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We put forward a powerful technique that allows generating quasi-non-diffracting light 

beams with a variety of complex transverse shapes and topologies. We show that, e.g., spi-

raling patterns, patterns featuring curved or bent bright stripes, or patterns featuring arbi-

trary combinations of harmonic, Bessel, Mathieu and parabolic beams occupying different 

domains in the transverse plane can be produced. The quasi-non-diffracting patterns open 

up a wealth of opportunities for the manipulation of matter and optical waves, colloidal and 

living particles, with applications in biophysics, and quantum, nonlinear and atom optics. 

 

PACS numbers: 42.65.Jx; 42.65.Tg; 42.65.Wi 

 

The advent of optical trapping and manipulation of matter has revolutionized several 

branches of physics from the micro- and nano-scale to the single-atom levels and Bose-

Einstein condensates [1]. Nondiffracting light patterns have become key tools in topics as 

diverse as trapping of in-vivo and colloidal particles in biophysics [2], atom optics [3], appli-

cations of optical lattices for quantum computing [4] and quantum optics at large [5], opti-

cal tweezing [6], and nonlinear optics [7,8], to name a few. The patterns used to date corre-

spond only to the known sets of simple non-diffracting light beams that are rigorous exact 

solutions of Helmholtz equation. In particular, group theory demonstrates that there are 

only four different coordinate systems where Helmholtz equation is separable [9], yielding 

invariant solutions along the propagation axis: plane waves in Cartesian coordinates, Bessel 

beams in circular cylindrical coordinates [10], Mathieu beams in elliptic cylindrical coordi-

nates [11], and parabolic beams in parabolic cylindrical coordinates [12]. In addition one can 
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also mention accelerating Airy beams [13]. Each of these beams exhibits a specific symme-

try, hence affording the corresponding possibilities and limitations. An important related 

open problem is the generation of more complex nondiffracting, or slowly diffracting, beams 

with arbitrary shapes and symmetries. Here we put forward a powerful new strategy that 

allows the generation of arbitrary complex light patterns matching the requirements of a 

particular application, which can be considered nondiffracting for all practical purposes. 

Such complex beams diffract very slowly, so that they can be considered as non-diffracting 

over a distance dictated by the width of the angular spectrum. 

The field of a general non-diffracting beam propagating along the x  axis that does not 

experience acceleration in the transverse plane may be written via the Whittaker integral 

[10-12]: 
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Here  and  are longitudinal and transverse components of the wave number 

, respectively, j  is the azimuthal angle in frequency space,  are the 

transverse coordinates and  is the angular spectrum which is defined on an infinitely 

narrow ring of radius . In experiments, truncated versions of nondiffracting beams are 

commonly used that still can be considered nondiffracting up to a finite distance. If the 

nondiffracting beam is modulated by a Gaussian envelope, such distance is , where 

 is the radius of the envelope. Such beams have an angular spectrum defined on an annu-

lar ring of radius  with width  [14]. A finite width of the angular spectrum does 

not necessarily imply truncation of the pattern. Superposition of two infinitely extended 

Bessel beams with slightly different  generates a pattern that can be considered undis-

torted over a distance x  that is dictated by the difference in the  values. Such a pattern 

will experience distortion in the entire transverse plane due to the accumulated phase differ-

ence between the fields, in contrast to truncated patterns where the perturbation moves 

from the periphery to beam center. The point is increasing the width of the angular spec-

trum in frequency space opens up the possibility to construct beams with really complex 

shapes. 
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Our approach consists in engineering the angular spectrum in the frequency space un-

der the constraint that the transverse wavenumber components   are 

contained within a sufficiently narrow annular ring to ensure almost nondiffracting propaga-
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tion. The experimental feasibility of such a concept has been demonstrated [15]. Here we 

put forward an iterative Fourier algorithm for construction of beams with arbitrarily com-

plex shapes that is reminiscent to methods used in phase retrieval and image processing al-

gorithms [16]. The first step is setting the desired field distribution  at . The 

phase distribution  of the field is a free parameter, while 

( , )q h z 0x =

arg[ ( , )]q h z ( ,q h z

,k kh

)

z

 is selected to 

get the desired shape. Quasi-random (or uniform) initial phase distributions yield conver-

gence in most cases. However, an initial guess intuitively adapted to the desired final 

 distribution accelerates convergence. On the next step the Fourier transform of 

 is calculated and the components of the angular spectrum for  falling outside 

the annular ring of width  and radius  are set to zero. One applies an inverse Fourier 

transform to the resulting function and substitutes the modulus of the obtained complex 

function with the original field modulus 

arg[ ( , )]q h z

( , )q h z

tkd tk

( ,q )h z , but keeps the new phase distribution. This 

procedure is repeated until convergence is achieved for a selected . The phase factor 

 in the trial distribution  does not affect convergence. The field  from 

the last iteration is used without replacing its modulus with 

tkd
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, in comparison with the ideal distribution. The iterative 

procedure produces patterns involving combinations of multiple truly nondiffracting beams 

with slightly different  values as dictated by the imposed width  of the angular spec-

trum. Such an iterative procedure is crucial: the propagated trial beam q  decays after 

just a few diffraction lengths, while the iterated beam keeps its structure over tens of dif-

fraction lengths. We use dimensionless transverse coordinates  normalized to the charac-

teristic width , while the longitudinal coordinate  is normalized to the diffraction length 

, where  is the wavenumber. Thus, a beam at the wavelength 

 shaped in accordance with our method that has a characteristic transverse scale 

[for example, a spacing between stripes in Fig. 2(a)] of the order of r  will remain 

undistorted over distance considerably exceeding L , while for the beam with 

 the distance of invariance will exceed . 
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Examples of patterns generated with this algorithm are shown in Fig. 1, where we aim 

to produce specific spiraling beams. For a very small width of the angular spectrum 

 (  one usually gets patterns that are far from the desired ones, especially 

when  exhibits a complicated structure [Fig. 1(a)]. Increasing  up to  causes 

dramatic improvements in the beam shape: while some distortions are still visible, the de-

sired spiraling pattern is clearly resolvable [Fig. 1(b)]. Thus, engineering the angular spec-

trum allows to construct patterns that have no analogs among known non-diffracting beams. 

tk=
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If  is further increased one obtains even better approximation to the desired beam [Fig. 

1(c)]. However, the value of  has to be carefully selected since a small  assures almost 

diffractionless propagation, but at the same time it may result in patterns that are rather 

far from the desired ones, while for sufficiently large  one can generate patterns close to 

any desired beam that, however, will be more prone to diffraction. Still, in previous experi-

ment [14] it was demonstrated that Bessel beams with a Gaussian envelope may propagate 

undistorted over distances largely exceeding the diffraction length even for . 
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Our technique allows to introduce controllable distortion into otherwise rigorous non-

diffracting beams. Thus, using a trial function  for  and 

 for  one can generate a quasi-one-dimensional beam with 

stripes experiencing an abrupt bending at an angle q  at z  [Fig. 2(a)]. Due to inherent 

robustness of the method the sharp shape variations around  are smoothed out. While 

for small angles of bending  the beam shape is remarkably regular and 

its intensity remains almost unchanged along the stripes, for higher bending angles the re-

gions of increased or decreased intensity appear [Fig. 2(b)]. Deformed patterns featuring 

stripes that may periodically curve in horizontal direction are produced with 

, where  controls the amplitude of deformation. For 

sufficiently small deformations  the resulting quasi-nondiffracting beams feature almost 

constant intensities along stripes [Fig. 2(c)], while increasing  results in appearance of 

domains with increased or decreased intensities and the actual bending law for beam stripes 

may depart from the harmonic one [Fig. 2(d)]. 
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The method allows also the identification of shapes of angular spectra corresponding to 

novel types of non-diffracting beams. Thus, a trial beam q k , 

with  being zero-order Bessel function, allows to produce a single-channel pattern in real 

space [Fig. 2(e)], while in frequency domain the spectrum of such beam appears to be very 

close to infinitely-narrow ring and its angular distribution can be well described by a step-

like function  that is nonzero within finite interval of angles . This indi-

cates that there exist truly nondiffracting beams with such specific symmetry. In a similar 

way one can construct truly nondiffracting beams featuring several pronounced stripes [Fig. 

2(f)]. The technique may generate patterns featuring practically any combinations of known 

harmonic, Bessel, Mathieu, or parabolic beams occupying different arbitrary domains in the 

transverse plane that propagate undistorted over considerable distances. Thus, the trial 

beam  for  and  otherwise, 

where Je  are even and odd radial Mathieu functions,  are even and odd angu-
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lar Mathieu functions,  is the ellipticity parameter, and  is the azimuthal angle in spatial 

domain, produces the pattern featuring several confocal elliptical rings in a selected angular 

domain , while in other angular domain the light field vanishes almost com-

pletely [Figs. 3(a) and 3(b)]. The symmetry of the Mathieu pattern for  is almost 

unaffected by removal of part of the beam in other angular domain. Increasing of the angu-

lar spectrum width d  from  [Fig. 3(a)] to 0.2  [Fig. 3(b)] results only in slight modifica-

tions in the beam. Such states experience exceptionally slow transformations on propaga-

tion, i.e. they are very close to nondiffracting beams. The possibility to combine beams with 

different symmetries is illustrated in Figs. 3(c)-3(f) where a parabolic trial beam 

 defined at  (here Pe  are the even and 

odd parabolic cylinder functions, respectively, and parameter a  determines the curvature of 

beam stripes) was combined either with harmonic q  or Bessel  

patterns at  (here r  is the radial coordinate and  determines the ratio of beam am-

plitudes at  and h ). The resulting quasi-nondiffracting beams are characterized by 

sharp transitions between domains with different field symmetries. An example of more 

complicated almost nondiffracting pattern that does not have analogs among truly nondif-

fracting beams is presented in Fig. 4. The beam of this type is produced by 

, where  is an integer. When d  and  a pattern is 

generated [Fig. 4(a)] whose shape is well described by radially periodic cosine function. For 

 and  the method generates different types of spiraling beams that are 

distorted in the center, but are remarkably regular at moderate r  values [Figs. 4(b)-4(f)]. 
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Our method can be modified in order to generate a required phase distribution in the 

beam instead of the field modulus. The straightforward modification of the iterative proce-

dure allows to combine patterns characterized by different topological winding numbers 

(charges) such as q k  at  and  at 

. Thus, in the case of , n  the pattern is obtained whose intensity re-

mains almost invariant on propagation, while phase accumulation rates in different halves of 

the pattern differ considerably [Fig. 5(a)]. Using m  and  allows to obtain the 

beam with opposite phase accumulation rates in adjacent half-planes [Fig. 5(b)]. It is also 

possible to change the phase distribution not in angular, but in radial direction [Fig. 5(c)]. 

These results can be immediately used to generate suitable optical tweezers and atom traps, 

as well as to study the transfer of angular momentum to atoms or microparticles. 

The beams described here may be used to demonstrate a variety of effects in different 

areas of science, from quantum optics to physics of matter waves and nonlinear optics. 
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Among their applications may be the control of evolution of matter-wave or optical solitons 

in optical lattices produced by the corresponding nondiffracting beams. Due to their unusual 

symmetry such lattices may allow observation of new types of soliton motion and may sub-

stantially enrich the possibilities for all-optical routing of light signals. To illustrate this, we 

consider the propagation of optical radiation in a biased photorefractive crystal. The lattice 

that is optically induced by suitable quasi-nondiffracting beam creates refractive index 

modulation in the transverse plane ( ,  that can be considered invariable in x  direction 

for sufficiently small  values. Nonlinearity of the crystal affects only the probe beam with 

polarization orthogonal to that of lattice-creating beam that propagates in linear regime [7]. 

The propagation of probe beam is described by the normalized nonlinear Schrödinger equa-

tion 

)h z

d

2 21(1/2)( ) (1 ) ( ) 0iq q q

12

Eq S q R S q Rx hh zz
-+ + + + + + = , where  is the satura-

tion parameter,  is the biasing field applied to the crystal and the function  de-

scribes the lattice shape that is proportional to intensity of lattice-creating beam. If the op-

tical lattice features clearly pronounced guiding channels in the transverse plane the soliton 

launched into one of such channels with a proper input phase tilt may start moving along 

the guiding channel, so that the trajectory of soliton motion will be dictated by the topology 

of the lattice. In this way one can force solitons to change their propagation direction in lat-

tices with bent channels [Fig. 6(a)], to move along curved trajectory [Fig. 6(c)], or perform 

specific spiraling motion in spiraling lattices [Fig. 6(c)]. Such dynamics usually is not acces-

sible in conventional truly nondiffracting lattices. 

0.2S =

E = R

Summarizing, we put forward a technique to generate new types of complex quasi-non-

diffracting light patterns. The key ingredient of the method is engineering the angular spec-

trum of the kernel-generated function. The wider the rings of the angular spectrum the 

higher the complexity of the patterns generated, but the shorter the propagation distance 

where they remain undistorted. The light patterns described here are expected to find im-

portant applications in several branches of science that currently use non-diffracting light 

beams for the manipulation of matter, such us optical traps in biophysics and quantum and 

atom optics, or to manipulate light itself. 
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Figure captions 
 

Figure 1. Spatial intensity distributions of spiraling beams (top row) and corresponding 

angular spectra in frequency space (bottom row) for (a) , (b) , 

and (c) . 

0.01d = 0.07

0.20

 

Figure 2. Bent beams corresponding to (a)  and (b)  at . 

Curved beams corresponding to (c)  and (d)  at , 

. Quasi-one-dimensional beams with one (e) and three (f) enhanced 

channels at  and . 
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Figure 3. Intensity distributions for (a),(b) truncated Mathieu beams, (c),(d) parabolic-

cosine beams, and (e),(f) parabolic-Bessel beams. Top panels correspond to 

, while bottom panels correspond to . In all cases . 0.1d = 0.2d = t 4k =

 

Figure 4. Intensity distributions of spiraling beams at (a) , (b) , (c) , 

(d) , (e) , and (f) . In all cases  and . 
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Figure 5.  Intensity distributions and engineered phase structures of quasi-

nondiffracting beams obtained by using as a trial pattern a combination of 

two Bessel beams with topological charges (a) , , (b) , 

, and (c) , . In all cases . 
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Figure 6. Snapshot images showing dynamics of soliton propagation in (a) bent lattices 

with , , (b) in curved lattice with , , 

, and (c) in spiraling lattice with , . In (a) the intensity dis-

tributions corresponding to two different lattices are superimposed. 
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