly from
input/output sets of data, both linear and nonlinear
behavior will be modeled together and thus the linear
part of the signal will appear as high amplitude noise
for the nonlinear part within the estimation. This
unwanted situation can be avoided by removing the
linear part of the signal. This could be accomplished
by fitting a best linear approximation between input/
output data, in a similar approach to the one
described for polyspectral models [2].

Furthermore, the nonlinear dynamic part of the PA
output, ydyn(k), has usually much less power than its
associated static or memoryless components, yNL(k).
Therefore, we now go a step further, and propose a
parallel model consisting of a first preprocessing
branch, that represent the memoryless nonlinearity
(NL), and subsequent branches, responsible for mod-
eling the remaining of the output signal that has not
been identified by the first branch.

The estimation procedure for the extraction of the

model with preprocessing can be summarized as fol-

lows (see Fig. 3):

1. Extract the memoryless nonlinear model

(NL block) by means of the measured input

(umeas(k)) and output (ymeas(k)) data;

Figure 1. Parallel Wiener model.

Figure 2. Polyspectral model. Figure 3. Preprocessing for a dynamic PA model.
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2. Calculate the residual signal yres(k) defined as

the subtraction between the measured output

ymeas(k) and the output of the memoryless

nonlinear model yNL(k);

3. Finally, parameterize the dynamic model

using the input signal umeas(k) and the residual

signal yres(k).

The output of the overall model is the sum of the

outputs of both branches, NL (yNL(k)) and PA

dynamic model (ydyn(k)). The process can still be

continued, if other residues are calculated and suita-

ble models are used.

Explaining further, the NL branch (preprocessing)

removes all the static nonlinearity of the signal, or

the noise for the identification of nonlinear distortion

parameters, allowing a more accurate identification

of the dynamic behavior (PA dynamic model branch).

An example of a measured signal without the nonlin-

ear static components (residue for the next estima-

tion, yres(k)) is displayed in Figure 4.

The NL branch can be estimated as the best mem-

oryless approximator, in a mean-square error sense

min
XK
k¼0

ymeasðkÞ � yNLðkÞ
�����

�����
2

8<
:

9=
; ð1Þ

where ymeas(k) is the measured PA output response

and yNL(k) are the static or memoryless components.

This allows the computation of the residual

dynamic output component ydyn(k)

ydynðkÞ ¼ ymeasðkÞ � yNLðkÞ: ð2Þ

When this best nonlinear memoryless approxima-

tor, yNL(k), has a polynomial form, its coefficients

can be easily obtained from a linear LS estimation

derived from

min
XK
k¼0

ymeasðkÞ �
XP
p¼1

apu
PðkÞ

�����

�����
2

8<
:

9=
;: ð3Þ

where ap is the power series coefficient a of order

p, and u(k) is the input signal.

A similar approach was suggested in [3], but lim-

ited to build the nonlinearity with the two-tone AM/

AM–AM/PM.

Alike in [2], it is possible to replace the memory-

less nonlinearity (NL branch, in Fig. 3) by a filter, in

order to remove linear PA dynamics to proceed with

the identification of the nonlinear part in further

branches. Then, we could reformulate (1)–(3) as

min
XK
k¼0

ymeasðkÞ � yLðkÞ
�����

�����
2

8<
:

9=
;: ð4Þ

where yL(k) is the best linear approximator. This

allows the computation of the residual static nonlin-

ear output component as

yNLðkÞ ¼ ymeasðkÞ � yLðkÞ: ð5Þ

When the best linear approximator is modeled as

an FIR filter, its coefficients can be easily obtained

from a linear LS estimation derived from

min
XK
k¼0

ymeasðkÞ �
XM�1

s¼0

hðsÞuðk � sÞ
�����

�����
2

8<
:

9=
;: ð6Þ

where h(s) is the impulse response of a filter with

memory depth M.

However, the identification performance achieved

with this solution, applied in [8], is too dependent on

the number of coefficients used to describe the filter

and thus it loses generality in the comparison. More-

over, as pointed out in [9], the procedures to extend

the model were not given in [8]. Based on these diffi-

culties, the preprocessor technique with the filter

replacing the NL branch will not be further applied in

this article. The studies will follow applying the pre-

processor containing the NL branch and the PA

dynamic model branch (Fig. 3).

To verify the identification performance achieved

when using this preprocessing technique, sets of

simulated and measured input/output data were built.

The generation of these data is explained in detail in

the next section.

Further on, several structures for PA modeling

(with and without preprocessing) were extracted from

Figure 4. Residue at the output of the NL branch (Meas

Signal w/o NL).

Nonlinear Parallel Behavioral Models 617

International Journal of RF and Microwave Computer-Aided Engineering DOI 10.1002/mmce



these data and the identification accuracy of all esti-

mated models is compared.

III. GENERATION OF PA INPUT/OUTPUT
DATA

Five different groups of input/output data sets have

been considered for the behavioral modeling extrac-

tion and validation. Four groups of four input/output

data sets were obtained on a simulated amplifier

designed to present controlled memory effects as

shown in Figure 5, and one group of two input/output

sets is relative to a measured input/output WiMAX

signal on an LDMOS PA.

The 16 input/output sets of simulated data corre-

sponding to different memory situations and nonlin-

ear characteristics considered for the comparison

were as follows: (i) memoryless, (ii) linear memory,

(iii) nonlinear memory, and (iv) linear and nonlinear

memory simultaneously. The simulated data were

obtained from a PA designed to handle a WCDMA

signal at 1.9 GHz, operating with an input back-off

(IBO) of 2 dB. To show the model capabilities for

dealing with nonlinear dynamic systems, the output

bias network was designed to deliberately introduce

(or not) a reasonable amount of nonlinear or linear

memory. The schematic of the circuit used to obtain

these data is depicted in Figure 5. By introducing (or

not) the highlighted subcircuits 1 and 2 (SC1 and

SC2), the different types of data (prioritizing memory

or nonlinearities) can be generated on demand.

The large bias inductor (6.18 uH) shown in Figure

5 is responsible for the nonlinear long-term memory

effects. The inclusion of subcircuit 1 (SC1, in Fig. 5)

(almost) completely eliminates the impact of the bias

inductor on the baseband signal bandwidth creating

this way a system without significant nonlinear mem-

ory effects. The parallel LC of subcircuit 2 (SC2) is

designed to have a strong slope at the carrier fre-

quency and thus to present high frequency response

variations near these frequencies. So, the inclusion

(or not) of SC2 determines the presence of linear

memory at the output of the considered circuit.

To illustrate the dynamic behavior of the different

circuit configurations, Figure 6 presents the instanta-

neous gain variation with the instantaneous input

power using a two tone signal of 1 MHz separation

(referred in following Tables as noM-Memoryless,

LM-linear memory, NLM-nonlinear memory, LM/

NLM-linear memory, and nonlinear memory). The

fifth group of measured sets of input/output data was

obtained from a LDMOS Wimax amplifier at 3.5 GHz

operating at 2 dB IBO, and 3.5 MHz RF bandwidth,

using a modified bias Tee to introduce additional

memory in measurement results [10]. The AM/AM

and AM/PM characteristics of this modified amplifier

measured signal are displayed in Figure 7. The mea-

surement setup covered intermodulation distortion

bands of up to seventh order. The input/output power

spectral density (PSD) is shown in Figure 8. This sig-

nal is referred in the following tables as Meas.

Based on these sets of data, tables of comparisons

were built and some conclusions were drawn as

shown in the next section.

IV. MODEL EXTRACTION AND RESULTS

A first comparison among behavioral models fre-

quently used in the literature, namely ordinary base-

band power series [11], Wiener, parallel Wiener

(PW), and modified parallel Hammerstein models

(PH), was done using the simulated and measured set

of data, and summarized in Table I. The figure of

merit used to characterize model’s accuracy was the

normalized mean square error (NMSE) [2]. Models

were extracted considering a seventh order baseband

polynomial and a maximum of three delay taps.

Although a similar comparison was previously

reported in [6], we will use the results obtained by

the comparison presented in this article to support the

performance of the new techniques presented.

Observing results in Table I, we can see that the par-

allel Wiener with two branches shows practically the

same NMSE than a single Wiener model for all dif-

ferent type of data. No significant accuracy improve-

ment, measured in terms of NMSE, is appreciated.

The inclusion of additional branches in the model

would not be justified, because it would be modeling

Figure 5. Schematic representation of the circuit used to

generate the different types of memory.
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Figure 6. Instantaneous input/output gain simulated with a two tone signal for the different cir-

cuit configurations. (a) Memoryless; (b) with linear memory; (c) with nonlinear memory; and (d)

with linear and nonlinear memory.

Figure 7. AM/AM and AM/PM characteristics of the modified bias Tee amplifier measured

signal used for modeling. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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noise and thus not contributing to the final estimation

results. The PH model shows the best NMSE results,

because the equivalent Volterra kernels coefficients

were estimated in one step. Notice that NMSE values

obtained when considering the measured data are

considerably poorer than when considering the noise-

free simulated data sets, because measured data were

affected by noise and possible synchronization imper-

fections, and collected from a PA operating in deep

compression. Taking into account these results one

may conclude that the addition of parallel replicas

of the same model structure does not significantly

contribute to obtain a more accurate identification

performance.

To highlight the advantages of the general prepro-

cessing technique presented in Figure 3, we particular-

ize the general dynamic PA model with a reduced Vol-

terra series using a Wiener-Bose structure (WBose)

[12], as shown in Figure 9.

This behavioral model with preprocessing is com-

posed of a nonlinear memoryless block, implemented

with a look-up table (LUT) to avoid the dependency

on the polynomial order, and the WBose block. Each

block is explained in details below:

� The LUT is determined dividing the measured

data in AM/AM and AM/PM conversion

curves in slices, which are dependent of the

input power and the number of points

involved. Figure 10 shows a histogram that

contains the number of points taken into

account to construct the corresponding slice.

This histogram shows a nonuniform distribu-

tion of the points, dependent of the instantane-

ous input power. Then, AM/AM and AM/PM

conversion curves of the signal are determined

directly from the mean value of the slices, as

it is depicted in Figure 11. From these curves,

the LUT is parameterized;

� The WBose block was modeled with only three

delay taps. Moreover, to reduce the complexity

of the model, the pruning technique proposed in

[13] has been used. It was originally derived

until 5th order baseband Volterra series, and

was extended to the 7th order to be used in this

work. This derivation was not published, but can

be sent by the author upon request. The pruned

kernels are represented in (7).

yWBoseðkÞ ¼
X
p

XM�1

r1¼0

� � �
XM�1

rp¼0

hrpðs1; :::; spÞ P
p

j¼1
uðk � sjÞ:

ð7Þ

Figure 8. PSD of the modified bias Tee amplifier input/

output measured signal.

TABLE I. NMSE Summary—Simulated and

Measured Signal

Model

LM/NLM

(dB)

LM

(dB)

NLM

(dB)

noM

(dB)

Meas

(dB)

Poly 234 236 236 240 221

Wiener 237 240 236 240 221

PW 237 240 236 240 221

PH 237 240 237 241 222

Figure 9. Proposed initial configuration for the estima-

tion of PA behavioral models.

Figure 10. Histogram of the AM/AM nonparametric

estimation.
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where hrp(s1, . . . ,sp) is the reduced Volterra kernel

of order p, with M memory length, and u(k) as input

signal.

The output of the overall model is the sum of the

outputs of both branches, as it is depicted in Figure 9

and shown by (8).

yðkÞ ¼ LUT½uðkÞ� þ
X
p

XM�1

s1¼0

� � �
XM�1

rp¼0

hrpðs1; : : : ; spÞ

3 P
p

j¼1
uðk � sjÞ: ð8Þ

where LUT[�] is the LUT operator.

To avail the effectiveness of this method, Table II

shows the identification results for a memoryless

nonlinearity (LUT alone); a PH with preprocessing

(Pre-PH); a WBose model without preprocessing

(WBose); and a WBose model with preprocessing

(Pre-WBose). The WBose model presented the best

results for models without preprocessing and for sig-

nals with memory, comparing Tables I and II. This

result was expected because a reduced Volterra

model includes more memory effects in its structure

than the other models. Only when the signal has no

memory (noM, Table II), the NMSE (dB) of the LUT

was better than the WBose model. This effect is

known as noise modeling [4, 7]. Once there was no

memory in the system to be identified, a very com-

plete model as a reduced-Volterra approximation (in

terms of memory effects) was estimated based on

noise, delivering worse results than a static nonlinear

model.

Unlike the use of parallel replicas (see results in

Table I), the use of the proposed preprocessing tech-

nique improves the identification results achieved by

a single dynamic model without any kind of prepro-

cessing. The results of the Pre-PH were better than a

WBose for signals containing only linear memory,

and the Pre-WBose has better results than all other

models. Therefore, this technique offers the possibil-

ity to increase the identification accuracy with only a

slight change in the estimation procedure. Removing

first the nonlinear static part of the signal before

applying the WBose model estimation has improved

the accuracy, as the nonlinear static part of the signal

has much higher amplitude than the dynamic part of

the signal. In single one-step estimation, both parts

would be treated the same way by the LS estimator,

as in the case without preprocessing.

Results also show that further improvements for

this modeling technique using LUT and WBose are

hard to achieve. The solution found was the use of

different structures at the subsequent branches, which

could improve the NMSE results, like the sub-band

structures explained in the next section. In the follow-

ing, the data used to compare and validate the

proposed architectures and techniques will be the

measured data obtained from the modified bias Tee

amplifier.

V. ESTIMATING MEMORY EFFECTS
WITH SUB-BAND STRUCTURES

An RF power amplifier has a complex structure, pre-

senting many kinds of memory. They can be classi-

fied as [14]:

� Low frequency (kHz to MHz): thermal effects,

trapping effects, biasing circuits, AGC loops;

� High frequency (GHz): transistor (transit time

and reactance parasitics), matching networks

(group delay).

These memories are mixed together in the PA

(nonlinear coupled), and the problem of estimating

behavioral models becomes very difficult [15].

Models capable of identifying memory at different

signal rates can improve the identification perform-

ance, which can be accomplished using parallel sub-

band filtering techniques. This is a powerful method

to design very large order FIR filters, operating at a

Figure 11. AM/AM preprocessing (AM/PM is similar).

TABLE II. NMSE Summary of Ordinary Models and

Models with Preprocessing—Simulated and Measured

Signal

Model

LM/NLM

(dB)

LM

(dB)

NLM

(dB)

noM

(dB)

Meas

(dB)

LUT 235 238 237 260 221

Pre-PH 238 254 238 264 222

WBose 242 242 242 242 223

Pre-WBose 244 256 244 265 223

Nonlinear Parallel Behavioral Models 621
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high speed, with smaller filters, operating at slower

speed, reducing computational complexity, as shown

in [16, 17]. In this technique, the input signal is deci-

mated into different rates, filtered for each branch,

and later interpolated with the respective branch rate

to form the output signal. With smaller filters, the

matrix to be inverted in LS estimation process is also

smaller. An example of baseband digital predistortion

using this technique if found in [17]. A system identi-

fication problem, where sub-band neural networks

were used to recover audio signals is shown in [18].

It was concluded that sub-band adaptive filters have

better performance for highly correlated input signals

(also the case for amplifier identification) than full-

band adaptive filters. Also in [18] it was proven that,

for sub-band input signals, the eigenvalue spread of

the sub-band signal will be smaller or equal the

eigenvalue spread of the full signal, which guarantees

a better condition number of the Hessian matrix used

in the LS estimation.

The sub-band principle was applied in an innova-

tive parallel model, with three variants:

� Parallel model with resampling A–PMRA and

parallel model with resampling B–PMRB, pre-

sented in Figure 12;

� Parallel model with resampling using simulated

annealing–PMRSA, displayed in Figure 13.

This model is capable of estimating different kinds

of memories, mixing it with nonlinearities in an

effective way, increasing the model accuracy, and

representing a PA as close as possible, as will be

shown.

The overall model output y(k) of the PMRA,

PMRB, and PMRSA is obtained by the sum of all

responses at each branch

yðkÞ ¼ LUT½uðkÞ� þ
X
p

XM�1

r1¼0

� � �
XM�1

rp¼0

hrpðbÞ

3ðrfb:s1; : : : ; rfb:spÞ P
p

j¼1
uðk � rfb:sjÞ: ð9Þ

where rfb is the resampling factor rf of the branch b
used in the model.

The variants PMRA and PMRB will differ in the

way that a resampling factor (rf) [12], which allows

each branch to be estimated in a different rate, is

optimized. The model implemented with the rf can

re-produce copies of the nonlinear FIR in the entire

spectrum, and a better resolution for the same mem-

ory depth inside the chosen sub-band frequency band

is obtained. This degree of freedom for rf can be opti-

mized in several model extraction and evaluation, as

it has been done in this work. After that, the residue

is obtained, and the process is repeated for the subse-

quent branches until no significant improvement is

achieved. Therefore, the model is composed of

branches optimized for different rates having

improved identification capabilities.

The structure of PMRA allows rf optimization

only after the first branch. This means that the first

branch has a fixed rf of 1, thus doing a ‘‘blind" first

estimation, and then an optimization is performed for

the other branches considering different values of rf.

Using this technique and using the input/output

measured data obtained from the modified bias Tee

amplifier, the first branch of the PMRA was calcu-

lated, and presented an NMSE of 223 dB, as dis-

played in Table III, under column First branch rf 5

1. The rf was optimized for each further branch. This

was accomplished varying rf and performing estima-

tion for this point, recording the results, building a

graph as Figure 14, and locating the best NMSE (dB)

result as a function of rf. As the overall result is the

sum of the output signal from each branch, that rf

that resulted in the lowest NMSE was selected. Fig-

ure 14 shows the results of the rf optimization curves

for branches from 2 to 5 and considering rf 5 1 in

the first branch. The final NMSE was the sum of the

NMSE of all branches (229 dB, as displayed in Ta-

ble III). As expected, additional branches presented

Figure 12. Proposed parallel models with resampling

configuration for the estimation of PA behavioral models.

Figure 13. Variation with simulated annealing optimiza-

tion for the subsequent branches—PMRSA.
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always less contribution than the previous ones, indi-

cating a reduction of unmodeled memory effects.

The PMRB begins the rate optimization already

in the first branch, which presented an NMSE of

224 dB and rf of 9, results listed also in Table III,

under Optim. for all Branches column. Figure 15

shows curves for the rf optimization already in the

first branch, and Figure 16 for the remaining ones.

No significant changes were noted after 50, so rf

iterations were limited up to this value.

Although the PMRB presented a better NMSE fig-

ure than the PMRA in the initial branch, the final

optimization results were practically the same. So,

initial conditions (or the rf optimization already in

the first branch) were considered good for both cases.

What is significant is that the use of the resampling

factor together with parallel models has improved

final results in � 6 dB NMSE in comparison with

results shown in Table II (results obtained using the

measured signal). The models here presented have an

increased complexity in comparison with previous

models, but the accuracy is clearly better.

A third variant of model optimization was tested,

using the heuristic search algorithm named simulated

annealing (SA)–PMRSA. This algorithm is used to

find the best sparse delays contributing at each branch

to the identification of the behavioral model of the

PA, as displayed in Figure 13. This nonlinear search

technique has been used in the extraction of baseband

behavioral models [19]. It searches for the best con-

figuration of delays to improve the identification ac-

curacy. The results achieved in terms of NMSE using

this method are also listed in Table III. It can be

observed that already in the second branch, the

PMRSA captures a considerable part of the residue,

having a faster convergence than the PMRA and

PMRB. However, the total NMSE figure is slightly

worse than PMRA and PRMB. Nevertheless, the

NMSE figure is improved in comparison to the use of

a single branch for the identification. The absence of

the fifth branch is due to the noise modeling of this

branch, which does not contribute to the final results.

At last, PMRA was also tested considering all dif-

ferent sets of simulated data. The obtained results

were compared with the other modeling techniques

presented in Table II and repeated here for conven-

TABLE III. NMSE, rf and Optimal Delays Results

PMRA First branch

rf 5 1

PMRB Optim. for all

Branches

PMRSA

Optim.

with SA

Branch rf

NMSE

(dB) rf

NMSE

(dB) Delays

NMSE

(dB)

1 1 223 9 224 [1 2 3] 223

2 19 23 12 22 [1 8 24] 24

3 13 21 4 21 [1 8 6] 20.5

4 30 21 39 21 [1 20 29] 20.5

5 1 21 30 21 – –

Model 229 229 228

Figure 14. Results for optimization of the PMRA at

remaining branches. The best resampling factors were 19,

13, 30, 1 for branches 2 to 5, respectively.

Figure 15. Results for optimization of the PMRB at

the first branch. The best resampling factor was found at

position 9.

Figure 16. Results for optimization of the PMRB at

remaining branches. The best resampling factors were 12,

4, 39, 30 for branches 2 to 5, respectively.
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ience in Table IV. For memoryless and linear mem-

ory systems, no additional branches were necessary,

and results were better than 255 dB NMSE. For sys-

tems presenting nonlinear memory, additional

branches were necessary to improve final results,

staying around 248 dB NMSE. An unmodeled resi-

due was initially present and minimized by subse-

quent branches.

Also improvements comparing with other model-

ing techniques were evident: 4 dB NMSE for simu-

lated signals, and 6 dB NMSE for measured signals,

when compared with Pre-WBose (without parallel

additional branches). Comparing with a memoryless

model (LUT), improvements were from 5 to 18 dB

NMSE.

To highlight the spectral improvements of this

technique, Figure 17 shows the measured output sig-

nal and the residues of the model with preprocessing

and subsampling parallel branches (PMRA, Pre-

Wbose par) and the model with only preprocessing

(Pre-Wbose)—the NMSE results are listed in Table

IV, in column Meas. The in-band residue improve-

ments of the model using subsampling techniques are

clearly seen in this figure.

VI. CONCLUSIONS

A general preprocessing technique for PA behavioral

modeling was presented. This technique has shown to

be efficient and was validated using a PH model and

a particular configuration based on a reduced Wiener-

Bose structure dynamic PA behavioral model. Later

on, an innovative parallel model using preprocessing

technique in the first branch and reduced Volterra se-

ries combined with subsampling techniques in the

remaining ones was introduced. The extraction pro-

cess used either an optimization of the resampling

factor, based on function evaluations, or simulated

annealing techniques, to reach the final result. This

strategy and the model structure allowed improved

identification performance, in terms of NMSE, in

comparison to other simpler models. The main draw-

back is the increase in the number of parameters and

simulation time when considering these modeling

techniques. Results have shown that parallel models

with different structures using subsampling in their

subsequent branches can improve the identification

performance and justify the inclusion of additional

branches. Results also have confirmed that the accu-

racy of a PA behavioral model considering only one

single branch is lower than considering preprocessing

and resampling techniques. The importance of sub-

band parallel models and optimization of the resam-

pling factor was proven in terms of overall NMSE

and spectrum in-band error improvement, showing an

efficient reduction of the residue in the final estima-

tion process.
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